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EXTENSIONS OF THE CAV(U) THEOREM FOR REPEATED GAMES WITH

INCOMPLETE INFORMATION ON ONE SIDE.

FABIEN GENSBITTEL

Abstract. This work is devoted to extend several asymptotic results concerning repeated games with incom-

plete information on one side. The model we consider is a generalization of the classical model of Aumann and

Maschler [4] to infinite action spaces and partial information. We prove an extension of the classical “Cav(u)”
Theorem in this model for both the lower and upper value functions using two different methods: respectively

a probabilistic method based on martingales and a functional one based on approximation schemes for viscos-

ity solutions of Hamilton Jacobi equations similar to the dual differential approach of Laraki [25]. Moreover,
we show that solutions of these two asymptotic problems provide O(1/

√
n)-optimal strategies for both players

in any game of length n. All these results are based on a compact approach, which consists in identifying a

continuous-time problem defined on the time interval [0, 1] representing the “limit” of a sequence of finitely
repeated games, as the number of repetitions is going to infinity. Finally, our results imply the existence of the

uniform value of the infinitely repeated game whenever the value of the non-revealing game exists.

This work is devoted to generalize and extend several asymptotic results concerning zero-sum repeated games
with incomplete information on one side. Our approach, known as compact approach, consists in identifying
a continuous-time problem (in most known examples a differential game or a control problem) defined on the
time interval [0, 1] which represents the “limit” of a sequence of finitely repeated games. These games are seen
as discrete-time models defined on the time interval [0, 1], being piecewise constant on a partition whose mesh
is going to zero as the number of repetitions is going to infinity.

The model we consider is an extension of the classical Aumann-Maschler model [4], where the informed player
receives only a partial information about the state variable (i.e. a noisy signal) and where action spaces may
be infinite. As a consequence, and since no regularity of the payoff functions is assumed, these games have in
general no value. Our main result is the extension of the classical “Cav(u)” Theorem for both the lower and
upper value functions in terms of the lower and upper value functions of the non-revealing game. Moreover, we
identify two limit continuous-time problems, generalizing the compact problems mentioned in Sorin [29] (section
3.7.2 p.50). All the results are presented within the framework of finitely repeated games, but the extension
to time-dependent payoff functions and to general evaluations (including discounted games) is possible (precise
statements and details needed in order to adapt the proofs are given in section 5). These extensions are typical
of the compact approach (see Cardaliaguet-Laraki-Sotin [14] for general results in this direction) and also relate
our results to differential games with incomplete information (see Cardaliaguet-Rainer [11, 13]).

The analysis of the asymptotic behavior of the lower value functions (or maxmin) of these games is based
on probabilistic tools. The proofs rely on a representation formula for the lower value functions as the value
functions of some discrete-time stochastic optimization problem over martingales that we call maximal variation
problem. The maximizers of this problem represent the optimal processes of revelation for the informed player.
This formula extends the one introduced in De Meyer [19] in a multidimensional setting and without assuming
the existence of the value, since the class of financial exchange games considered in [19] is formally contained
in the model described here. The concavification operator appearing in the limit is then expressed as the value
function of a continuous-time stochastic control problem and we deduce from this representation that any limit
point of a sequence of maximizers for the maximal variation problem is a maximizer of the control problem.
Conversely, as for the finite case, any maximizer of the limit problem induces an O( 1√

n
) + ε -optimal strategy

for the informed player in the n-stages game for any n (optimal strategies in this context being strategies for
the players guaranteeing respectively the lower and upper value). Although some classical arguments are used,
such as the splitting Lemma and the bound on the L1-variation of a martingale, our proof also introduce new
arguments in order to consider infinite action spaces. Moreover, we provide precise properties of the value
functions and optimal strategies, some of them being new even for finite games, which may be interesting for
their own sake.

The analysis of the upper value functions relies on the introduction of a dual game similar to the game
introduced in De Meyer [18] for finite games and appearing more recently in De Meyer-Lehrer-Rosenberg
[20] for a finite non-repeated game with partial information. We show that the idea of considering a PDE
introduced in De Meyer [17] and already used in De Meyer-Rosenberg [21] and Laraki [25] to prove the classical
“Cav(u)” Theorem for finite games can be adapted in our case. In particular, we extend the dual variational
characterization in the viscosity sense of the concavification operator obtained in Laraki [25] on an infinite-
dimensional space of probabilities. This allows us to deduce from the asymptotic behavior of the upper value
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functions of the dual game the extension of the “Cav(u)” Theorem for the upper value functions of the initial
game. Moreover, these duality relationships allow us to construct, as for the lower values, O( 1√

n
) + ε -optimal

strategies for the uninformed player in the n-stage game for any n.
These two asymptotic characterizations of the value functions, the first related to some continuous-time op-

timization problem over martingales and the second as a dual PDE problem, rely on very general arguments
and provide tools that may be adapted in more general models of repeated game with incomplete information.
Our choice to present these two methods together is based on the fact that they are both related to some
continuous-time problem but also on the observation that the probabilistic method is not directly applicable
for the asymptotic analysis of the upper value functions and reciprocally that the PDE method is not directly
applicable for the asymptotic analysis of the lower value functions. Let us also mention that these two charac-
terizations (the martingale optimization problem and the dual PDE formulation) also appear for second-order
expansions in Gensbittel [23], where a different normalization is used for a particular subclass of games.

Finally, based on classical results on zero-sum repeated games, our results imply that both players have an
ε-optimal strategy in the infinitely repeated game. We deduce from this observation the existence of the uniform
value under the assumption, very similar to the Isaac’s condition appearing in [11], that the non-revealing game
has a value.

The paper is organized as follows. Section 1 describes the model and presents the main results. In section
2, we study general properties of the value functions and strategies. In section 3, we prove the representation
formula based on the problem of maximal variation. Then we prove the “Cav(u)” Theorem for the lower value
functions and analyze the optimal strategies of the informed player. In section 4, we describe the model of the
dual game, we prove the “Cav(u)” Theorem for the upper value functions, and we analyze the optimal strategies
of the uninformed player. Section 5 discusses possible extensions and open questions. Section 6 is an appendix
containing technical proofs and auxiliary results.

1. Model and main results.

Our aim is to extend the classical model of Aumann-Maschler to infinite action spaces and to partial infor-
mation by considering a zero-sum repeated game with incomplete information on one side in which the informed
player does not observe the state variable directly but receives a stochastic signal whose distribution depends
on the state variable. If a fixed finite set of signals and the distribution of signals given states were given,
then this model could be reduced to the classical one (with full information on one side) by replacing states
by signals and by modifying the payoff function accordingly. This would conduct to consider a different game
for any finite set of signals and for any distribution. Moreover, this reduction is not helpful when considering
infinite action spaces since to our knowledge previous proofs for the convergence of the upper value functions
do not apply directly in this context even in the full information case (see Remark 2.1). Our approach is the
following, we consider any measurable set of signals, allowing in particular for infinite sets, and we reduce the
problem to the study of an auxiliary game where states are beliefs of the informed player. We study directly
the value functions in this auxiliary model with compact state space and infinite action spaces which does not
depend on the chosen set of signals. Let us also mention that the model with partial information, apart from
being more general, can also be seen as a tool in order to study the lower value function for games with full
information on one side and infinite action spaces through the representation formula given in Proposition 3.1.

In the following, for a finite set K, its cardinal is also denoted K. |.| and 〈., .〉 denote respectively the usual
Euclidean norm and scalar product on RK . For a measurable space (E, E), ∆(E) denotes the set of probabilities
over E. Topological sets are implicitly endowed with their Borel σ-fields, probabilities over a topological set with
the weak∗-topology, Cartesian products with the product topology and finite sets with the discrete topology.

The game with partial information. A zero-sum finitely repeated game with partial information on one
side is represented by (I, J,K,A, (S,S)). I, J,K are respectively the action sets of the two players denoted
P1,P2 and the state space. The set K is assumed to be finite, but I, J are only assumed to be Polish spaces
(complete separable metric). A represents the payoff function and is a bounded measurable mapping

A : I × J → RK ,

where A(i, j)k is the payoff of P1 when actions (i, j) are played and the state variable is k. (S,S) is an auxiliary
measurable space. At the beginning of the game, the pair (k, s), where k ∈ K is the state variable and s ∈ S is
a signal, is drawn by Nature using some probability π ∈ ∆(K × S). P1 is informed privately of the realization
of the random variable s while P2 knows only the description of the game, including π. The only relevant
information for P1 is the conditional law of k given s denoted L(s) ∈ ∆(K). Let µ denote the law of L(s),
and note that µ depends only on the joint law of (k, s), which is known by P2. We can therefore reduce our
analysis to a model with full information on one side where the state space ∆(K) is the set of beliefs of P1.
This amounts to assume (see Lemma 2.1 below for a formal proof) that Nature selects at random L ∈ ∆(K)
using the probability µ and informs P1 of his beliefs L.
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This observation leads us to consider the following reduced game, which is a classical game with incomplete
information on one side, and whose definition is independent of the set of signals. The reduced game is defined by
(I, J, SK , A). The state space is now SK := ∆(K) identified as the canonical simplex in RK . The state variable
is a vector L = (L1, .., LK) ∈ SK and is drawn by Nature at the beginning of the game using some probability
µ ∈ ∆(SK). P1 is informed of the realization of the random variable L while P2 knows only the description
of the game. The n-times repeated game proceeds as follows. At round q (q = 1, .., n), P1 and P2 select
simultaneously and independently an action iq ∈ I for P1 and jq ∈ J for P2 using some lotteries depending
on their information and past observations. Actions are announced publicly after each round. Formally, a
behavioral strategy σ for P1 is a sequence (σ1, .., σn) of transition probabilities depending on his information
and past observations

σq : SK × (I × J)(q−1) → ∆(I),

where σq(L, i1, j1, ..., iq−1, jq−1) denotes the lottery used to select the action iq played at round q by P1 when
the state is L and the past history of the game is (i1, j1, ..., iq−1, jq−1). Let Σn be the set of behavioral strategies
for P1. Similarly, a strategy τ for P2 is a sequence (τ1, .., τn) of transition probabilities depending only on his
past observations

τq : (I × J)(q−1) → ∆(J).

Let Tn denote the set of behavioral strategies for P2. Let us denote Γn(µ) the associated n-times repeated game.
A triplet (µ, σ, τ) induces by Tulcea’s Theorem (see [28]) a unique probability Π(µ, σ, τ) ∈ ∆(SK × In × Jn).
Based on Lemma 2.1, the payoff function of P1 in Γn(µ) is given by

gn(µ, σ, τ) := EΠ(µ,σ,τ)

[
〈L, 1

n

n∑
q=1

A(iq, jq)〉

]
.

Let us define the lower and upper value function of the game Γn(µ), respectively the maximal and minimal
payoffs P1 and P2 can guarantee:

V n(µ) := sup
σ∈Σn

inf
τ∈Tn

EΠ(µ,σ,τ)[〈L,
1

n

n∑
q=1

A(iq, jq)〉],

V n(µ) := inf
τ∈Tn

sup
σ∈Σn

EΠ(µ,σ,τ)[〈L,
1

n

n∑
q=1

A(iq, jq)〉].

The non-revealing game. In order to state the main convergence results, we need to introduce the value
functions of the non-revealing game. The non-revealing game is a modification of Γ1(µ) in which P1 is not
informed of the realization L. The lower and upper value functions of this game are defined as follows:

U(µ) := sup
σ∈∆(I)

inf
τ∈∆(J)

EΠ(µ,σ,τ)
[〈L,A(i1, j1)〉],

U(µ) := inf
τ∈∆(J)

sup
σ∈∆(I)

EΠ(µ,σ,τ)
[〈L,A(i1, j1)〉].

Using that L and (i1, j1) are independent in the above expectations, we can replace L by its expectation, and
it follows that

(1.1) ∀µ ∈ ∆(SK), U(µ) = V 1(δE(µ)) and U(µ) = V 1(δE(µ)),

where E(µ) :=
∫
SK

xdµ(x) ∈ SK and δx denotes the Dirac mass at x.

The “Cav(u)” Theorems. We are now ready to state our main results. The first one concerns the lower
value functions.

Theorem 1.1. For all µ ∈ ∆(SK),

Cav(U)(µ) ≤ V n(µ) ≤ Cav(U)(µ) +
CA
√
K − 1√
n

,

where CA := sup(i,j)∈I×J |A(i, j)|.

If the proof of the first inequality is standard, the proof of the second one is based on the representation
formula given in Proposition 3.1 and on the properties of the value function V 1. Besides the above statement,
this representation formula induces several results that may be interesting for their own sake: it allows to
relate optimal strategies of P1 to optimal belief martingales (see Remark 3.1), provides a new expression for
the recurrence formula (see Proposition 3.5), and is easily shown to converge to a continuous-time optimization
problem whose value is Cav(U) (see Proposition 3.3 and 3.4 and section 5 for further extensions).

In a second part of the paper, based on the study of the dual game, we prove the following dual version of
the “Cav(u)” Theorem for the upper value functions.
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Theorem 1.2. There exists a constant C0, depending only on K and CA such that for all µ ∈ ∆(SK)

Cav(U)(µ) ≤ V n(µ) ≤ Cav(U)(µ) + C0n
−1/2.

The proof is based on a generalization of the dual differential approach of Laraki [25].
Let us finally mention that using classical results, the informed player can guarantee Cav(U) in the infinitely

repeated game using the splitting Lemma (see Remark 3.2) and the uninformed player can guarantee limV n =
Cav(U) (see Remark 4.3). The next Corollary follows then directly from Theorems 1.1 and 1.2.

Corollary 1.1. If the non-revealing game has a value for all x ∈ SK (or equivalently for all µ ∈ ∆(SK)), then

Cav(U)(µ) ≤ V n(µ) ≤ V n(µ) ≤ Cav(U)(µ) + C0n
−1/2

where U = U = U . Moreover, the uniform value of the infinitely repeated game exists.

2. General properties.

Identifications. We consider here the model with signals in the set S and with initial probability π ∈ ∆(K×S)
described briefly at the beginning of the previous section. In this model, a behavioral strategy σ for P1 is a
sequence (σ1, .., σn) such that

σq : S × (I × J)(q−1) → ∆(I),

and the set of behavioral strategies for P2 is Tn, as in the auxiliary game Γn(µ). A triplet (π, σ, τ) induces a
unique probability Π(π,σ,τ) ∈ ∆(K × S × In × Jn) and the payoff function of P1 is given by

EΠ(π,σ,τ)

[
1

n

n∑
q=1

A(iq, jq)
k

]
.

The following result proves that there is no loss of generality in studying directly the auxiliary game Γn(µ).

Lemma 2.1. For all strategy σ as defined above, there exists a strategy σ̃ ∈ Σn (i.e. which depends on s only
through the conditional law of k given s denoted L(s)) giving the same payoff against any strategy τ . Therefore
the lower and upper value functions of the game depend only on π through the distribution µ of L(s) and are
respectively equal to V n(µ) and V n(µ).

Proof. Note that by definition of L(s), we have L(s) = Eπ[ek | s] where (e1, .., eK) denotes the canonical
basis of RK . Moreover, given any pair of strategies (σ, τ), we have by construction that L(s) = EΠ(π,σ,τ)[ek |
s, i1, j1, .., iq, jq] for all q = 1, .., n. Therefore, by taking the conditional expectation with respect to (s, i1, j1, .., iq, jq))
in each term of the following sum, we obtain

(2.1) EΠ(π,σ,τ)

[
1

n

n∑
q=1

A(iq, jq)
k

]
= EΠ(π,σ,τ)

[
1

n

n∑
q=1

〈ek, A(iq, jq)〉

]
= EΠ(π,σ,τ)

[
1

n

n∑
q=1

〈L(s), A(iq, jq)〉

]
.

Notice then that P1 can generate a variable s̃ such that (L(s), s̃) has the same law as (L(s), s) using an exogenous
lottery. Define a strategy σ̂ as σ̂q(L(s), i1, j1, ..., iq−1, jq−1) = σ(s̃, i1, j1, ..., iq−1, jq−1). This does not define a
behavioral strategy but a general strategy. Using Kuhn’s Theorem (see [3]) in the auxiliary game Γn(µ) with
state variable L(s), there exists a strategy σ̃ equivalent to σ̂ and which depend only on L(s). Using equation
(2.1), this strategy gives the same payoff as σ against any τ since it induces the same law for (L(s), i1, j1, .., in, jn).
The second assertion is obvious. �

The model with partial information clearly extends the classical model with full information on one side.
More formally, note that for a fully informative signal s, the conditional law of k given s is the Dirac mass
δk. This leads naturally to introduce the following embedding function. At first, we can identify K with the
canonical basis {ek, k = 1, ..,K} of RK . This induces naturally a linear isomorphism h between ∆(K) and the
compact face ∆({ek, k = 1, ..,K}) ⊂ ∆(SK) of probabilities over RK supported by {ek, k = 1, ..,K}. Precisely,

h : p = (pk)k=1,..,K ∈ ∆(K) −→
K∑
k=1

pkδek ,

where δek is the Dirac mass in ek. Using this identification, it is easily seen that the function p → V n(h(p))
defined on ∆(K) is the lower value function of the n-stages game in which P1 is informed of the state variable
k of law p. More can be said about the value of the non-revealing game, since it depends only on the law of the
state variable k and not on the law of signals. Precisely, define

∀p ∈ ∆(K), u(p) := U(h(p)) = V 1(δp),

u(p) := U(h(p)) = V 1(δp).

u(p) is the lower value function of the non-revealing game associated to a state variable k of law p.
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Remark 2.1. The lower value function V 1 associated with the model with partial information has the following
important property that will be used in the next section. This concave and Lipschitz function extends the two
usual value functions used in the classical Aumann-Maschler model. On one hand, looking at V 1 on the set of
extreme points of ∆(SK), i.e. Dirac masses, one recovers the function of the classical non-revealing game u.
On the other hand, looking at V 1 on the compact face of distributions supported by the elements of the canonical
basis of RK , one recovers the value of the one-shot game with full information on one side. This property,
together with the fact that V 1 is Lipschitz (see the next Proposition), is a key argument in order to prove the
“Cav(u)” Theorem without using a finiteness assumption on I (as for example in [26] Lemma 2.5 p.187).

Properties of the value functions. The following results are classical in zero-sum games. Notice however
that the proof of the Lipschitz property cannot be derived from the usual argument used in the model with full
information and relies on a probabilistic representation for the Wasserstein distance.

Proposition 2.1. The functions V n and V n are concave on ∆(SK), nondecreasing for the convex order1

(denoted �), and Lipschitz-continuous of constant CA with respect to the Wasserstein distance of order 1
(denoted dW , see definition 6.1).

Proof. Let us prove the nondecreasing property. Suppose that µ1 � µ2, and let (Y1, Y2) be a martingale such
that Yi ∼ µi for i = 1, 2. Let σ be a strategy in Γn(µ1). Assuming that the state variable is Y2, P1 can generate
Y1 conditionally on Y2 and then play the strategy σ(Y1, .) in the game Γn(µ2). This defines a generalized
strategy which is equivalent to a behavioral strategy (see Aumann [3]) in Σn and using the martingale property,
the induced payoff in Γn(µ2) against any strategy τ is

E[〈Y2,
1

n

n∑
q=1

A(iq, jq)〉] = E[〈Y1,
1

n

n∑
q=1

A(iq, jq)〉] = gn(µ1, σ, τ),

implying that P1 can guarantee at least the same quantity in Γn(µ2) than in Γn(µ1). For the Lipschitz property,
let µ1, µ2 ∈ ∆(SK) and (Y1, Y2) be random variables such that Yi ∼ µi for i = 1, 2 and E[|Y1−Y2|] = dW (µ1, µ2).
Given a strategy σ in Γn(µ1), playing σ(Y1, .) defines also a strategy σ̃ in Γn(µ2) using the same argument as
above. Given any strategy τ ∈ Tn, we can assume that the random variables (Y1, Y2) and (iq, jq) ∈ I × J are
defined on the same probability space, and using Cauchy-Schwarz inequality

gn(µ1, σ, τ)− gn(µ2, σ̃, τ) = E[〈Y1 − Y2,
1

n

n∑
q=1

A(iq, jq)〉] ≤ CAdW (µ1, µ2),

and the result follows. For the concavity, using Kuhn’s Theorem, the game in mixed strategies has the same
value functions, and can be seen as a one-shot game with incomplete information on one side. The result follows
therefore from Theorem 1.1 p.183 in [26].

�

Reduced strategies. We introduce the notion of reduced strategies, which are simply strategies that do not
depend on P2’s past actions. These results will only be used in the beginning of section 4 and can be omitted
at a first reading.

A reduced strategy τ for P2 is a sequence (τ1, ..., τn) of transition probabilities τq : Iq−1 → ∆(J). A reduced
strategy for P1 is a sequence σ = (σ1, ..., σn) of transition probabilities σq : SK × Iq−1 → ∆(I). Let ΣRn (resp.
T Rn ) the set of reduced behavioral strategies of P1 (resp. P2). Given a reduced strategy σ of P1, the pair (µ, σ)
induces a probability on SK × In. The next Proposition implies that an optimal strategy in the game restricted
to reduced strategies is still optimal in the initial game.

Proposition 2.2. If a strategy guarantees the quantity C in the game Γn(µ) where the strategy sets of the
players are restricted to reduced strategies, then it guarantees C in the initial game. Moreover, for any strategy
of P2, there exists a reduced strategy giving the same payoff against all reduced strategies of P1.

Proof. This proof is directly adapted from [18], and is reproduced here for the sake of completeness since it is
very short. For any τ ∈ Tn, there exists a reduced strategy τ̂ giving the same payoff as τ against any reduced
strategy of P1. The strategy τ̂ proceeds as follows : at step q, P2 does not remind his past actions (j1, .., jq−1),

but using past actions of P1, he generates a virtual history (ir, ĵr)r=1,..,q−1 by choosing ĵr with the probability

τ(i1, ĵ1, .., ir−1, ĵr−1). He selects then at stage q an action jq with the probability τ((ir, ĵr)r=1,..,q−1). Since the
action of P1 does not depend on past actions of P2, the conditional distribution of (iq, jq) given (L, i1, .., iq−1)
is the same as if P2 was using τ , and so is the conditional expected payoff at stage q. The situation is not
symmetric for P1, because to generate a virtual history of the past actions of P2, he has to know which strategy
P2 is using. However, given τ∗ ∈ T Rn , the same argument shows that for all σ ∈ Σn, there exists a reduced
strategy σ̂ giving the same payoff as σ against the fixed strategy τ∗, which allows to conclude. �

1Recall that µ1 � µ2 if there exists a martingale X1, X2 such that Xi is µi distributed for i = 1, 2 (see Blackwell [7]).
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3. Problem of maximal variation and lower value functions.

We introduce now a general optimization problem called maximal variation problem that will lead to a
continuous-time stochastic control problem describing the limits of optimal strategies of the informed player. The
first main result is that the lower value function (or maxmin) of the game Γn(µ) is equal to the value function of
the maximal variation problem (Proposition 3.1). This generalizes therefore the former result of De Meyer [19] in
a multi-dimensional context and without the assumption of existence of the value. Using this representation, we
extend the classical “Cav(u)” Theorem of Aumann-Maschler for the lower value functions. The limiting function
given by this Theorem is then shown to be the value function of an optimization problem over continuous-time
martingale distributions and we prove that the limit of any convergent sequence of maximizers for the maximal
variation problem is a maximizer of the limit or “compact” problem (Proposition 3.3). On the other hand,
maximizers of this compact problem provide O(

√
n)-optimal strategies in the games Γn (Proposition 3.4).

Proposition 3.1 allows to prove easily and rigorously convergence to the continuous-time limit problem. As
mentioned in the introduction, this result relates our asymptotic results to differential games with asymmetric
information (see also section 5). Note also that the same kind of asymptotic analysis have been derived from this
representation formula in order to obtain second-order asymptotic expansions in De Meyer [19] and Gensbittel
[23]. Moreover, besides the present applications, we believe that this method is of interest for its own sake, and
can be adapted in much more general contexts in which one player is always more informed (see the last point
in section 5).

The martingale of beliefs. As usual when computing a best reply to some strategy of the informed player
P1, we “assume” that P2 knows which strategy P1 is using and updates his beliefs on the state variable L given
his observations using Bayes’ rules. This leads to introduce a sequence of virtual beliefs of P2 about the state
variable which depends on the strategy used by both players and is called the a posteriori martingale. In a
more general context, beliefs of P2 should be represented by the conditional distribution of the state variable
over RK given his information. In our case, since we already work with an auxiliary game in which payoffs are
linear, we shall only consider the process of expected beliefs2 of P2. Precisely, let us define the expected belief of
P2 as the expected value of L given his information. Available information after round q is represented by the
σ-field Fq = σ(i1, j1, ..., iq, jq) of past observations. Formally, the process of expected beliefs is the martingale

(3.1) Lq := EΠ(µ,σ,τ)[L | Fq],
and the law of this martingale depends on the pair of strategies (σ, τ). This martingale has length n and its final
value Ln is by construction dominated (in the sense of convex ordering) by µ. The initial value is by convention
L0 := Eµ[L] and we will consider the variable Ln+1 := L as the terminal value of the martingale3, which follows
the law µ.

The maximal variation problem. Let us introduce some notations and definitions.

Notation 3.1. Let E be a Borel space and X be an E-valued random variable defined on some probability
space (Ω,F ,P). Then JXK denotes the law of X and given a σ-field G ⊂ F , JX | GK denotes a version of the
conditional law of X given G, hence a G measurable random variable with values in ∆(E) (see Proposition 7.26
in [6]).

Definition 3.1. For µ ∈ ∆(SK), Mn(µ) denotes the subset of ∆(SnK) formed by the laws of SK-valued martin-
gales (L1, .., Ln) such that the final distribution JLnK is dominated by µ. By convention, for any such martingale
L0 := E[L1].

Definition 3.2. We define the V 1-variation on the set Mn(µ) by

(3.2) Ψn((Lq)q=1,..,n) :=
1

n
E[

n∑
q=1

V 1(JLq | Lm, 0 ≤ m ≤ q − 1K)].

The problem of maximal V 1-variation is then

Ψn(µ) := sup
Mn(µ)

Ψn.

The following Proposition is the keystone of our proof of the “Cav(u)” Theorem for the lower value functions.

Proposition 3.1.
∀µ ∈ ∆(SK), V n(µ) = Ψn(µ).

As it will be convenient to work with martingales with respect to arbitrary filtrations, let us introduce the
following definition.

2A direct computation shows that in a game with signals, the expected belief we define here is exactly the belief of the uninformed

player about the “true” state variable k which is not appearing anymore in our description.
3Note that it is always possible to add an additional variable having law µ to a martingale whose final distribution is dominated

by µ.
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Definition 3.3. For µ ∈ ∆(SK), Mn(µ) is the collection of martingales (Lq,Hq)q=1,..,n of length n, defined on
some filtered probability space (Ω,A, (Hq)q=0,..,n,P), and whose final distribution JLnK is dominated by µ. By
convention, we always set H0 := {Ω, ∅}.

Note that the set Mn(µ) introduced in Definition 3.1 is the set of laws of martingales in Mn(µ). The
following property results directly from the concavity of V 1 and shows that the maximal variation problem can
be extended to the set Mn(µ) without modifying its value.

Lemma 3.1. For all µ ∈ ∆(SK), we have

(3.3) Ψn(µ) = sup
(Lq,Hq)q=1,..,n∈Mn(µ)

1

n
E[

n∑
q=1

V 1(JLq | Hq−1K)].

Proof. It is clearly sufficient to prove that Ψn(µ) is not lower than the right-hand side of (3.3). Let
(Lq,Hq)q=1,..,n ∈Mn(µ). Since V 1 is concave and dW -Lipschitz, it follows from Jensen’s inequality (see Lemma
6.1) that for all q = 1, .., n

V 1(JLq | Hq−1K) ≤ V 1(JLq | L0, .., Lq−1K).
The proof follows then by summation over q. �

In order to prove Proposition 3.1, we will also need the following two Lemmas that are classical measurable
selection results.

Lemma 3.2. For all ε > 0, there exists a measurable function

ϕε : SK ×∆(SK)× [0, 1]→ I,

such that the strategy induced by i1 = ϕε(L, µ, U), where U is some uniform random variable on [0, 1] independent
from L, is ε-optimal in the game Γ1(µ) for all µ ∈ ∆(SK).

The proof of this first Lemma is standard and therefore postponed to section 6. Let us denote ∆(I × SK)
the set of joint probability distributions on I × SK . Note that a pair (σ1, µ) where σ1 is a strategy of P1 in the
game Γ1(µ) defines naturally a probability in ∆(I × SK) that will be denoted π(σ1, µ).

Lemma 3.3. For all ε > 0, there exists a universally measurable function

τε : ∆(I × SK)→ ∆(J)

such that for all (σ1, µ)
EΠ(µ,σ1,τε(π(σ1,µ)))[〈L,A(i1, j1)〉] ≤ V 1(µ) + ε.

Proof. Endow the sets ∆(I × SK) and ∆(J) with the usual weak∗ topology. The application

(π, τ)→
∫
〈x, T (i, j)〉dπ(i, x)⊗ τ(j)

is jointly measurable. If µ denotes the marginal law on SK induced by π, the set

{(π, τ) :

∫
〈x, T (i, j)〉dπ(i, x)⊗ τ(j) ≤ V 1(µ) + ε}

is therefore a Borel subset of ∆(I×SK)×∆(J). The existence of an ε-optimal universally measurable selection
τε follows therefore from Von Neumann’s selection Theorem (see e.g. Proposition 7.49 in [6]). �

of Proposition 3.1. The first part of this proof is an extension of the one appearing in [19]. However, the second
part is different since we consider the lower value of the game and not the value, and requires the assumption
that the actions sets are Polish. Let us start with an ε-maximizer (Lq)q=1,..,n for the problem Ψn(µ). Formally,
since only the law of the chosen martingale is relevant, we can assume (see Theorem 6.1) that there exists a
sequence U1, .., Un of independent random variables uniformly distributed on [0, 1] and independent from L,
and a sequence of measurable functions (f1, .., fn) such that (L1, .., Ln, L) is a martingale and

Lq = fq(L,U1, .., Uq) for q = 1, ..n.

From the previous Lemma, we can define P1’s strategy σ as follows: given η > 0, and a sequence (Y1, .., Yn) of
independent random variables uniformly distributed on [0, 1] and independent from (L,U1, .., Un), the action iq
of P1 at stage q is

(3.4) iq(L1, .., Lq, Yq) := ϕη(Lq, JLq | L1, .., Lq−1K, Yq).

This does not define directly a behavioral strategy, since P1 has to remember at each stage the value of the
auxiliary variables Lq (or Uq). But this mixed strategy defines a joint law on (L, i1, .., in) which can always be
disintegrated in a behavioral strategy that does not depend on P2’s actions. We can clearly keep the above
representation of P1’s strategy to compute his payoff against some strategy τ , even if it is not expressed as
a behavioral strategy, since these computations depend only on the induced law on (L, i1, ..in). Without loss
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of generality, given a sequence (W1, ..,Wn) of independent random variables uniformly distributed on [0, 1]
and independent of (L,U1, Y1, .., Un, Yn), we can assume that the strategy τ is given by a sequence g1, .., gn of
measurable functions and that the action of P2 at stage q is (see Theorem 6.1)

jq = gq(i1, j1, .., iq−1, jq−1,Wq).

Let us define the filtration (Hq)q=1,..,n by Hq = σ(L1, Y1,W1, .., Lq, Yq,Wq). With this notation, variables iq, jq
are Hq-measurable and we have by construction the following equalities between the conditional laws for all
q = 1, .., n

JL | HqK = JL | L1, .., LqK, JLq | Hq−1K = JLq | L1, .., Lq−1K.

The conditional payoff at round q given the past actions is

E[〈L,A(iq, jq)〉 | i1, j1, .., iq−1, jq−1] = E[E[〈L,A(iq, jq)〉 | Hq] | i1, j1, .., iq−1, jq−1]

= E[〈Lq, A(iq, jq)〉 | i1, j1, .., iq−1, jq−1] = E[E[〈Lq, A(iq, jq)〉 | Hq−1] | i1, j1, .., iq−1, jq−1],

where the second equality follows from the linearity of the payoff. Finally the conditional expectation given
Hq−1 above is exactly the payoff in a one-shot game where the law of the state variable is JLq | L1, .., Lq−1K
and the joint conditional law of JLq, iq | L1, .., Lq−1K has been constructed so that

E[〈Lq, A(iq, jq)〉 | Hq−1] ≥ V 1(JLq | L1, .., Lq−1K)− η.

Summing up these inequalities proves that V n(µ) ≥ Ψn(µ)− (ε+ η) and we obtain a first inequality by sending
ε and η to zero.

It remains to prove the reverse inequality. Let us fix a pair (µ, σ) where σ is a behavioral strategy for P1
in Γn(µ) and some ε > 0. We will construct a strategy τ for P2 by induction such that for all q = 1, .., n the
expected payoff at round q is not greater than

EΠ(µ,σ,τ)[V 1(JLq | i1, j1, .., iq−1, jq−1K)] + ε,

where Lq is defined by EΠ(µ,σ,τ)[L | i1, j1, .., iq−1, jq−1, iq]. Note that adding jq in the conditional expecta-
tion defining Lq does not change its value, which does not depend on τq. Suppose that (τ1, .., τq−1) is already
constructed. Since (µ, σ, τ1, .., τq−1) defines a joint law on (L, i1, .., iq, j1, .., jq−1) that will be denoted P, the con-
ditional expectation Lq is well-defined and P-almost surely equal to a Borel mapping hq(iq, i1, j1, ..., iq−1, jq−1).
The disintegration Theorem implies the existence of a ∆(SK×I)-valued Borel mapping Mq(i1, j1, ..., iq−1, jq−1)
which is a version of the conditional law JLq, iq | i1, j1, ..., iq−1, jq−1K. Using Lemma 3.3, the mapping τε being
universally measurable, there exists a Borel mapping τ̃ε which is almost surely equal to τε with respect to the
law of the random variable JLq, iq | i1, j1, ..., iq−1, jq−1K (or the image probability of P induced by the mapping
Mq which depends only on variables known by P2). The strategy τq = τ̃ε(Mq(i1, j1, ..., iq−1, jq−1)) has then the
required properties. The overall payoff of P2 is therefore not greater than

EΠ(µ,σ,τ)[
1

n

n∑
q=1

V 1(JLq | i1, j1, .., iq−1, jq−1K)] + ε ≤ Ψn(µ) + ε,

which concludes the proof since ε was arbitrary. �

Remark 3.1. The above proof implies that any ε-maximizer of Ψn(µ) induces an ε+η-optimal reduced strategy
for P1 in Γn(µ) through the formula (3.4). On the other hand, it also implies that if a strategy of P1 is ε-optimal
in Γn(µ) and does not depend on the actions of P2, then the induced martingale of expected beliefs is ε-optimal
for Ψ(µ) independently of the strategy of P2.

The “Cav(u)” Theorem. We are now able to prove the classical “Cav(u)” Theorem of Aumann-Maschler in
this context. Let us recall, the classical bound on the L1-variation of SK-valued martingales.

Lemma 3.4. For all martingale (L1, ..., Ln) with values in SK ,

E[

n∑
q=1

|Lq − Lq−1|] ≤
√
K − 1

√
n.

Proof. See Lemma 2.1 p. 186 in [26]. �

of Theorem 1.1. The proof of the first inequality is well-known, see for example Proposition 2.8 p.188 in [26].
The second inequality follows from Proposition 2.1. Using the Lipschitz property of V 1 we have

∀µ ∈ ∆(SK), V 1(µ) ≤ U(µ) + CAdW (µ, δE(µ)).
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Note that for any variable X of law µ, dW (µ, δE(µ)) = E[|X − E[X]|]. Applying the preceding inequality in the
expression of Ψn((Lq)q=1,..,n) implies, with Ln+1 a terminal variable of law µ added to the martingale:

nΨn((Lq)q=1,..,n) ≤ E[

n∑
q=1

U(JLq | L1, .., Lq−1K)] + CAE[

n∑
q=1

|Lq − Lq−1|]

≤ E[

n∑
q=1

U(JLn+1 | L1, .., Lq−1K)] + CA
√
n
√
K − 1

≤ E[

n∑
q=1

Cav(U)(JLn+1 | L1, .., Lq−1K)] + CA
√
n
√
K − 1

≤
n∑
q=1

Cav(U)(JLn+1K) + CA
√
n
√
K − 1

≤ nCav(U)(µ) + CA
√
n
√
K − 1.

The second line follows from the fact that U(ν) depends only the barycenter of ν (cf. (1.1)) and from the
martingale property. The third line follows from the definition of the concavification operator. The fourth one
follows from Jensen’s inequality (Lemma 6.1), which applies here since U is weakly continuous on the weakly
compact set ∆(SK) and bounded, implying that Cav(U) is weakly upper semi-continuous and bounded (see
e.g. Lemma 26.13 in [15]). �

Remark 3.2. Recall that Proposition 2.8 p.188 in [26] provides a strategy which guarantees Cav(U)(µ) in Γn(µ)
for all n and also in the infinitely repeated game. From the preceding Theorem, this strategy is asymptotically
optimal for P1 in Γn(µ).

The limit continuous-time optimization problem. The following continuous-time probabilistic formula-
tion is obtained directly from the definition of the concavification operator and already appears in [29] (section
3.7.2.a. p.50) as the heuristic compact limit for finite games. It is also reminiscent from the result given in
Theorem 3.1 of [11] for differential games with incomplete information with time dependent payoffs (see section
5 for possible extensions in this direction).

Proposition 3.2. For all µ ∈ ∆(SK),

(3.5) Cav(U)(µ) = sup
J(Xt)t∈[0,1]K∈M(�µ)

E[

∫ 1

0

u(Xt)dt],

where M(� µ) is the set of laws of càdlàg martingales (Xt)t∈[0,1] whose final distribution JX1K is dominated by
µ. Moreover, X is a maximizer if and only if for all s in [0, 1)

E[u(Xs)] = Cav(U)(µ).

Proof. Note at first that any martingale inM(� µ) has trajectories in the set SK with probability 1. Moreover,
X being a martingale, we have for all s ≤ t, JXsK � JXtK using the definition of convex order. From the
definition of u, for all s ∈ [0, 1], we have u(Xs) = U(JX1 | FXs K) almost surely, where FX denotes the filtration
generated by X. By the definition of the concavification operator and since U is continuous, we have

(3.6) E[u(Xs)] = E[U(JX1 | FsK)] ≤ E[Cav(U)(JX1 | FsK)] ≤ Cav(U)(JX1K) ≤ Cav(U)(µ),

where the second inequality follows from Jensen’s inequality (Lemma 6.1) and the third from the fact that
Cav(U), being the pointwise limit of nondecreasing functions for the convex order, is itself nondecreasing. Using
Fubini’s Theorem, the right-hand side of (3.5) is less or equal than Cav(U)(µ). To prove the converse inequality,
let ν ∈ ∆(∆(SK)) be a probability whose barycenter is µ and such that

∫
∆(SK)

U(ω)dν(ω) = Cav(U)(µ) (which

exists by compactness). Let (S, Y ) ∈ ∆(SK) × SK be a pair of random variables such that JSK = ν and
JY | SK = S. Define a martingale by the relation X1 = Y and Xt = E[Y | S] for all t ∈ [0, 1). Then

E[

∫ 1

0

u(Xs)ds] =

∫ 1

0

E[u(E[Y | S])]ds =

∫ 1

0

E[U(JY | SK)]ds = Cav(U)(µ).

For the second assertion, if the property is true, then X is clearly a maximizer. If X is a maximizer and this
property is false, then we obtain a contradiction using the inequalities 3.6 and integrating with respect to s
since the function s→ E[u(Xs)] is càdlàg. �

This result allows us to deduce the convergence of maximizers of the maximal variation problem to the
maximizers of the continuous-time problem we just defined. This characterizes, using Proposition 3.1, the
asymptotic behavior of the optimal strategies of the informed player in Γn(µ). We need the following notation.



10 FABIEN GENSBITTEL

Notation 3.2. Given a discrete-time process (L1, .., Ln), the continuous-time version of this process is defined
by

Πn
t := Lbntc for t ∈ [0, 1],

where bac denotes the greatest integer less or equal to a.

Proposition 3.3. Let (Ln) be an asymptotically maximizing sequence of Ψn(µ) in Mn(µ), i.e. such that

Ψn(Ln) −→
n→∞

Cav(U)(µ).

Then the continuous-time versions of these martingales define a weakly relatively compact sequence of laws for
the Meyer-Zheng topology (see [27]) and any limit point belongs to

P∞(µ) := argmax
J(Xt)t∈[0,1]K∈M(�µ)

E[

∫ 1

0

u(Xt)dt].

Proof. We refer to [27] for properties of the Meyer-Zheng topology on the Skorokhod space. This topology is
the convergence in distribution over the set ∆(D([0, 1], SK)), when the set D([0, 1], SK) of càdlàg functions is
endowed with the topology of convergence in measure with respect to Lebesgue’s measure (denoted λ) together
convergence of the value at time 1: a sequence yn converges to y if

∀ε > 0, λ({|yn(x)− y(x)| ≥ ε}) −→
n→∞

0, and yn(1) −→
n→∞

y(1).

The subset M(� µ) of laws of martingales (in ∆(D([0, 1], SK)) is weakly compact using Theorem 2 in [27], the
fact that the projection (Xt)t∈[0,1] → X1 at time 1 is continuous on D([0, 1], SK) and that condition JX1K � µ

is weakly closed. Moreover, the functional J(Xt)t∈[0,1]K → E[
∫ 1

0
u(Xt)dt] is weakly continuous. Let us denote

Πn denote the sequence of continuous-time versions of Ln, and notice that JΠnK ∈ M(� µ) by construction.
Assume, up to the extraction of some subsequence, that JΠnK converges weakly to some limit JΠK. Then, using
the previous Propositions:

Ψn((Lq)q=1,..,n) ≤ E[

n∑
q=1

1

n
U(JLq | L1, .., Lq−1K)] +

1

n
CAE[

n∑
q=1

|Lq − Lq−1|]

= E[

n∑
q=1

1

n
u(Lq−1)] +

1

n
CAE[

n∑
q=1

|Lq − Lq−1|]

≤ E[

∫ 1

0

u(Πn
t )dt] +

1

n
CA
√
K − 1

√
n

−→
n→∞

E[

∫ 1

0

u(Πt)dt].

We conclude that JΠK ∈ P∞(µ) since by assumption the left-hand side of the above inequality converges to the
value of problem (3.5). �

Finally, discretizations of optimal limit martingales induce asymptotically optimal strategies.

Proposition 3.4. For all martingale X in P∞(µ) and all n, we have

Ψn((X q
n

)q=1,..,n) ≥ Ψn(µ)− 2
CA
√
K − 1√
n

Proof. Let X be a martingale such that J(Xt)t∈[0,1]K ∈ P∞(µ).

nΨn((X q
n

)q=1,..,n) ≥ E[

n∑
q=1

U(JX q
n
| X 1

n
, .., X q−1

n
K)] = E[

n∑
q=1

u(X q−1
n

)]

≥ nE[

∫ 1

0

u(Xt)dt]− nCA
∫ 1/n

0

E[

n∑
q=1

|X (q−1)
n +t

−X (q−1)
n
|]dt

≥ nE[

∫ 1

0

u(Xt)dt]− nCA
∫ 1/n

0

E[

n∑
q=1

|X q
n
−X (q−1)

n
|]dt

= nE[

∫ 1

0

u(Xt)dt]− CAE[

n∑
q=1

|X q
n
−X (q−1)

n
|]

≥ nE[

∫ 1

0

u(Xt)dt]− CA
√
K − 1

√
n

≥ nΨn(µ)− 2CA
√
K − 1

√
n,

where the third line follows from Jensen’s Inequality. �
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Using Remark 3.1, the discretization on the uniform partition of size 1
n of [0, 1] of any martingale in P∞(µ)

induces for all n and ε > 0 a strategy for P1 which is 2CA
√
K−1√
n

+ ε-optimal in Γn(µ).

Remark 3.3. It follows from the characterization given in Proposition 3.2 that the maximizers of the continuous-
time problem are degenerate in the following sense. If we have U(µ) < Cav(U)(µ), then any optimal martingale
jumps at time 0 to a position where E[u(X0)]) = Cav(U)(µ) and then can either stop moving or evolve freely
within a set on which U is linear. For the extremal situations, if U is strictly concave at µ, then the optimal mar-
tingale never moves and is uniquely determined. On the contrary, if U is linear on ∆(SK), then any martingale
will be optimal. It means that the asymptotic behavior of the optimal strategies of P1 is in general degenerate
from the dynamic point of view. The two preceding proofs can however be easily extended to time-dependent
payoff functions (see section 5), in which case this degeneracy phenomenon disappears as shown in [11].

A Martingale version of the recurrence formula. The following result follows from the functional prop-
erties of Ψn given in the appendix. Note that it provides another expression of the recurrence formula (and of
the associated Shapley operator) for finite games.

Proposition 3.5. For any game Γn(µ) with µ ∈ ∆(SK) and q = 1, .., n, the following dynamic programming
equation holds.

(3.7) nV n(µ) = sup
JX1,X2K∈M2(µ)

(
qV q(JX1K) + E[(n− q)V n−q(JX2 | X1K)]

)
Proof. At first, Ψn can be seen as a function on the set of martingale distributionsMn(SK) = ∪

µ∈∆(SK)
Mn(µ).

The first inequality follows directly from Proposition 3.1. For any martingale JL1, .., LnK in Mn(µ), JLq, LnK ∈
M2(µ) and JLq+1, ..., Ln | LqK is almost surely a martingale distribution. Therefore

nΨn((Lk)k=1,..,n) = qΨq((Lk)k=1,..,q) + E[(n− q)Ψn−q(JLq+1, ..., Ln | L1, .., LqK)]

≤ qΨq((Lk)k=1,..,q) + E[(n− q)Ψn−q(JLn | LqK)]
≤ qΨq(JLqK) + E[(n− q)Ψn−q(JLn | LqK)].

The reverse inequality follows from the properties of Ψq. Using Lemma 6.2, the application

JL1, .., LqK→ Ψq(L1, .., Lq)

is concave and weakly upper semi-continuous on the compact set of martingale distributions. The graph of the
mapping µ→Mq(µ) being closed, there exists an optimal measurable selection F from µ ∈ ∆(SK) to Mq(µ)
(see e.g. Proposition 7.33 in [6]) such that

Ψq(F (µ)) ≥ Ψq(µ).

The proof follows then easily. Take an optimal martingale JX1, X2K ∈ M2(µ) in the right-hand side of (3.7).
Let g(x) denote a version of the conditional law of X2 given X1. There exists a martingale (L1, .., Lq) such

that JLqK = JX1K and Ψq(L1, .., Lq) = Ψq(JLqK). We can construct a sequence of variables (Lq+1, .., Ln) whose
conditional law given (L1, .., Lq) is F (g(Lq)). The construction implies therefore

nΨn(L1, .., Ln) = qΨq(L1, .., Lq) + E[(n− q)Ψn−q(JLq+1, ..., Ln | LqK)]
≥ qV q(JLqK) + E[(n− q)V n−q(JLn | LqK)],

which concludes the proof. �

4. Dual game

We introduce in this section an auxiliary game of complete information known in the finite case as the dual
game, and that was at first introduced in De Meyer [18]. We show that the results obtained in Laraki [25] can
be generalized in our model, including the representation of the concavification of U as the solution of a dual
Hamilton-Jacobi equation. We deduce from this result a proof based on duality of the “Cav(u)” Theorem for
the upper value functions of Γn(µ).

The model. We consider the game Γn(µ) defined by (I, J, SK , A) where µ ∈ ∆(SK). Given φ in the set of
continuous functions C(SK), the dual game Γ∗n(φ) is defined as follows. A strategy for P1 is a pair (µ, σ) where
µ ∈ ∆(SK) and σ ∈ Σn. A strategy for P2 is some τ ∈ Tn. The payoff function is defined by

g∗n(φ, µ, σ, τ) := EΠ(µ,σ,τ)[〈L,
1

n

n∑
q=1

A(iq, jq)〉 − φ(L)] = gn(µ, σ, τ)− 〈φ, µ〉.

where 〈φ, µ〉 =
∫
SK

φdµ. Let us now define the lower and upper value functions of this game as

(4.1) Wn(φ) := sup
(µ,σ)∈∆(SK)×Σn

inf
τ∈Tn

g∗n(φ, µ, σ, τ),
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(4.2) Wn(φ) := inf
τ∈Tn

sup
(µ,σ)∈∆(SK)×Σn

g∗n(φ, µ, σ, τ).

Our aim is to study the asymptotic behavior of the dual game, and precisely of Wn.

Remark 4.1. In the following, the convex conjugation denoted by ∗ applied to functions defined on ∆(SK) or
C(SK) refers to the duality between the space M(SK) of signed Radon measures on SK and C(SK). All the
functions defined on ∆(SK) are extended on the whole space M(SK) by the value +∞. Since ∆(SK) is a weakly
closed set in M(SK), if F is convex continuous on ∆(SK), its extension is l.s.c. and convex and therefore
F ∗∗ = F .

Proposition 4.1. For all φ ∈ C(SK) and µ ∈ ∆(SK)

Wn(φ) = (−V n)∗(−φ) and V n(µ) = −W ∗n(−µ).

Wn(φ) = (−V n)∗(−φ) and V n(µ) = −W ∗n(−µ).

Proof. The first part follows directly from the definition and the preceding Remark. For the second, we have
to apply a minmax Theorem. Indeed we have by definition

(−V n)∗(−φ) = sup
µ∈∆(SK)

inf
τ∈Tn

sup
σ∈Σn

gn(µ, σ, τ)− 〈φ, µ〉

and the result follows if we can invert the first sup and inf in this expression. In this context, we can apply
the convex-like version of the minmax Theorem (Fan [22]). The argument is standard, the set Tn is not convex,
but any convex combination of its elements is a general strategy and is equivalent by Kuhn’s Theorem (see
[3]) to a behavioral strategy which proves the convex-like hypothesis. On the other hand, ∆(SK) is compact
convex and the function we consider is concave and continuous with respect to µ using the same arguments as
for Proposition 2.1. �

Remark 4.2. As before, any function φ ∈ C(SK) is implicitly identified with its extension on RK which is
equal to φ on SK and to +∞ outside SK . Its convex conjugate φ∗ is therefore the usual convex conjugate of the
extended function and if φ is convex on SK , then φ = φ∗∗.

Lemma 4.1. For all φ ∈ C(SK),

Wn(φ) = inf
τ∈T Rn

sup
(i1,..,in)∈In

φ∗(
1

n

n∑
q=1

A(iq, τq)),

where A(iq, τq) :=
∫
J
A(iq, jq)dτq(i1, .., iq−1)(jq).

Proof. We deduce from Proposition 2.2 that

Wn(φ) ≤ inf
τ∈T Rn

sup
(µ,σ)∈∆(SK)×Σn

g∗n(φ, µ, σ, τ) = inf
τ∈T Rn

sup
(µ,σ)∈∆(SK)×ΣRn

g∗n(φ, µ, σ, τ)

since T Rn ⊂ Tn and P1 cannot obtain a better payoff against a reduced strategy of P2 by using non-reduced
strategies. The first inequality is an equality since from Proposition 2.2, P2 can replace any non-reduced strategy
by a reduced strategy giving the same payoff against all reduced strategies of P1, i.e.

inf
τ∈T Rn

sup
(µ,σ)∈∆(SK)×ΣRn

g∗n(φ, µ, σ, τ) = inf
τ∈Tn

sup
(µ,σ)∈∆(SK)×ΣRn

g∗n(φ, µ, σ, τ) ≤Wn(φ).

The set of strategies (µ, σ) ∈ ∆(SK)×ΣRn can be identified to the set of joint distributions on SK×In. Moreover,
the structure of reduced strategies allows to integrate at first the payoff function with respect to τ conditionally
on (i1, .., in) and by Fubini Theorem

inf
τ∈T Rn

sup
(µ,σ)∈∆(SK)×ΣRn

g∗n(φ, µ, σ, τ) = inf
τ∈T Rn

sup
π∈∆(SK×In)

Eπ[〈L, 1

n

n∑
k=1

A(ik, τk)〉 − φ(L)].

The supremum over ∆(SK × In) is then equal to the supremum over SK × In. The supremum over SK being
by definition φ∗( 1

n

∑n
k=1A(ik, τk)), this concludes the proof. �

A recurrence formula. Let Cv(RK) denote the set of continuous convex functions f on RK . We define the
following family of operators Rδ on the set Cv(RK).

∀δ ≥ 0, Rδ(f)(x) := inf
τ∈∆(J)

sup
i∈I

f(x+ δA(i, τ)).

Lemma 4.2. For all δ ≥ 0, the operator Rδ defines a map from Cv(RK) to itself. Moreover, for all ε > 0,
there exists a Borel measurable function τε : RK → ∆(J) which is ε-optimal in the sense

∀x ∈ RK , sup
i∈I

f(x+ δA(i, τε(x))) ≤ Rδ(f)(x) + ε.
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Proof. Rδ(f) is real-valued since A is bounded and f continuous. For the convexity of Rδ(f) let x1, x2 ∈ RK
and λ ∈ [0, 1]. Let τ1, τ2 be η-optimal for the problems Rδ(f)(x1) and Rδ(f)(x2), then

f(λx1 + (1− λ)x2 + δA(i, λτ1 + (1− λ)τ2)) ≤ λRδ(x1) + (1− λ)Rδ(x2) + η,

using the linearity of the integral and the convexity of f . The conclusion follows by sending η to zero. For the
functions τε, we proceed by discretization. For any fixed τ , the function

x→ sup
i∈I

f(x+ δA(i, τ))

is continuous since it is locally bounded and convex. Since so is Rδ(f), any ε/2 optimal τ in x is therefore
ε-optimal in a neighborhood of x. It follows that there exists a countable measurable partition of RK and a
function τε constant on the element of the partition having the required properties. �

We prove in the following Proposition that Wn satisfies a recurrence formula.

Proposition 4.2. For all φ ∈ C(P )

Wn(φ) = Rn1/n(φ∗)(0), with Rn1/n = R1/n ◦ ... ◦R1/n︸ ︷︷ ︸
n

.

Proof. By induction, it is sufficient to prove that

Wn(φ) = inf
τ∈T Rn−1

sup
i1,..,in−1

R1/n(φ∗)(x),

with x = 1
n

∑n−1
q=1 A(iq, τq). For any reduced strategy τ ∈ T Rn , we have the following inequality

sup
i1,..,in

φ∗(
1

n

n∑
q=1

A(iq, τq)) = sup
i1,..,in

φ∗(x+
1

n
A(in, τn(i1, .., in−1)))

≥ sup
i1,..,in−1

R1/n(φ∗)(x),

which allows to prove a first inequality by taking the infimum over τ on both sides. For the reverse inequality,
take τn = τε(x) with τε given by the previous Lemma for f = φ∗. For any (τ1, .., τn−1) ∈ T Rn−1, the above

definition of τn defines a reduced strategy in T Rn and we have

φ∗(
1

n

n∑
q=1

A(iq, τq)) = φ∗(x+
1

n
A(in, τε(x))) ≤ R1/n(φ∗)(x) + ε,

which allows easily to conclude by taking successively the supremum over (i1, .., in−1) and the infimum over
(τ1, ..τn−1) and then by sending ε to zero. �

The dual PDE formulation. In order to simplify the following statements, let us extend the function u to
RK .

∀x ∈ RK , u(x) := inf
τ∈∆(J)

sup
σ∈∆(I)

EΠ(δx,σ,τ)[〈L,A(i, j)〉] = inf
τ∈∆(J)

sup
σ∈∆(I)

∫
I×J
〈x,A(i, j)〉d(σ ⊗ τ)(i, j).

The following properties are obvious and stated without proof.

Lemma 4.3. The above defined extension of u is positively homogenous and CA-Lipschitz on RK .

Let BUC(RK) denote the set of bounded uniformly continuous functions on RK endowed with the uniform
norm and for Lipschitz functions, let Lip(f) denote the Lipschitz constant of f .

Lemma 4.4. The family of operators (Rδ)δ≥0 maps BUC(RK) into itself and has the following properties

1) For all f ∈ BUC(RK), R0(f) = f .
2) For all f ∈ BUC(RK), the function δ → Rδ(f) is continuous .
3) There exists a constant C1 such that ‖Rδ(f)‖∞ ≤ C1δ + ‖f‖∞.
4) For all f, g ∈ BUC(RK), α ∈ R, Rδ(f + α) = Rδ(f) + α.
5) For all f, g ∈ BUC(RK), ‖Rδ(f)−Rδ(g)‖∞ ≤ ‖f − g‖∞.
6) For all f ∈ BUC(RK) which is Lipschitz, Lip(Rδ(f)) ≤ Lip(f) and there exists a constant C2 depending

only on Lip(f) such that ‖Rδ(f)− f‖∞ ≤ C2δ.
7) There exists a constant C3 such that for all f ∈ BUC(RK) of class C2 with bounded derivatives, we

have ∥∥∥∥Rδ(f)− f
δ

− u(∇f)

∥∥∥∥
∞
≤ C3δ(‖∇2f‖∞).
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Proof. The first six points are obvious. For the last one, we have using the second order Taylor expansion of f

f(x+ δA(i, τ)) = f(x) + δ〈∇f(x), A(i, τ)〉+ δ2R(x, i, τ),

where |R(x, i, τ)| ≤ C‖∇2f‖∞ for some constant C depending only on A. It follows that∣∣∣∣∣ infτ∈∆(J)

sup
i∈I

f(x+ δA(i, τ))− inf
τ∈∆(J)

sup
i∈I

[
f(x) + δ

∫
J

〈∇f(x), A(i, j)〉dτ(j)

]∣∣∣∣∣
≤ Cδ2‖∇2f‖∞,

which concludes the proof since from the definition of u

inf
τ∈∆(J)

sup
i∈I

∫
J

〈∇f(x), A(i, j)〉dτ(j) = u(∇f(x)).

�

These properties allow us to apply the results on approximation schemes of Souganidis [30] as in Laraki [25].

Proposition 4.3. For all convex Lipschitz functions f on RK , define fn on [0, 1]× RK by

fn(1, x) = f(x) and fn(t, x) = R q+1
n −t

(fn( q+1
n , .))(x) for t ∈ [ qn ,

q+1
n ), q = 0, .., n− 1

Then, fn(t, x)→ χ(t, x) where χ is the unique viscosity solution of the following Hamilton-Jacobi equation

(4.3)

{
∂χ
∂t (t, x) + u(∇xχ(t, x)) = 0 for (t, x) ∈ [0, 1)× RK

χ(1, x) = f(x) for x ∈ RK

in the class of uniformly continuous functions. Moreover, there exists a constant C0 depending uniquely on the
Lipschitz constant of f such that

|fn(t, x)− χ(t, x)| ≤ C0√
n

Proof. That the solutions are unique within the class of uniformly continuous functions for the considered
equation follows from Bardi and Evans [5] (Theorem 3.1), we always consider these solutions in the following.
Note that if χ is the solution to (4.3) and α ∈ R, then χ+α is the solution to the same equation with boundary
condition χ(1, .) = f + α. Using property 4 in Lemma 4.4, this allows to assume that f(0) = 0. For all n,
fn(t, x) depends only of the restriction of f to the ball B(x,CA). Therefore f can be replaced by a truncation
βb(f) with βb defined by

βb : R→ R : x→

 b if x ≥ b
x if |x| ≤ b
−b if x ≤ −b

for some sufficiently large b. Lemmas 4.3 and 4.4 allow us to apply the introductory Theorem in [30] which
implies that fn(t, x) → χb(t, x) where χb is the unique viscosity solution of the following Hamilton-Jacobi
equation

(4.4)

{
∂χ
∂t (t, x) + u(∇xχ(t, x)) = 0 for (t, x) ∈ [0, 1)× RK

χ(1, x) = βb(f(x)) for x ∈ RK

Moreover, the cited Theorem asserts that there exists a constant C0 which depends only on ‖βb(f)‖∞ and
Lip(βb(f)) such that

|fn(t, x)− χb(t, x)| ≤ C0√
n

for n large enough (the bound depending also only on the same constants (see [30] p.21)). Since these two
quantities are bounded by (CA ∨ 1)Lip(f), this constant C0 depends only on Lip(f) and is independent of b.
Using that u is positively homogenous and Lipschitz, Proposition 6.1 in [1] shows that χb = βb(χ) where χ
is the unique solution of (4.3) (with boundary condition f). We can therefore fix b sufficiently large so that
χ(t, x) = χb(t, x) which concludes the proof. �

Definition 4.1. For any function φ ∈ C(SK), we define W by W (φ) = χ(0, 0) where χ is the unique viscosity
solution of the following Hamilton-Jacobi equation

(4.5)

{
∂χ
∂t (t, x) + u(∇xχ(t, x)) = 0 for (t, x) ∈ [0, 1)× RK

χ(1, x) = φ∗(x) for x ∈ RK

in the class of uniformly continuous functions.

Gathering the preceding results, we obtain
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Corollary 4.1. There exists a constant C0 such that for all φ ∈ C(SK),

Wn(φ) ≤W (φ) +
C0√
n
.

Proof. Apply the preceding result to all the function φ∗ for φ ∈ C(SK). Since for φ ∈ C(SK), φ∗ is 1-Lipschitz,
the constant C0 does not depend on φ. �

Let us now relate this result with the study of the primal game Γn(µ). For this, let us recall Hopf’s formula,
which gives an explicit expression for the solution of (4.5).

Proposition 4.4. For all φ ∈ C(SK), W (φ) = (φ∗∗ − u)∗(0).

Proof. The solution χ of (4.5) is given by the Hopf’s formula (see Bardi-Evans [5] Theorem 3.1)

χ(1− t, x) = sup
p∈RK

inf
q∈Rd

[φ∗(q) + 〈p, x− q〉+ tu(p)].

And a direct computation shows that χ(0, 0) = (φ∗∗ − u)∗(0). �

The Hopf’s solution is actually related to the concave conjugate of U .

Lemma 4.5. The conjugate of the function U defined on the set C(SK) verifies

∀φ ∈ C(SK), (−U)∗(−φ) = W (φ).

Proof. It follows from the definition that

(−U)∗(−φ) = sup
µ∈∆(SK)

U(µ)− 〈φ, µ〉

= sup
x∈SK

(
sup

µ :E(µ)=x

u(x)− 〈φ, µ〉

)
= sup
x∈SK

u(x)− φ∗∗(x) = (φ∗∗ − u)∗(0) = W (φ),

where the third equality follows from the continuity of φ which implies

inf
µ :E(µ)=x

〈φ, µ〉 = φ∗∗(0).

�

We are now able to prove the dual version of the “Cav(u)” Theorem.

of Theorem 1.2. Note that the first inequality can be proved using the splitting method described in Proposition
2.8 p.188 in [26]. Indeed, by replacing ε-optimal strategy by ε-best reply to the next mixed action of P2 in
the appropriate non-revealing game, we deduce that P1 can defend Cav(U) in Γn(µ) (and also in the infinitely
repeated game). For the second inequality, we have

(−V n)∗(−φ) = Wn(φ) = Rn1/n(φ∗)(0) ≤W (φ) + C0n
−1/2.

Using that (−U)∗(−φ) = W (φ), the preceding relation implies

V n(µ) ≤ −(−U)∗∗(µ) + C0n
−1/2.

Since U is concave and weakly continuous, we have that −(−U)∗∗(µ) = Cav(U) and this concludes the proof. �

In order to study the optimal strategies of P2, we need the following technical Lemma.

Lemma 4.6. For all µ ∈ ∆(SK),

∃φ ∈ ∂Cav(U)(µ) := {ψ ∈ C(SK) |W (ψ) + 〈ψ, µ〉 = Cav(U)(µ)}.
Moreover, φ can be chosen convex and CA-Lipschitz.

Proof. Since Cav(U) is concave and upper semi-continuous, we have

Cav(U)(µ) = inf
ψ∈C(SK)

W (ψ) + 〈ψ, µ〉

Since W depends on ψ only through the restriction of ψ∗ to the ball B(0, CA), one can replace ψ by ψ∗∗ which
implies that the infimum can be taken over convex functions. Moreover, one can replace any convex function ψ
by its (Moreau-Yosida) approximation defined by

ψ̃(x) =

 inf
y∈SK

ψ(y) + CA|y − x| x ∈ SK

+∞ x /∈ SK
.
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Indeed, ψ̃ is convex as a marginal function, CA-Lipschitz and ψ̃∗ coincides with ψ∗ on B(0, CA). Using that
W (ψ + α) = W (ψ) − α, we can assume that ψ(e1) = 0, and the infimum is finally taken over the set of CA-
lipschitz convex functions vanishing in e1. The function W being 1-Lipschitz for the uniform norm (using point
5 of Lemma 4.4), existence of a minimum in this set follows from Ascoli’s Theorem. �

Finally, this dual formulation provides O(
√
n)-optimal strategies for the uninformed player.

Proposition 4.5. For all µ ∈ ∆(SK), φ ∈ ∂Cav(U)(µ), ε > 0 and n ∈ N∗, any ε-optimal strategy τ in Γ∗n(φ)

is ε+ C0n
− 1

2 optimal in Γn(µ).

Proof. Existence of φ follows from the previous Lemma. By assumption, the strategy τ is such that

sup
σ∈Σn

gn(µ, σ, τ)− 〈φ, µ〉 ≤Wn(φ) + ε ≤W (φ) + C0n
− 1

2 + ε

and the result follows since by definition of ∂Cav(U)(µ). �

Remark 4.3. Using Theorem 3.1 p.191 in [26], P2 can guarantee lim V n = Cav(U) in the infinitely repeated
game.

Let us now prove the last result announced in section 1 concerning the uniform value.

of Corollary 1.1. It results directly from Theorems 1.1 and 1.2 and Remarks 3.2 and 4.3. �

The results concerning the upper value functions and optimal strategies of P2 (and thus Corollary 1.1 which
does not depend on the study of the lower value functions) can also be derived more directly. As for finite
games (see Kohlberg [24]), one can construct from the supergradient vector φ given in Lemma 4.6 an ε-optimal
strategy in the infinitely repeated game using Blackwell’s approachability (see Blackwell [8]). A short proof is
provided below for the sake of completeness.

Proposition 4.6. Given µ ∈ ∆(SK) and a convex function φ ∈ ∂Cav(U)(µ), the convex set

Cε = {q ∈ RK | ∀x ∈ SK , 〈q, x〉 ≤ φ(x) + ε}
is a B-set for P2 in the game with vector payoffs A(i, j) and action sets I, J . Any strategy τε adapted to this
set is ε-optimal in the infinitely repeated game Γ∞(µ).

Proof. Replacing φ by φ+W (φ), we obtain

Cav(U)(µ) = 〈φ, µ〉, and ∀ν ∈ ∆(SK), U(ν) ≤ Cav(U)(ν) ≤ 〈φ, ν〉.
Cε is convex closed and lower comprehensive. Moreover, since φ+ε is convex and continuous, it is the supremum
of the affine functions below it, i.e.

∀x ∈ SK , sup
q∈Cε
〈q, x〉 = φ(x) + ε.

Let us prove that Cε is a B-set for P2 in the game with vector-payoffs A(i, j) ∈ RK . Using convexity, it is
sufficient to prove that for all z ∈ RK ,

inf
τ∈∆(J)

sup
i∈I
〈z,A(i, τ)〉 ≤ sup

q∈Cε
〈q, z〉.

The right-hand side being equal to +∞ whenever z /∈ RK+ , we can assume that z ∈ RK+ and clearly that z 6= 0.
By homogeneity, this reduces to the case z ∈ SK , and we have to prove that

inf
τ∈∆(J)

sup
i∈I
〈z,A(i, τ)〉 ≤ φ(z) + ε.

This follows by construction since the left-hand side is equal to U(δz) ≤ φ(z). Now, any strategy τε for P2
adapted to the B-set Cε (existence follows using the same measurable selection result as for lemma 4.2) is such
that (see [8] or Corollary 4.6 p.104 in [26])

∀σ ∈ Σn,EΠ(µ,σ,τε)[d(Cε,
1

n

n∑
q=1

A(iq, jq))] ≤
CA√
n
.

Denoting by un the projection of 1
n

∑n
q=1A(iq, jq)) on Cε and dn its distance to Cε, we deduce that ∀σ ∈ Σn

EΠ(µ,σ,τε)[〈L,
1

n

n∑
q=1

A(iq, jq)〉] ≤ E[|L|]dn + E[〈L, un〉]

≤ CA√
n

+ E[φ(L)] + ε = Cav(U)(µ) + ε+
CA√
n

which ends the proof. �
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5. Extensions.

General evaluations. Instead of considering the n-times repeated game, one may consider the λ-discounted
game or more generally the infinitely repeated game where payoffs are evaluated as follows with obvious notations

gθ(µ, σ, τ) = EΠ(µ,σ,τ)[〈L,
∞∑
q=1

θqA(iq, jq)〉].

for some θ ∈ ∆(N∗). Denoting V θ and V θ the associated lower and upper value functions, all our results extend
for sequences θn such that εn := supq θ

n
q → 0. Precisely, we have

V θ(µ) = sup
J(Lq)q≥1K∈M∞(µ)

E[

+∞∑
q=1

θqV 1(JLq|L1, .., Lq−1K)],

where M∞(µ) denotes the set of laws of SK-valued martingales (Lq)q≥1 such that the law of the almost sure
limit L∞ of the martingale is dominated by µ. Lemma 3.4 can be adapted to obtain

E[
∑
q≥1

θq|Lq − Lq−1|] ≤
√
K − 1

√
εn

for any martingale with values in SK (it follows from a direct application of Cauchy-Schwarz inequality). The
analysis made in section 3 leads to

Cav(U)(µ) ≤ V θn(µ) ≤ Cav(U)(µ) + CA
√
K − 1

√
εn.

The posterior martingale is a process (Lq)q≥1 with law in M∞(µ), and the corresponding continuous-time
martingale is piecewise constant on the partition of [0, 1] formed by the sequence (tq)q≥0 with t0 = 0, and
tq =

∑q
m=1 θm for q ≥ 1. For probabilities θ with infinite support, the value at time 1 of this continuous-time

martingale can be defined as L∞. Propositions 3.3 and 3.4 can then be extended in an obvious way.
For the lower value functions, probabilities θ with infinite support can be approximated by θN defined by

θNq = θq for q ≤ N − 1 and θNN =
∑
q≥N θq. The same method leads to

Cav(U)(µ) ≤ V θn(µ) ≤ Cav(U)(µ) + C0
√
εn.

Time-dependent payoff. Consider that A(t, i, j) is a bounded continuous function defined on [0, 1] × I × J
which is uniformly Lipschitz-continuous of constant C ′ with respect to t. The n-times repeated game (or any
general evaluation as above) with time-varying payoff function is then defined as Γn(µ), except that the payoff
function is now

gn(µ, σ, τ) := EΠ(µ,σ,τ)[
1

n
〈L,

n∑
q=1

A( q−1
n , iq, jq)〉].

Define for all t ∈ [0, 1] the lower value functions V 1(t, .), U(t, .) and u(t, .) by replacing the payoff by A(t, .) in
the previous definitions and note that they are also uniformly Lipschitz with respect to t. The same analysis
leads to

(5.1) −CA
√
K − 1√
n

− C ′

2n
≤ V n(µ)− sup

J(Xt)t∈[0,1]K∈M(�µ)

E[

∫ 1

0

u(t,Xt)dt] ≤
CA
√
K − 1√
n

.

The first inequality follows from the proof of Proposition 3.4, where we have an additional error term since

n∑
q=1

u( q−1
n , X q−1

n
) ≥ n

∫ 1

0

u(t,Xt)dt− nCA
∫ 1/n

0

n∑
q=1

|X q−1
n
−X q−1

n +t| − C
′n2

∫ 1/n

0

tdt.

The second inequality is proved as in the second part of the proof of Theorem 1.1, using that the supremum
over piecewise-constant martingales is lower or equal than the supremum over all martingales. Propositions 3.3
and 3.4 can also be extended in an obvious way.

For the upper value functions, define the time-dependent versions U(t, .) and u(t, .) as above. Let also Wn(φ)
denote the upper value of the corresponding dual game. The results on viscosity solutions used in section 4 still
hold in this case (namely Theorems 2.1 in [30] and Proposition 6.1 in [1] ). Replacing the family of operators
defined before Lemma 4.2 by the corresponding time-dependent versions,

Rt,δ(f) = inf
τ∈∆(J)

sup
i∈I

f(x+ δ

∫
J

A(t, i, j)dτ(j)),

the same analysis leads to

|Wn(φ)−W (φ)| ≤ C0√
n
,
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where W (φ) = χ(0, 0) and χ denotes the unique viscosity solution of the following Hamilton-Jacobi equation

(5.2)

{
∂χ
∂t (t, x) + u(t,∇xχ(t, x)) = 0 for (t, x) ∈ (0, 1]× RK

χ(1, x) = φ∗(x) for x ∈ RK

in the class of uniformly continuous functions.
Note that using Lemma 4.2 (together with Theorem 2.1 in [30]), x → χ(t, x) is convex for all t ∈ [0, 1].

However, Lemma 4.5, and the link with Hopf formula (Proposition 4.4) do not extend to this new context.
These results can be replaced by Lemma 6.4 (proved in the appendix) which relies on the notion of dual
solutions developed in [12] and on Proposition 4.1 in [11]. This leads directly to the following version of (5.1),
using the same method as for Theorem 1.2:

(5.3) |V n(µ)− sup
J(Xt)t∈[0,1]K∈M(�µ)

E[

∫ 1

0

u(t,Xt)dt]| ≤
C0√
n
.

Compact metric state space. One may consider a continuum of states as in [13]. Let K be a compact metric
space and assume that the payoff function A(k, i, j) defined on K × I ×J is uniformly Lipschitz with respect to
k (one may also add a dependence in time). A similar analysis can certainly be made in this context, at least
for the lower value functions, but would require however to extend Lemma 3.4 for measure-valued martingales.

More general information structure. The main idea of Proposition 3.1 is that P1 controls the posterior
beliefs martingale. For any martingale (or revelation process), he can maximize his expected payoff under the
constraint that he will not reveal more than prescribed by the chosen process. This argument seems to be
meaningful in any extensive form zero-sum game in which P1 controls the posterior beliefs of P2 on some state
variable. Further works will be done in this direction for models in which (for example) P1 receives a sequence
of signals during the game drawn according to an exogenous joint distribution depending on the state variable.

6. Appendix.

Definition 6.1. The Wasserstein distance of order 1 is defined on the set ∆1(RK) of probabilities with finite
moment of order 1 by

dW (µ, ν) = min
π∈P(µ,ν)

(

∫
|y − x|dπ(x, y)) = min{‖X − Y ‖L1 | X ∼ µ , Y ∼ ν}

where |.| is the usual euclidian norm on RK .

The following Theorem is well-known and allows to construct variables with prescribed conditional laws.

Theorem 6.1. (Blackwell-Dubins [9])
Let E be a polish space with ∆(E) the set of Borel probabilities on E,and ([0, 1],B([0, 1]), λ) the unit interval
equipped with Lebesgue’s measure. There exists a measurable mapping

Φ : ∆(E)× [0, 1] −→ E

such that for all µ ∈ ∆(E), the law of Φ(µ,U) is µ where U is the canonical element in [0, 1].

6.1. Technical proofs.

Proof of Lemma 3.2. At first, this statement is equivalent to the existence of a measurable function

Hε : SK ×∆(SK)→ ∆(I)

having the property that the strategy L→ Hε(L, µ) is ε-optimal in Γ1(µ) using the correspondence φε(L, µ, U) =
Φ(Hε(L, µ), U) where Φ is given by Theorem 6.1. The main problem here is that there is no easily tractable
topology on the set of P1 strategies (usual Young topologies require a reference measure µ which will be a
variable for us), but thanks to the regularity of the payoff function with respect to the state variable, we can
proceed by a standard discretization method. Let us fix some 0 < η < 1. Let (Ωq)q=1,..,Q be a finite measurable
partition of SK of mesh smaller than η and (xq)q=1,..Q a sequence of points such that xq ∈ Ωq for all q. Define

then Λ as the subset of convex combinations λ ∈ ∆(Q) such that for all q = 1, .., Q, λq ∈ { kN , k = 0, .., N} for
some N to be fixed later. Let us define λ as the discretization on this grid.

λ : ∆(SK)→ Λ : µ→


λq(µ) =

bµ(Ωq)Nc
N for q = 1, ..., Q− 1

λQ(µ) = 1−
∑Q−1
q=1 λq(µ)

.

This approximation of µ by the probability with finite support
∑Q
q=1 λq(µ)δxq is such that

dW (µ,

Q∑
q=1

µ(Ωq)δxq ) ≤ η, dW (

Q∑
q=1

µ(Ωq)δxq ,

Q∑
q=1

λq(µ)δxq ) ≤
2Q

N
.
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Now, for each element λ ∈ Λ, there exists an η-optimal strategy of P1 in the game

Γ1(
∑Q
q=1 λqδxq ) denoted h(λ), which we can clearly identify to an element of ∆(I)Q with coordinates h(λ)q.

We are now able to define P1’s strategy:

Hε(L, µ) = h(λ(µ))q if L ∈ Ωq.

This defines a jointly measurable application and it remains to prove that it guarantees the right quantity.
Let us fix µ ∈ ∆(SK) and a strategy τ for P2. The triplet (µ,Hε(., µ), τ) defines a joint probability π. The
associated payoff is

Eπ[〈L,A(i, j)〉] ≥ Eπ[

Q∑
q=1

1IL∈Ωq 〈xq, A(i, j)〉]− CAη

=

Q∑
q=1

µ)(Ωq)〈xq,
∫
A(i, j)d[h(λ(µ))q(i)⊗ τ(j)]〉 − CAη

≥
Q∑
q=1

λq(µ)〈xq,
∫
A(i, j)d[h(λ(µ))q(i)⊗ τ(j)]〉 − 2Q

N
CA − CAη

≥ V 1(

Q∑
q=1

λq(µ)δxq )− η −
2Q

N
CA − CAη.

Using that V 1 is CA-Lipschitz for the Wasserstein distance dW and the preceding inequalities

|V 1(

Q∑
q=1

λq(µ)δxq )− V 1(µ)| ≤ CA(η +
2Q

N
),

and finally

Eπ[〈L, T (i, j)〉] ≥ V 1(µ)− 2CA(η +
2Q

N
)− η,

which ends the proof by choosing η sufficiently small and N sufficiently large so that 2Q
N CA is bounded by η. �

6.2. Jensen Inequality. The vector space M1(SK) of finite signed Borel measures µ on SK is endowed with
the weak∗-topology. The induced topology on ∆(SK) is metrizable by dW .

Lemma 6.1. Let (Ω,A,P) a probability space, G ⊂ F two sub σ-algebra of A, and f a concave continuous
mapping from ∆(SK) to R. Then, for all SK-valued random variable X:

• f(JXK) ≥ E[f(JX | FK)]
• f(JX | GK) ≥ E[f(JX | FK) | G] almost surely.

Proof. Let Φ denote the distribution of JX | FK in ∆(∆(SK)). f being continuous, it is sufficient to prove
that µ = JXK is the barycenter of Φ. But, for all h ∈ C(SK), it follows from the properties of the conditional
expectation that ∫

〈h, ν〉dΦ(ν) = E[E[h(X) | F ]] = E[h(X)] = 〈h, µ〉

which proves the first result. The second one follows by the same method. It is sufficient to prove that JX | GK
is almost surely the barycenter the ∆(∆(SK))-valued G-measurable random variable

Ψ = JJX | FK | GK.

Applying the previous argument to a well-chosen countable subset C0 of C(SK) and by using the definitions of
conditional laws and conditional expectations, we have with probability one

(6.1) ∀h ∈ C0,
∫
〈h, ν〉dΨ(ν) = E[E[h(X) | F ] | G] = E[h(X) | G]

Now C0 can be taken as a countable convergence determining subset of C(SK) so that property (6.1) extends
to all h ∈ C(SK) and this implies

f(JX | GK) ≥ E[f(JX | FK) | G]

with probability one. �
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Disintegration. Let E,F be a compact metric spaces and consider the application

T : ∆(E × F )→ ∆(∆(E))

which associates to the law π of a pair (X,Y ) of E×F -valued random variables, the law of the conditional law
JX | Y K. Formally T (π) is defined as the unique probability such that for every bounded continuous function f
on ∆(E) ∫

∆(E)

f(u)dT (π)(u) = E[f(J[X | Y K] =

∫
F

f(π(. | Y = y))dπF (y)

where πF denotes the marginal law of Y and π(. | Y = y) a version of the conditional law of X given Y .

Lemma 6.2. For any convex lower semi-continuous function f on ∆(E), the application

π →
∫

∆(E)

f(u)dT (π)(u)

is convex and lower semi-continuous.

Proof. The main line of this proof is borrowed from the theory of lower semi-continuous relaxation of integral
convex functionals in measure spaces (see Buttazzo [10]). At first, up to a translation, we can assume that
f ≥ 0. There exists a countable family φn ∈ C0(E) such that

f(µ) = sup
n∈N

φ̃n(µ) = sup
n∈N

∫
E

φn(t)dµ(t)

Extend f on the whole space of bounded Radon measure over E, M(E), by the value +∞ outside ∆(E), f
being lower semi-continuous and convex is then equal to a supremum of the continuous affine functions. Linear
continuous functions are exactly the applications µ→

∫
φdµ for φ ∈ C0(E) by definition of the weak∗ topology

on M(E) and any affine continuous function is equal to a linear mapping on ∆(E) since the constant can be
put in the linear part. We can replace this supremum by a supremum over a countable family using a countable
convergence determining subset (see e.g. [2] p106-107). At last, define φn,k as the Moreau-Yosida approximation

∀x ∈ E, φn,k(x) = inf
y∈E

φn(y) + kd(x, y)

so that by monotone convergence

f(µ) = sup
n∈N

sup
k∈N

φ̃n,k(µ).

Given some ε > 0, we can restrict the supremum to functions φn,k is such that there exists µ ∈ ∆(E),
∫
φn,kdµ ≥

f(µ) − ε, the remaining functions being replaced by 0. Using monotone convergence, it is then sufficient to
prove that for any fixed k, the function

π →
∫
fp(u)dT (π)(u)

is convex and lower semi-continuous with

fp(µ) = sup
k≤p

sup
n∈N

φ̃n,k(µ)

The functions φn,k in the above expression being p-Lipschitz, they are uniformly bounded from below by
p diam(E)− ε, and we can assume w.l.o.g. that they are nonnegative. Applying Lemma 3.11 p125 in Buttazzo
[10], ∫

F

fp(π(. | Y = y))dπF (y) = sup
(Bi)i=i1,..,ip

∑
i

∫
Bi

φ̃i,ki(π(. | Y = y))dπF (y)

= sup
(Bi)i=i1,..,ip

∑
i

∫
Bi

∫
E

φi,ki(t)dπ(t | Y = y)dπF (y)

where the supremum is over the finite measurable partitions of the space F . For (n, k) fixed, consider the
application defined on the Borel σ-field of F

B ∈ B(F )→ Fn,k(B) =

∫
B

∫
E

φn,k(t)dµ(t | Y = y)dπF (y) =

∫
E×F

φn,k(x)1IB(y)dπ(x, y)

This is a clearly a bounded positive measure over F . F begin compact metric, it is inner regular, i.e.

Fn,k(B) = {sup Fn,k(K) : K ⊂ B,K compact}

One can then replace

sup
(Bi)i=i1,..,ip

∑
i

Fi,ki(Bi) = sup
(Ki)i=i1,..,ip

∑
i

Fi,ki(Ki) = sup
(Oi)i=i1,..,ip

∑
i

Fi,ki(Oi)
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where the second supremum is over finite families of pairwise disjoint compact subsets and the third over finite
families of pairwise disjoint open sets using that the distance between disjoint compact sets is positive. Finally,
we just have to remark that for a fixed family of open sets, the mapping

π →
∑
i

Fi,ki(Oi)

is linear and lower semicontinuous, which implies that our functional is convex and lower semicontinuous. �

Let us end with two Lemmas. The first one is an easy result of convex analysis and the second one will play
the role of Proposition 4.4 for the time-dependent extension of our results.

Lemma 6.3. For a convex lower semi-continuous function φ on RK with values in R∪{+∞}, the two following
assertions are equivalent

i) The domain of φ is SK and φ is Lipschitz on SK .
ii) for all i = 1, ...,K, there exists zi ∈ ∂φ(ei) such that zi + Ni ⊂ ∂φ(ei) where Ni denotes the normal

cone of SK at ei:
Ni := {z ∈ RK | ∀p ∈ SK , 〈z, p− ei〉 ≤ 0}.

Proof. Assume i). φ being Lipschitz on SK , ∂φ(ei) 6= ∅. For z ∈ ∂φ(ei), we have

∀p ∈ SK ,∀y ∈ Ni, φ(p)− φ(ei) ≥ 〈z, p− ei〉 ≥ 〈z + y, p− ei〉.
It follows that z + Ni ⊂ ∂φ(ei) which in turn implies ii). Assume now ii). At first SK is included in Dom(φ)
and φ is Lipschitz on SK since ∂φ(ei) 6= ∅ for all i = 1, ..,K. For x /∈ SK , we have for all i and y ∈ Ni,

φ(x) ≥ φ(ei) + 〈x− ei, zi + y〉
where zi ∈ ∂φ(ei) is given by ii). If there exists j such that xj < 0, then we can choose i 6= j so that
y = −λej ∈ Ni for all λ > 0, and it follows that φ(x) = +∞. If x ≥ 0, then α =

∑
j xj − 1 6= 0 and for any

index i and any λ > 0, λα(
∑
j ej) ∈ Ni and we conclude that φ(x) = +∞. �

The following proof is a direct adaptation of the proof of Proposition 4.1 in [11].

Lemma 6.4. Define

V (µ) := sup
J(Xt)t∈[0,1]K∈M(�µ)

E[

∫ 1

0

u(s,Xs)ds].

Then V (µ) = inf
φ∈E

W (φ) +
∫
φdµ where E denotes the set of convex and CA-Lipschitz functions on SK .

Proof. Given φ ∈ E, define for (t, p) ∈ [0, 1]× SK

g(t, p) := − sup
J(Xs)s∈[0,1]K∈M(�h(p))

E[

∫ 1

t

u(s,Xs)ds− φ(X1)].

Then g is a viscosity solution in the dual sense of the Hamilton-Jacobi equation (see [12])

(6.2)
∂g

∂t
(t, p)− u(t, p) = 0,

with terminal condition g(1, p) = φ(p). Note at first that g(t, .) is convex in p (using that h is linear and � is
convex) and that the terminal condition is met since φ is convex. Let f be a C1 function on [0, 1] such that
f − g(., p) ≥ 0 with equality in t for some p ∈ SK . Then, for all h > 0, we can replace any martingale X in
M(h(p)) by the martingale equal to p for s < t+ h and to Xs for s ≥ t+ h. It follows that

f(t) = g(t, p) ≤ −
∫ t+h

t

u(s, p)ds+ g(t+ h, p) ≤ −
∫ t+h

t

u(s, p)ds+ f(t+ h).

We obtain f ′(t)− u(t, p) ≥ 0 which proves that g is a dual subsolution of (6.2).
Let ψ denote the convex conjugate of g, then

ψ(t, z) := sup
p∈SK

〈p, z〉 − g(t, p) = sup
J(Xt)t∈[0,1]K∈M

E[〈z,Xt〉+

∫ 1

t

u(s,Xs)ds− φ(X1)],

where M := ∪µ∈∆(SK)M(� µ). It is easily seen that ψ is globally continuous, convex and 1-Lipschitz with
respect to z, and that ψ(1, z) = φ∗(z). Now, let X be optimal for ψ(t, z), i.e. such that

ψ(t, z) = E[〈z,Xt〉+

∫ 1

t

u(s,Xs)ds− φ(X1)].

Note that the conditional law of (Xt∨s)s∈[0,1] given Xt is in M with probability 1 so that

ψ(t, z) = E[〈z,Xt〉+

∫ 1

t

u(t,Xt)dt− φ(X1)|Xt].
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Moreover, for all y ∈ RK , the following inequalities hold almost surely

ψ(t, z + y) ≥ E[〈z + y,Xt〉+

∫ 1

t

u(t,Xt)dt− φ(X1)|Xt] = 〈y,Xt〉+ ψ(t, z),

which implies that Xt ∈ ∂ψ(t, z) where ∂ψ(t, z) denotes the subdifferential of ψ(t, .).
Let f be a C1 function on [0, 1] × RK such that f − ψ ≥ 0 with equality in (t, z). It follows that ψ(t, .) is

differentiable in z. Let x := ∇ψ(t, z) = ∇f(t, z) and let X be optimal in ψ(t, z), then using the above result,
Xt = x almost surely, and

f(t, z) = ψ(t, z) ≤ E[

∫ t+h

t

u(s,Xs)ds] + ψ(t+ h, z) ≤ E[

∫ t+h

t

u(s,Xs)ds] + f(t+ h, z).

Using that the trajectories of X are càdlàg, we obtain

lim
h→0+

1

h
E[

∫ t+h

t

u(s,Xs)ds] = u(t, x).

This implies that ∂f
∂t (t, z) + u(t, x) ≥ 0, which proves that ψ is a subsolution of (5.2), and implies that g is a

dual supersolution of (6.2).
Let χ be the unique viscosity solution of (5.2). At first, using that ψ is a subsolution of (5.2), we have by

standard comparison Theorems (see e.g. [16]) that χ ≥ ψ. Note then that for all t, x → χ(t, x) is convex as
a limit of convex functions using Lemma 4.2 and Proposition 4.3. Let ω(t, .) denote the convex conjugate of
χ(t, .). Using the preceding Lemma, we will prove that Dom(ω(t, .)) = SK and ω(t, .) is Lipschitz on SK . To
see this, note that from Proposition 4.3, χ(t, x) depends only on the restriction of φ∗ to the ball B(x,CA) and
that φ fulfils the property i) of Lemma 6.3 by assumption. Let zi ∈ ∂φ(ei) given by property ii) of Lemma 6.3
and choose yi such that yi+Ni+B(0, CA) ⊂ ∂φ(ei), which always exists using ii) and since Ni is a convex cone
with non-empty interior. Using Fenchel’s Lemma, ei ∈ ∂φ∗(z) for all z ∈ ∂φ(ei), so that φ∗(z) = ci + 〈ei, z〉
for some constant ci. The (classical) solution of equation 5.2 with terminal condition ci + 〈ei, z〉 is given by

ψi(t, z) = ci +
∫ 1

t
u(s, ei)ds + 〈ei, z〉. It follows that χ = ψi on [0, 1] × (yi + Ni). This implies that for all t,

ei ∈ ∂χ(t, z) for z ∈ yi +Ni, and thus that yi +Ni ⊂ ∂ω(t, ei) which proves that Dom(ω(t, .)) = SK and ω(t, .)
is Lipschitz on SK .

Finally, χ being subsolution of (5.2), this implies that ω is a dual supersolution of (6.2). We conclude that
ω ≥ g so that χ ≤ ψ using the comparison Theorem given in [12]. Together with the preceding inequality, we
obtain ψ = χ and thus ω = g. As a consequence, for all φ ∈ E,

W (φ) = sup
p∈∆(K)

g(0, p) = sup
µ∈∆(SK)

V (µ)−
∫
φdµ.

As in Lemma 4.6, for any φ ∈ C(SK), one can define φ̃ ∈ E such that φ̃ ≤ φ and W (φ) = W (φ̃). V being
concave and weakly upper semi-continuous, it is equal to its bi-conjugate and we obtain

V (µ) = inf
φ∈C(SK)

W (φ) +

∫
φdµ = inf

φ∈E
W (φ) +

∫
φdµ

which concludes the proof. �
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