
HAL Id: hal-00745705
https://hal.science/hal-00745705

Submitted on 26 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enforcing privacy as access control in a pervasive context
Aurélien Faravelon, Stéphanie Chollet, Christine Verdier, Agnès Front

To cite this version:
Aurélien Faravelon, Stéphanie Chollet, Christine Verdier, Agnès Front. Enforcing privacy as access
control in a pervasive context. CCNC 2012 - Consumer Communications and Networking Conference,
Jan 2012, Las Vegas, NV, United States. pp.380-384, �10.1109/CCNC.2012.6181011�. �hal-00745705�

https://hal.science/hal-00745705
https://hal.archives-ouvertes.fr

Enforcing Privacy as Access Control in a Pervasive Context

Aurélien Faravelon∗†, Stéphanie Chollet∗, Christine Verdier∗, Agnès Front∗

∗Laboratoire d’Informatique de Grenoble
BP 53, 38041 Grenoble cedex 9

†Groupe de recherche Philosophie, Langage & Cognition

Bât. ARSH 2, 38040 Grenoble cedex 9

Email: {aurelien.faravelon,stephanie.chollet,christine.verdier,agnes.front}@imag.fr

Abstract—Pervasive applications promote a seamless inte-
gration of computer artifacts with our daily and business
lives. However, they threaten privacy in two ways. Firstly,
adaptation to a user’s context necessitates a large collection
of data. Secondly, context should be addressed when grant-
ing users access to information. This paper handles privacy
management as an access control problem and argues that
privacy should be specified from a global point of view.
Investigating privacy specification at a high level of abstraction
and its implementation leads to the proposition of a generative
approach relying on model-driven engineering. This approach
distinguishes a design level for privacy from its execution level.
The design level provides a specification language for privacy
which emphasizes its contextual features. It is implemented at
the execution level as a service composition generated through
model transformations. This composition gathers heterogenous
entities, such as pieces of software code or devices. The
approach is validated on the example of a medical workflow.

Keywords-Service-Oriented Computing (SOC), Security, Ac-
cess Control, Model-Driven Engineering.

I. INTRODUCTION

Supported by the development of portable devices, like

smartphones and sensors, pervasive applications are boom-

ing. They promise to enable users to provide users with

added value services anywhere using the available resources.

However, pervasive applications raises security issues, espe-

cially in terms of privacy when they involve sensitive data.

In medicine for instance, pervasive applications may enable

medical staff to access the relevant data from anywhere and

at anytime thanks to the use of tablets and smart devices.

However, two points must be considered. Firstly, medical

staff’s privacy must be safeguarded by minimizing the set

of information necessary to compute the context they are in.

Then, medical staff must be allowed to access a patient’s

data if their situation allows them to do so. Medical staff on

holiday, for instance, does not satisfy this condition.

Consequently, constraining what a user can do and the

data an application can access is necessary. This constraining

activity is called access control [1] which thus appears as

a way to protect privacy complementary with other security

mechanisms. In the pervasive realm, access control man-

agement must be dynamic because devices, such as smart-

phones, may appear and disappear, and entities’ features,

such as users’ location, often change. Therefore, context,

i.e. the pieces of information which are of interest because

they influence a set of rights’ assignment of revocations,

turns out to be primordial in pervasive access control.

Implementing such an access control promises to be

of a high technical complexity and we claim that access

control should be addressed right from the design of an

application in order to be effectively enforced. Indeed, the

design level offers a global point of view on the application

which is crucial as access control rights must be managed

according to the overall application’s environment to be fully

contextual. Moreover, the design phase permits to gather

the actors involved in an application conception as security

and functionalities are usually addressed by different people.

Once this phase is performed, a mechanism to implement

access control can then be provided.

This paper takes up the challenge of providing a gen-

erative approach to access control. The contribution relies

on model-driven engineering to clearly separate the design

level from the execution one and generate the later from the

first through model transformations. At the design level, we

provide an access control model and its logical grammar to

specify privacy and separate access control preoccupations

from functional ones. At the execution level, access control

is enforced in a service composition to address the hetero-

geneity of pervasive applications’ entities. Indeed, Service-

Oriented Computing (SOC) [2] promotes the production

of applications through the composition of already existing

functionalities called Services that may be implemented as

software code for Web Services or as devices for UPnP1 and

DPWS2 Services. At runtime, the key element is the context

registry that maintains an overall view on the application’s

state and feeds privacy requirements checking.

Model-driven security has already been applied to

Component-Based Software Engineering [3] and transfer

security in service composition [4]. However, its use for

pervasive access control in service composition is still pen-

dant. At design level, the use of an access control model

expressive enough is yet to come. At the execution level,

1http://www.upnp.org/
2http://schemas.xmlsoap.org/ws/2006/02/devprof/

pervasive access control cannot be expressed with XACML3.

This specification is only adapted to access control specifi-

cation for Web Services, not to UPnP or DPWS Services

for instance and not suitable for dynamic access control as

it does not offer temporal mechanisms.

Services selection according to their access control fea-

tures [5], [6] is not satisfying either. It focuses on access

control at the level of each service but do not take into

account the application’s environment.

Filters to enforce access control to a resource, described

for instance in [7], solve this problem and are often im-

plemented as middlewares in the realm of SOC. Hashem

[8] integrates heterogenous components in an e-government

workflow with a middleware in charge of enforcing access

control. Adage [9], another middleware, was integrated to

CORBA and can deal with separation of duty but cannot

address contextual constraints. It is thus not adapted to

pervasive applications. Bhatti [10] enforces temporal con-

straints in the sense of GTRBAC but leaves aside the rest

of contextual constraints. Sohr [11] provides a specification

language for separation of duty and contextual constraints.

However, the authors rely on the Object Constraint Language

(OCL) that do not possess temporal operators. Stating the

chain of permissions in a workflow to express, for instance,

that a physician must update a medical file after interacting

with a patient, is thus impossible.

Our contribution aims at filling these gaps and is presented

in the rest of this paper. In Section 2, we introduce a

running example. Section 3 outlines the general idea of

our model-driven approach. Section 4 details the access

control meta-model used at design time. Section 5 explains

the architecture and the implementation of our approach to

secure services. We eventually conclude in Section 6.

II. RUNNING EXAMPLE

Our approach, though generic, is applied to the example

of medical emergency management, displayed on Figure 1.

This process summarizes several issues faced in pervasive

access control enforcement.

Let’s consider two actors, Bob and Alice, who respec-

tively embody the roles of physician and nurse and work

in the same hospital. As an emergency arises, Bob, who is

an available physician must be notified. Bob is considered

available because he is on duty, in the hospital and not

already engaged in an emergency. As Bob may be anywhere

in the hospital, this notification must be transmitted to

his cell phone. When Bob acknowledges the reception of

the notification, he must be granted the access to all the

information needed to take care of the patient and primarily

to their digital file. Depending on his access point to this file,

for instance his cell phone or his laptop, the information

must be adapted to be easy to display. Bob must also be

3http://www.oasis-open.org/committees/xacml/

authorized to modify the patient’s file in order to monitor

the cares he provides and save the prescriptions he makes.

If the emergency requires a nurse to take care of the

patient after the physician is done, Alice, who is available

because she is on duty, in the hospital and has not exceeded

the number of patients she can take care of, is notified and

granted access to the information necessary to perform her

task. Among this information lies a subset of the patient’s

digital file encompassing prescriptions.

Figure 1. Global Approach.

This example has three prominent features:

• Access control requirements guarantee the patient’s

privacy and the efficiency of risk management.

• Notifications are pushed to the actors according to

their access point. Accordingly, the system is proactive

and efficient and smoothly integrated to the actors’

environment.

• Each actor’s context is taken into account into ac-

cess control management in order to enforce the least

privilege principle. This context awareness allows

a dynamic management of rights which are thus

granted and denied only when necessary.

As a consequence, this example demands a high degree of

automation in order to efficiently handle risk and safeguard

privacy, this is what we undertake in the rest of this paper.

III. GLOBAL APPROACH: PRIVACY BY DESIGN

Privacy by design is doomed to failure if no mechanism

is provided to actually enforce it. We take up this challenge

by providing a model driven approach to privacy, understood

as an access control problem, elicitation and enforcement.

This approach is divided into two parts: the expression of

privacy by design and the privacy at runtime, both illustrated

by Figure 2.

The design level hides the complexity of the privacy code

for services and permits to have a global view of privacy

while separating each preoccupation. Indeed, it provides

meta-models and models for the service composition anno-

tated by security concepts for privacy derived from a privacy

meta-model which rests on a logical grammar.

The execution code, generated from the models, is com-

posed of two parts: the service composition one and the the

privacy one. This code is executed on an execution platform.

The service composition code can be seen as an orches-

tration to invoke the concrete services implemented as, for

instance, Web Service, UPnP or DPWS services. The privacy

code is added to the composition code without altering

the later: the separation of concerns is thus respected. The

privacy code contains the management of the access control

(defined in the access control model) and the checking of

the logical constraints. We introduce a context registry in

order to feed the privacy management. The context registry

provides a global view of the environment. It catches all

the events of the environment. Thus, the privacy is globally

managed for all the applications. It avoids conflicts between

the different actors and applications. The context registry is

the keystone element of our architecture.

Figure 2. Global Approach.

After introducing the salient features of our meta-model

in Section IV, we detail our execution level in Section V.

IV. ACCESS CONTROL FOR PRIVACY META-MODEL

As previously said, privacy can be seen as an access

control problem. We provide in this Section a meta-model

based on a logical language to guide access control for

privacy expression and computation.

A. Access Control for Privacy Meta-model

The meta-model relies on five basic concepts, Subject,

Object, Task, Right and Context. Its structure is

presented on Figure 3.

Subjects designate people or software agents, such

as Bob, a physician. Objects refer to the resources of

the systems, such as sensors or peripherals. Tasks are all

the access modes to an Object and Rights designated

the modalities of these access modes, such as obligation,

permission or interdiction.

Roles express positions in an organisation, such as being

a physician, they facilitate access control management as

Permissions are not attributed to Users, who may

always change but to Roles, i.e. organizational categories.

A User may be part of several Roles.

Figure 3. Access control for privacy meta-model’s structure

Context refers to a situation of interest, i.e. influencing a

set of rights for a SubjectRole over a ResourceRole.

A Context is defined by the values of the attributes and

the relationships of the Entities of the composition, i.e.

the Subjects and the Objects. Context affects right

management because it conditions their use and Roles

activation. Context’s dynamicity is accommodated by

Transitions between different Contexts.

B. Meta-model’s Logical Foundations

The meta-model relies on a logical semantics based on

Computational Tree Logic (CTL) [12]. Thus, the meta-

model’s instances, i.e. the access control policies, constitute

Kripke structures [13], i.e. oriented graphs where each

node is a state of the access control policy expressed as

a tuple comprising a Subject Role, a Permission, a

Context and a set of Objects Roles.

As a result, checking access control policies turns out to

be a model checking problem. This problem is solved by

checking that the current state of the service composition and

the chain of the previous states is conform to the obtained

Kripke Structure [12].

In the rest of this paper, we posit that access control

requirements have already been captured and we focus on

the execution of model checking.

V. ARCHITECTURE AND IMPLEMENTATION

The general principle is, for the Service Provider

to hide the concrete implementations of the Service behind

a set of components dedicated to access control enforce-

ment. These components take part in access control policy

checking: they verify that the current state of the compo-

sition satisfies the access control policy. We present these

components and their communication in this Section.

A. Architecture

Thanks to the Service Provider, Access Control

enforcement is transparent in the frame of a service compo-

sition because the service provider exports itself as a Web

Service. It can thus be discovered and bound as any other

Service. Figure 4 presents the global architecture.

Figure 4. Global architecture.

The Service Provider comprises the following ele-

ments:

• The Entry Point constitutes the interface that the

proxy publishes to the service registry. The Entry

Point also publishes the service’s metadata notably

related to its security abilities.

• The Composition Engine is in charge of orches-

trating the access control policy checks and the in-

vocation to the concrete services. It checks that the

current state of the composition, i.e. the tuple compris-

ing the Service Consummer’s roles, the Objects

that the Service Consummer wants to access and

the the Service Consumer’s Context satis-

fies the policy.

• The Context Analyzer is in charge of retrieving

the contextual information concerning the Service

Consumer and the composition’s environment of ex-

ecution. Thus, the Context Analyzer deals with

static features, such as a person’s identity and assigned

roles and dynamic features, such as time, location and

the arising of events such as an emergency. These

features are the basis of context computation.

• The Roles Mapper computes the activated roles. To

do so, it checks if the Service Consumer satisfies

all the constraints which define a Role and if the

necessary Context is activated.

• The Proxy constitutes a connector to the concrete

Services which takes into account their implementation

in order to adequately transfer them the query. The ad-

dressed implementation features notably encompass the

services type (Web Service, UPnP or DPWS), the data

format and the translation between the organizational

access control policy and the Service’s own policy.

B. Service Provider’s Functioning

Now that the Service Provider’s structure has been

defined, we turn to its behavior. As an input, the Service

Provider takes the Service Consumer’s query. As

an output, it rejects the query if the tuple comprising the

Service Consumer, the resources it wants to access and

the activated Context does not satisfy the access control

policy, or delivers the query’s result it does.

Figure 5 presents the flow of messages between the

Service Provider’s components to determine if a query can

be processed. This invocation transits through the Proxy

and the Composition Engine composes the concrete Services

answers before delivering the query’s answer to the Service

Consumer.

Figure 5. Functioning of the Service Provider.

The Composition Engine orchestrates the access

control policy checking by querying the Roles Mappers

and the Context Analyzer. The first determines the

Roles the Service Consumers can activate accord-

ing to the Contexts that are activated for it. The later

determines the Context activated at the level of the

composition. The Composition Engine checks if the

access control policy is satisfied and rejects the query if not

or invokes the concrete Services otherwise.

C. Implementation

We now apply our approach to our running example. To

do so, we first model the access control requirements and

then provide details on their enforcement at execution.

1) Design Phase: Modeling Access Control Require-

ments: We focus here on the modeling of the access

rights to an emergency notification and a medical file for a

physician. We identify a Role, Physician, two Contexts,

Available and Engaged in an Emergency Management, and a

Transition between these two contexts, the acceptation

of the notification. The instantiation of our meta-model is

presented on Figure 6.

Figure 6. Instanciation of our meta-model for a physician’s access rights.

2) Execution Phase: Enforcing Access Control: As we

said, the problem of verifying our policy is a model checking

problem, consisting in verifying that the composition’s cur-

rent state satisfies the access control policy. We implement

it with the algorithm proposed by Bozelli [14]. It runs in

polynomial time according to the size of the considered

Kripke structure and in doubly exponential time in the size

of the logical formula describing the composition.

The generated Service Provider consists in a Web Service.

The generation process relies on a Jet Template which takes

the instantiation of our meta-model as an input and generates

J2EE Code.

For the purpose of the experiment, we run our Service

Provider on a Glassfish server. We implement our Service

Registry as an UDDI registry and the Context Registry

as a Oracle 11i database. As contextual sources, we rely

on Google Agenda for the participant’s calendar and their

smartphone’s location facilities.

. . .<t a s k>
<p a r a m e t e r name=” t e c h n o l o g y ”

v a l u e =”<\%=s e r v i c e I m p l e m\%>” />
<p a r a m e t e r name=” name ”

v a l u e =”<\%=taskName\%>” />
<p a r a m e t e r name=” r e t u r n T y p e ”

v a l u e =”<\%=t a s k r e t u r n\%>” /> . . .

Figure 7. Extract of the JET for the Service Provider generation.

VI. CONCLUSION

This paper addresses the enforcement of privacy in a

pervasive environment. Privacy is here understood as a prob-

lem of access control. We propose a model-driven approach

to privacy enforcement based on the clear separation of

a design and an execution levels. At the design level, we

promote separation of concerns by providing a meta-model

for access control. The execution level is generated from the

design level by model transformations that bypass manual

programming, which is error prone.

Our approach is validated on examples of medical work-

flows. Medical applications summarize several issues that

are highly transferable to a wide variety of domains of

application. As such, the rest of our work will be devoted

to the application of our proposition to other domains.

REFERENCES

[1] R. S. Sandhu and P. Samarati, “Access control: Principles
and practice,” IEEE Communications Magazine, vol. 32, pp.
40–48, 1994.

[2] M. P. Papazoglou, “Service-Oriented Computing: Concepts,
Characteristics and Directions,” in WISE’03: Proceedings
of the Fourth International Conference on Web Information
Systems Engineering, Los Alamitos, CA, USA, December
2003, pp. 3–12.

[3] D. Basin, J. Doser, and T. Lodderstedt, “Model driven se-
curity: From uml models to access control infrastructures,”
ACM Trans. Softw. Eng. Methodol., vol. 15, pp. 39–91, 2006.

[4] S. Chollet and P. Lalanda, “An extensible Abstract Service
Orchestration Framework,” in Proceedings of IEEE Interna-
tional Conference on Web Services. Los Alamitos, CA, USA:
IEEE Computer Society, July 2009, pp. 831–838.

[5] B. Carminati, E. Ferrari, and P. Hung, “Security conscious
web service composition,” in ICWS, 2006, pp. 489–496.

[6] M. Srivatsa, A. Iyengar, T. A. Mikalsen, I. Rouvellou, and
J. Yin, “An access control system for web service composi-
tions,” in ICWS, 2007, pp. 1–8.

[7] A. Kumar, N. Karnik, and G. Chafle, “Context sensitivity in
role-based access control,” SIGOPS Oper. Syst. Rev., vol. 36,
no. 3, pp. 53–66, 2002.

[8] F. Hashem and H. Al-Obaidy, “A secure workflow manage-
ment system (swms) for e-government web based applica-
tion,” in CSREA EEE, 2010, pp. 239–246.

[9] M. E. Zurko, R. Simon, and T. Sanfilippo, “A user-centered,
modular authorization service built on an rbac foundation,” in
IEEE Symposium on Security and Privacy, 1999, pp. 57–71.

[10] R. Bhatti, A. Ghafoor, E. Bertino, and J. Joshi, “X-gtrbac: an
xml-based policy specification framework and architecture for
enterprise-wide access control,” ACM Trans. Inf. Syst. Secur.,
vol. 8, no. 2, pp. 187–227, 2005.

[11] K. Sohr, T. Mustafa, X. Bao, and G.-J. Ahn, “Enforcing role-
based access control policies in web services with uml and
ocl,” in ACSAC, 2008, pp. 257–266.

[12] E. A. Emerson, “Temporal and modal logic,” in Handbook
of theoretical computer science, J. van Leeuwen, Ed. MIT
Press, 1990, ch. Temporal and modal logic, pp. 995–1072.

[13] A. Pnueli, “The temporal logic of programs,” in Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science. Washington, DC, USA: IEEE Computer Society,
1977, pp. 46–57.

[14] L. Bozzelli, “The complexity of ctl* + linear past,” in
Proceedings of the Theory and practice of software, 11th
international conference on Foundations of software science
and computational structures, ser. FOSSACS’08/ETAPS’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 186–200.

