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Abstract—Service-based software applications, such as 

pervasive and ubiquitous ones, are increasingly embedded in 

our daily lives integrating smart communicating devices. 

Usually, changes in the execution context of these applications 

occur unpredictably over time, such as dynamic variations in 

the availability of the used services and devices, or of the user 

location and needs. This unpredictable variability in the 

execution contexts makes impossible to know at design-time 

the exact conditions under which these applications will be 

used and the services that will be most suited at a given time. 

Therefore, the architecture of such applications cannot be fully 

defined at design-time. These applications must be defined in 

abstract and flexible ways, allowing incremental composition 

and dynamic adaptation to their execution context at runtime. 

In this paper, we present a model-driven approach for 

designing, developing, executing and managing service-based 

applications. At design-time, an application is mainly defined 

by its requirements and goals. The application definition can 

be extended to add specific functional or non-functional 

concerns, such as dynamic adaptation, deployment or 

distribution. At development-time, the application can be 

automatically and incrementally composed, ensuring its 

consistency with respect to its definition. At runtime, the 

application execution is supported and controlled by our 

runtime environment. 

Keywords-service-based composition; desing and 

development engineering environments; execution platforms. 

 

I.  INTRODUCTION 

Modern service-based software applications, such as 
pervasive and ubiquitous ones where services represent the 
functionalities provided by devices, present a number of 
characteristics and requirements that make their design, 
development, execution and management very difficult 
[1][2]. Indeed, these applications depend on services whose 
number, dynamic availability and behavior are not known 
before execution. The assumption that applications are built 
to run in well-defined contexts, with deterministic and 
constant behaviors, is no longer valid for modern 
applications. Thus, the architecture of these applications 
cannot be fully fixed nor predictable at design-time anymore. 

Considering the variability in the execution contexts, 
modern applications must be defined in abstract and flexible 
ways, allowing their concrete incremental composition all 
along their lifecycle, and letting controlled opportunistic and 
dynamic behaviors at runtime.  

We define opportunism as the capability of a service-
based application to use services available at runtime. An 
opportunistic behavior may be required, for example, to 
improve efficiency, to support reuse and collaboration, to 
avoid conflicts, or simply because the application cannot 
instantiate the needed services (e.g. devices).  

We define dynamism as the capability of a service-based 
application to manage services that can appear and disappear 
at runtime. A dynamic behavior may be required, for 
example, to manage services whose number, location and 
availability are variable, or whose deployment, instantiation 
and removal are controlled by third parties (e.g. 
administrators or other applications), or to consider new 
application requirements and needs. Managing dynamic 
services entails adapting applications dynamically, which 
implies architectural reconfigurations by adding, updating or 
removing components and connectors.  

To address the complexity of designing, developing, 
executing and managing modern service-based applications, 
we propose: (1) design and development environments 
that allow, on the one hand, defining an application at a high-
level of abstraction (via the set of properties it must have and 
satisfy) leaving room for flexible and incremental 
composition all along its lifecycle, and on the other hand, 
defining separately specific functional or non-functional 
concerns, such as dynamic adaptation, deployment or 
distribution, in order to complement the application 
definition; and (2) a runtime platform that supports the 
execution of (partial or complete) applications, managing 
their runtime compositions and ensuring the fulfillment of 
their definitions and of their associated properties. 

Our proposed approach uses models at design, 
development and runtime [3]. We use development models 
to define the abstract architectures and goals of applications. 
We use runtime models to represent, in a high-level of 
abstraction, the current architectures of the running 
applications. The use of development models is extended to 
runtime, allowing to control the applications execution, and 
also to go on with design and development activities. 

The remainder of this paper is organized as follows. 
Section II introduces our model-driven design and 
development environments, and details our metamodel for 
building service-based applications. Section III presents our 
model-driven runtime environment supporting and managing 
the execution of such applications. Section IV discusses 
related work, and finally section V concludes this paper 
presenting our major contributions. 



II. DESIGN AND DEVELOPMENT ENVIRONMENTS 

We propose a set of model-driven engineering 
environments, named CADSEs (Computer Aided Domain 
Specific Engineering environments) [4], whose goal is to 
help architects and developers performing software 
engineering activities in a specific domain. Thus, we have 
developed specialized CADSEs for the design and 
development of service-based applications taking into 
consideration the characteristics and requirements of modern 
applications such as pervasive and ubiquitous ones. 

To illustrate, we present a simplified home media center 
application that allows users browsing, selecting and 
reproducing audio and video files using different electronic 
devices inside the home such as televisions, speakers, 
screens, laptops and cellphones. This application is 
composed of a media manager service which interacts, on 
the one hand, with a number of media servers (such as home 
media servers or audio-and-video-on-demand Internet 
servers) containing audio and video files, and on the other 
hand, with a media player service controlling the 
reproduction of a selected media file.  

New media server services can be dynamically available 
in the house. When a new media server service is available, 
it automatically joins the home media center application (i.e. 
it is connected to the media manager service) allowing 
accessing its contained media files.  

A media player service interacts with audio and video 
services in order to reproduce media files. Audio and video 
services allow controlling the audio and video devices 
dynamically available in the house. Several types of devices 
can provide audio and video functionalities and several 
instances of a type of device can be present in the house. The 
home media center application must use not only the 
available devices, but also the best suited ones (e.g., to the 
user preferences or location) at a given point in time. 

Finally, when a currently used service or device is 
removed or fails, the application should be dynamically 
adapted in order to continue providing its services using 
alternative services and devices. 

Due to the unpredictable availability of its components, it 
is not possible to define concretely the architecture of this 
application at design-time. We propose then to define a 
service-based application in a high-level of abstraction, 
partly by intention (via a set of invariant properties that the 
application must satisfy, i.e. the application goal) and partly 
by extension (via a set of selected interconnected 
components, i.e. a concrete partial architecture) leaving room 
for incremental composition and adaptation all along the 
application life-cycle. Consequently, we propose a 
component metamodel that aims bringing to service-based 
architectures the benefits of component-based development, 
allowing the description, creation, reusability, evolution, 
composability and encapsulation of components providing 
and requiring services and resources. 

A. The component-service metamodel 

Component-service is the central concept of our 
metamodel shown in Fig. 1. A component-service provides 
resources (i.e. functional interfaces, typed data or events), 
requires resources, owns static and configurable properties, 
and is associated with constraints and preferences. Next, we 
detail the metamodel elements, presenting first the primitive 
component-services followed by the concepts and 
components allowing their composition. 

1) Primitive components: A component-service can be 
either a specification or an implementation. A specification 
is an abstract definition of a component-service independent 
of any given implementation technology. It defines a 
contract that specifies the common and configurable 
properties, the provided and required resources, and the 
constraints and preferences that its implementations must 
respect. Common and configurable properties are specified 
as a tuple <name, type, value>. The values of the specified 
common properties are identical and immutable for all the 
implementations, while the values of the specified 
configurable properties, being customized by each 
implementation, are usually different allowing thus to 
distinguish them (e.g. during selection). 

Figure 1. Component-service metamodel 
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Required resources can be defined via simple or complex 
dependencies. A simple dependency is defined towards a 
single resource. A complex dependency is defined towards a 
single specification that specifies a set of provided resources. 
A (simple or complex) dependency can indicate cardinality, 
selection constraints and preferences. Cardinality is defined 
by the tuple [min, max], where “min” can be either “0” 
meaning an optional dependency or “1” meaning a 
mandatory one, and “max” can be either “1” meaning a 
single dependency or “n” meaning a multiple one.  

Constraints and preferences (expressed via our constraint 
language presented in section B) represent, respectively, the 
properties that a provider must have and those that are 
preferable. They are evaluated over the configurable 
properties of the providers. Using constraints and preferences 
allows reducing the number of providers that can be selected. 

To illustrate the specification concept, consider a 
MediaManager specification (see Fig. 2), which defines a 
single provided resource via the interface MediaManagerIt. 
This interface describes the provided functionality, which is 
to show the list of current media files and to play a selected 
media file. The specification defines two complex 
dependencies: the first one, mandatory and multiple, is 
towards a MediaServer specification, the second one, 
mandatory and single, is towards a MediaPlayer 
specification. The specification defines two configuration 
properties, “provider:String” and “freeware:Boolean”, to be 
configured by the MediaManager implementations. 

A specification can be implemented by several 
implementations.  An implementation implements a single 
specification with particular properties. An implementation 
has the characteristics and properties defined by its 
specification: the provided and required resources, the 
common properties and the configurable properties with 
particular values, the constraints and preferences. An 
implementation can provide and require additional resources, 
define common and configurable properties for its instances, 
and add selection constraints and preferences.  

To illustrate, consider two implementations of the 
MediaManager specification: ADELE-MediaCenter and 
ACME-MediaManager (see Fig. 2). Implementing the same 
specification, both implementations provide the interface 
MediaManagerIt, require the MediaServer and MediaPlayer 
specifications, have the same common properties (with the 
same values) and have the same configurable properties 
(with own values). ADELE-MediaCenter provides an 
additional resource, defined by the MediaRecorderIt 
interface, which allows recording media files in scheduled 
and automatic ways. In addition, ADELE-MediaCenter 
requires a Log service (defined via a simple dependency 
towards the Log interface), and defines the property 
“language:String” for configuring its instances.  

An implementation can have several instances. At 
design-time, an instance is the declaration of a particular 
configuration of an implementation. Such an instance has all 
the characteristics and properties specified by its 
implementation, i.e. the provided and required resources, the 
common properties, the constraints, the preferences. An 
instance personalizes the configurable properties specified by 
its implementation. Configured properties allow, on the one 
hand, distinguishing instances from each other (during 
selection), and on the other hand, establishing the initial 
values for the instance creation at runtime. In addition, an 
instance can add selection constraints and preferences to the 
dependencies specified by its implementation (see Fig. 2). 

2) Composite concepts: Primitive components can be 
assembled in order to compose an application or subsystem. 
The composition process is orthogonal to the design and 
development of primitive components. Our composition 
approach relies on two concepts: composite definition and 
composite implementation (hereinafter called simply 
composite). 

A composite definition describes an application or a 
subsystem (i.e. composite) at a high-level of abstraction via 
the properties it must have and satisfy: its architectural 
characteristics (provided, required and contained resources), 
and its constraints and preferences (see Fig. 1). Thus, a 
composite definition specifies a structural composition in 
terms of specifications, as well as a semantic (or intentional) 
composition in terms of constraints and preferences. Similar 
to a reference architecture in software product line (or 
product family) approaches [5], a composite definition 
describes structural and semantic properties, including 
variation points, for a family of composites.  

Using our composition and constraint language 
(presented in section B), a definition for home media center 
applications can be the following: 
 

CompositeDefinition HomeMediaCenter { 

Provides MediaManager; 

Select MediaServer  

(language=“FR” or language=“EN”); 

Prefer MediaServer (language=“FR”);  

Select MediaPlayer (quality=“HD”);  

Select MediaRecorder  

  (codec=“g711” and codec=“x264”); 

Requires Optional Log (version=“1.2”); 

} 

Figure 2. Primitive component-services example 
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This model, named HomeMediaCenter, specifies the 
architectural characteristics for home media center 
applications: MediaManager is the provided specification 
and Log is an optional composite dependency. Providing the 
MediaManager specification implies that the MediaManager 
dependencies (i.e. to MediaServer and MediaPlayer) are 
composite dependencies too. In addition, the model specifies 
constraints and preferences for selecting MediaServer, 
MediaPlayer, MediaRecorder and Log providers. 

Several different composites, can be derived (created) or 
associated to a single composite definition, assuring then the 
fulfillment of the specified properties and constraints.  

A composite represents an application or subsystem via 
an assembly of implementations. A composite is itself an 
implementation (see Fig. 1), and as such, it provides a single 
specification, inheriting then its provided and required 
resources, its common and configurable properties, and its 
constraints and preferences. Being an implementation, a 
composite can provide and require additional resources, 
define common and configurable properties for its instances, 
and add constraints and preferences influencing the selection 
of its contained and used implementations.  

A composite contains a set of interconnected 
implementations. Before runtime, these implementations and 
their interconnections represent (partially or totally) the static 
structure of the application or subsystem to be executed. 
These implementations can be either primitive or composite, 
allowing thus the hierarchical composition of composites. 
Among the contained implementations, there is a main 
implementation, which provides at least all the resources 
provided by the implemented specification of the composite.  

To illustrate the composite concept, consider that the 
ADELE-MediaCenter implementation (presented in Fig. 2) 
is a composite one, representing a home media center 
application. Its external structure remains as described earlier 
(see Fig. 3). Its internal structure is (currently) composed 
only of the ADELE-MediaManager implementation, which 
is its main implementation. 

A composite is incomplete if any of its contained 
implementations has unresolved dependencies (like the 
ADELE-MediaManager in the ADELE-MediaCenter). An 
incomplete composite can be gradually refined, before or 
during runtime, by resolving such unresolved dependencies. 
The principle of such a refinement process, also called 
incremental composition, is explained later on section C. 

Composite dependencies correspond to dependencies of 
the implementations contained inside the composite. In other 
words, composite dependencies are promoted dependencies 
of implementations contained in the composite, which will 
be resolved by implementations outside the composite. 
Consider for example the dependency of the ADELE-
MediaCenter composite to the MediaServer specification 
(see Fig. 3). The dependency of its contained implementation 
ADELE-MediaManager to the MediaServer specification is 
automatically promoted and resolved outside the composite. 
This resolution results in a connection between the ADELE-
MediaManager and a MediaServer implementation (outside 
the composite), and another one between the ADELE-
MediaCenter and the MediaServer implementation. 

 
The ADELE-MediaCenter composite, associated to the 

HomeMediaCenter definition presented before, satisfies all 
the specified properties and constraints. 

Being an implementation, a composite can have several 
instances. At design-time, a composite instance corresponds 
to a particular configuration of a composite, which may also 
contain the configurations for its contained implementations. 

Note that at design and development times we have two 
levels of composition: abstract (in terms of architectural and 
semantic properties and constraints) and concrete (in terms 
of interconnected implementations and instance 
declarations). Thus, an application can be specified, as 
usually, by a list of implementations and connections 
between them; but it can also be specified via an abstract 
composite definition, leaving then room for flexible, 
opportunistic and dynamic composition at runtime. In our 
approach, a composite together with its composite definition 
constitute a composite model. 

B. Constraint expression language  

We have defined a constraint language that, like the 
Object Constraint Language (OCL), allows specifying 
constraint expressions on model elements. Our language 
allows navigating models (through its linked elements) and 
evaluating constraints expressions over the elements 
properties. Like in OCL, constraints expressions (hereinafter 
called simply constraints) can be used to enforce model 
consistency. Unlike OCL, constraints can be associated with 
both instances and types. Thus, in our metamodel, 
constraints can be associated with specifications and 
implementations (as types), but also with implementations 
and instances (as instances of the specification and 
implementation types respectively). 

In our language, constraints are strongly typed. 
Therefore, a constraint can refer to the property “a” of an 
element “x” only if either “x” (being a type) or the type of 
“x” has declared the property “a”. In this way, the validity of 
constraints can be statically verified, enforcing the 
compatibility between elements. 

Figure 3. Composite component-service example 
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Constraints can use LDAP-like expressions, navigation, 
or complex constructions (see [6] for more details). For 
example, the ADELE-MediaManager implementation 
associates the following constraint with its dependency to the 
MediaServer specification:  
 

Select MediaServer (provider=“ADELE”); 

 
This constraint indicates that ADELE-MediaManager 

requires a provider of the MediaServer specification whose 
“provider” property is “ADELE”. This constraint is valid 
since the property “provider” is defined by the MediaServer 
specification. Another constraint associated with the 
ADELE-MediaManager implementation is: 
 

Self.requires(name=“MediaRecorder”)..provides 

(audio=“true” and video=“true”); 

 
This constraint expresses, by navigation, that ADELE-

MediaManager (specified via the Self operator) requires a 
provider of the MediaRecorder specification whose provided 
properties “audio” and “video” are both true. 

The constraints directly associated with a component, as 
in the two previous examples, are called intrinsic 
constraints. Being associated with a component, intrinsic 
constraints must be satisfied by all composites using the 
component. Intrinsic constraints can be used to validate the 
compatibility between components, reducing thus the risk of 
errors at runtime. 

A composite can be associated with a set of contextual 
constraints that must be satisfied by the implementations it 
contains and uses. The ADELE-MediaCenter composite, 
being associated with the HomeMediaCenter definition 
presented before, has the following contextual constraints:  
 

Select MediaServer  

  (language=“FR” or language=“EN”); 

Select MediaPlayer (quality=“HD”);  

Select MediaRecorder  

  (codec=“g711” and codec=“x264”); 

Requires Optional Log (version=“1.2”); 

 
The implementations that a composite will contain must 

satisfy both the composite contextual constraints and the 
intrinsic constraints of the client contained implementations. 
For example, the ADELE-MediaCenter composite has the 
contextual constraint (language=“FR” or language=“EN”) 
associated to its MediaServer dependency. The ADELE-
MediaManager implementation, contained in that composite 
as its main implementation, has the intrinsic constraint 
(provider=“ADELE”) associated to its MediaServer 
dependency. These constraints will be aggregated in order to 
be evaluated when selecting a MediaServer implementation 
for that composite. 

Contextual and intrinsic constraints can conflict. 
Constraint conflicts are checked, from design to runtime, 
during the composition process. Actually, we propose an 
automatic backtrack mechanism looking for alternative 
solutions when composition fails due to unsatisfied or 
conflicting constraints.  

In a similar way, preferences can be associated with 
components (intrinsic preferences) and with composites 
(contextual preferences). Preferences are evaluated only if 
more than one provider satisfies the constraints. The provider 
fulfilling more preferences will be selected.  

The ADELE-MediaCenter composite associates the 
following contextual preference with the MediaServer 
specification, indicating that the selection of a MediaServer 
provider having “language=FR” is preferable: 
 

Prefer MediaServer (language=“FR”); 

 
Constraints and preferences (intrinsic and contextual) are 

validated when defined, and evaluated when composing the 
associated composite and composite instance(s), enforcing 
then the selection of compatible and suited implementations 
and instances, respectively. Our composite composition 
system, presented next, performs these tasks. 

 

C. Composite composition system  

Our composite composition system is available all along 
the lifecycle of a component, from its design to its execution, 
allowing thus its incremental composition (including 
refinement and adaptation) at any time. This approach 
enables a flexible composition process in which some parts 
of an application are selected at design and/or development 
times, while others are left open for opportunistic and 
dynamic selection at runtime. The composition process 
implemented by our system relies on the equivalence group 
and resolution concepts. 

1) Equivalence group: An equivalence group (group for 
short) is made of one representative object (also called group 
head) and a number of group members. A group head 
defines the common and the configurable properties for the 
group members. In this manner, the group members have 
the same common properties, and the same configurable 
properties with own values. The configurable properties 
defined by a group head, allow distinguishing the group 
members, for example, during the group resolution process. 

A group type is defined as the tuple <headType, 
memberType>. In our component-service metamodel, two 
group types exist: <specification, implementation> and 
<implementation, instance>. Thus, considering the example 
of Fig. 2, the MediaManager group has the MediaManager 
specification as its head and the ADELE-MediaCenter and 
ACME-MediaManager implementations as members. 

2) Resolution process: The composition process is based 
on the concept of group resolution. Resolving a group means 
selecting or creating one or several group members 
(according to the specified multiplicity) satisfying a given set 
of constraints and preferences. A group is instantiable if it is 
associated with a factory, allowing then the creation of group 
members during the resolution process.  

Resolving a specification group means either selecting an 
implementation from a component repository or generating 
an implementation satisfying the set of specified constraints.  



Actually, a specification group is instantiable if it is 
associated with a factory knowing how to generate 
implementations fulfilling the given set of constraints (proxy 
generation for example). 

In a similar way, resolving an implementation means 
either selecting or creating one or more instances satisfying 
the given set of constraints. Before runtime, an instance is a 
declaration corresponding to a particular implementation 
configuration. Like implementations, instance declarations 
are maintained in component development repositories. At 
runtime, an instance is a running entity corresponding to the 
execution of an implementation. Instantiation (i.e. the 
creation of a runtime instance) is performed using the 
corresponding implementation factory and the instantiation 
properties specified by an instance declaration. Usually, 
implementation groups (other than implementations of 
physical devices) are instantiable.  

Resolving a (simple or complex) resource dependency 
consists in selecting a group head (i.e. a specification or 
implementation) providing the required resource, and then in 
resolving the group considering the constraints and 
preferences related to this group. 

 A group resolution is complete if: (1) the group head is 
resolved until the selected group members are not 
themselves group heads (e.g., the complete resolution of a 
specification results in one or more instances), and (2) the 
dependencies of the group head and of its selected members 
are transitively and completely resolved. A complete 
resolution may fail because it is not possible to resolve a 
group, for example, because no member satisfies the 
constraints or because intrinsic and contextual constraints 
conflict. Therefore, a complete resolution can be performed 
in backtrack mode, meaning that if a group resolution fails, 
the previous selection will be undone, and other resolutions 
will be performed. The backtrack resolution mode ensures 
that if a resolution solution exists, it will be found, but it may 
be very expensive for large component repositories. 

The resolution (or composition) of a composite consists 
in resolving the unresolved dependencies of its contained 
implementations (starting from the main implementation). A 
successful resolution returns implementations that are added 
to the composite. In turn, resolving these implementations 
returns instance declarations, to be added to a composite 
instance declaration. Before runtime, a composite and an 
associated instance declaration represent the static structure 
of the application to be executed in terms of implementations 
to be deployed and instances to be created at runtime. 

A composite is considered as complete (or completely 
resolved) if all its contained implementations have been 
completely resolved. Nevertheless, resolving completely a 
composite before runtime conflicts with the needs of using 
available services at runtime. Thus, we adopt a partial 
resolution mode leaving room for opportunistic resolution at 
runtime. The architect of a composite specifies then the 
implementations for which the resolution has to be 
performed before execution. At runtime, resolution is 
performed on-demand considering the services available on 
the execution platform. In this manner, composition is 
performed incremental and opportunistically.   

As a result, our basis approach allows mixing two 
resolution modes:  

• static mode: components are resolved before runtime. 
The implementations contained in the composite will be 
deployed and instantiated using their corresponding instance 
declarations, ensuring then a reliable composite execution. 

• opportunistic mode: components are resolved on-
demand at runtime. The services available on the execution 
platform can be potentially (re)used and integrated into the 
composite execution. 

Other resolution modes (such as dynamic or remote) can 
be specified by independent models (referred as specific-
concern models) complementing thus a composite definition 
with specific-concerns to be supported. For example, a 
dynamic model can specify the behavior that a composite 
must have when the availability of some components 
changes at runtime. Thus, a composite needing to react to the 
availability of components in the execution platform must be 
associated with a dynamic model describing the expected 
behavior (e.g. dynamic creation of bindings following the 
availability of an expected service, dynamic substitution of 
an unavailable service, and so on). A deployment model can 
complement a composite definition by specifying a set of 
addresses corresponding to component repositories to be 
used for the resolution of that composite.  

The specific-concern models associated with a composite 
definition are controlled, at runtime, by concern-specific 
managers which are in charge of resolving and/or controlling 
the composite execution according to a specific-concern. 
This paper does not detail the specific-concern models that 
can be associated to composites nor the managers that 
interpret them at runtime. 

D. Composite control properties 

A composite contains a (partial or complete) set of 
implementations. In our approach, the result of the 
incremental composition process is, by default, a white-box 
composite. A white-box composite allows other components 
and composites to get access to its content. Our approach 
allows specifying if the content of a composite is not visible 
from the outside. Thus, in order to hide the content of a 
composite, we define a black-box property. A black-box 
composite is seen like a primitive implementation, meaning 
that the only way to interact with the composite is through its 
provided services or resources. The internal structure of such 
a composite (i.e. the implementations it contains) will not be 
visible from an external point of view.  

Moreover, in order to control its runtime resolution, a 
composite can explicitly specify if its resolution space is 
closed (i.e. its resolution will be performed using only the 
specified component repositories). By default, the resolution 
space is open (i.e. the resolution is performed both 
opportunistically and using all the available repositories). 
The closed and black-box properties can be associated with 
composites or with composite definitions, like in the 
following example: 
 

CompositeDefinition Closed BlackBox HomeMediaCenter { 

... 

} 



III. RUNTIME ENVIRONMENT 

Our model-driven runtime environment supports and 
controls the concurrent execution of various composites 
defined and built with our design and development 
environments. It implements the component-service 
metamodel presented in section A. 

Before runtime, component-services are represented by 
artifacts that can be described, developed and packaged (as 
bundles). In order to support the execution of composites, 
our runtime environment supports the deployment, 
instantiation and activation of components and (partial or 
complete) composites. It promotes the opportunistic (re)use 
of the available running services. Hence, by default, the 
resolution of dependencies is performed on-demand, 
resulting in services, selected from the available running 
services or deployed and activated from the available 
component repositories.  

Executing a (partial or complete) composite on our 
running environment consists thus in deploying the 
composite and its main implementation, and creating their 
corresponding instances. The composite is incrementally 
composed (starting from its main instance), via the on-
demand resolution of the components dependencies. 

Our runtime environment provides mechanisms for 
controlling the concurrent execution of composites 
according to their associated properties (i.e. intrinsic and 
contextual constraints and preferences, visibility, sharing, 
open or closed resolution). Hence, it represents the current 
execution state of the supported composites via a state 
model conformable to our component-service metamodel. 
That runtime model is causally related to the underlying 
platform, allowing on the one hand having a representation 
of the current running components and composites (i.e. a 
descriptive model) and, on the other hand, managing and 
controlling their execution according to their associated 
properties (i.e. a prescriptive model). Then, the actions 
performed in that model (for example, adding a given 
implementation) are translated into the corresponding actions 
in the underlying platform (deploying and activating the 
corresponding implementation). 

Therefore, our runtime environment ensures that the 
execution of a composite is conformable to its definition, and 
consistent with the composition performed before runtime. 
The information produced during its design and development 
times (i.e. the composite model) is known and managed at 
runtime. The resolution of its internal and external 
dependencies is then performed according to its definition, 
and using (by default) the same component repository used 
at development-time. Moreover, having the information 
produced during design and development times allows 
performing some design and development engineering 
activities at runtime. 

Considering that additional models representing specific 
functional and non-functional concerns can be defined to 
complement a composite model, our runtime environment 
can be extended in order to support and control such 
concerns during the composite execution. Currently, 
dynamic adaptation and deployment are supported. 

The basic functionality of our runtime environment, 
extended with specific-concern functionalities, allows 
supporting and controlling the concurrent execution of 
various composites ensuring, on the one hand, the 
satisfaction of their definition (i.e. of their goals) and of their 
general properties (i.e. visibility, sharing), and on the other 
hand, the management of specific-concerns (such as dynamic 
adaptation and deployment).  

Our runtime environment, built on top of the OSGi 
framework [7], uses the iPOJO [8] and Rose [9] 
technologies, resulting thus in an extensible runtime 
environment handling the execution and composition of 
dynamic, distributed and heterogeneous component-services. 

We have tested different scenarios and compared the 
performance of our core runtime environment [10] to those 
of iPOJO [8], FraSCAti [11] and Tuscany [12] platforms. 
We have measured the instantiation and method call rates, 
and the memory used in each case. The results have shown 
that our runtime environment is quite efficient. For instance, 
regarding the instantiation rate, our platform is 10% faster 
than iPOJO, even though the memory usage is 10% higher. 
Our current work aims at improving the robustness and 
performance of our runtime environment, and validating it 
by using different application scenarios requiring controlled 
opportunistic and dynamic behaviors. We intend to provide a 
runtime environment robust and efficient enough to be used 
as an open research platform. 

IV. RELATED WORK 

The development, execution and management of service-
based applications have been addressed from different 
perspectives. Some works propose model-based approaches 
for their development. Others propose runtime platforms for 
supporting their execution. Recent works attempt to extend 
the use of models created during development to the runtime. 

Using components to implement services has become 
relatively popular. Some service-oriented component models 
and execution platforms have been proposed, such as Service 
Component Architecture (SCA) [13], Declarative Services 
[7], Spring-DM [14] and iPOJO [8].  

SCA proposes a service-oriented component and 
composition model. It supports a wide variety of 
technologies for implementing components. SCA allows 
describing composites as an assembly of interconnected 
components. Like in our approach, composites can be used 
as component implementations, allowing hierarchical 
construction of applications. Unlike our approach, 
composition is defined at development-time and wiring is 
fully performed when starting the application, prohibiting 
component selection and substitution at runtime. Some 
runtime platforms, such as FraSCAti [11] and Tuscany [12], 
implement and extend the SCA specification allowing the 
execution of SCA applications at runtime. 

The OSGi specification [7] defines a service runtime 
platform supporting a minimal component model. OSGi 
automatically manages dynamic service deployment, 
including Java package dependency resolution. Nonetheless, 
service dependency management is left as a manual task for 
developers. Therefore, the Declarative Services specification, 



inspired by the Service Binder model [15], proposes a 
service-oriented component model aiming at facilitating the 
creation of components on top of OSGi. It allows developers 
to describe components with its provided and required 
services. Descriptions are used by the Service Component 
Runtime (SCR) to automatically manage service 
dependencies at runtime. Nevertheless, unlike our approach, 
Declarative Services does not propose a composition model, 
leaving developers to code service compositions. 

iPOJO is both a service-oriented component model and a 
runtime platform implemented on top of OSGi. Based on the 
concept of Plain Old Java Objects (POJO), iPOJO allows a 
straightforward development of components. POJOs are 
encapsulated in containers that manage dynamic service 
mechanisms (publishing, discovery, invocation) and other 
non-functional concerns (such as lifecycle or configuration) 
at runtime. iPOJO offers an extensibility mechanism based 
on the concept of handlers which are plugged into containers 
allowing managing other non-functional concerns. Indeed, 
our runtime environment, implemented on top of iPOJO, 
provides new functionalities, implemented via handlers, like 
on-demand dependencies resolution, intrinsic and contextual 
properties management, and so on. 

Recent works in dynamic adaptive systems and 
autonomic systems [16][17][18] advocate the use of runtime 
models (or state models) causally connected to the running 
systems. Runtime models provide abstract views of the 
running systems allowing their management (monitoring, 
analysis, adaptation). Thus, actions performed on a runtime 
model are transformed into the corresponding actions on the 
running system, and vice versa. In some works, the runtime 
models focus on reactivity to dynamic context changes [8] 
but they do not propose proactive (goal-oriented) actions. 
Other works focus on proactivity [16][17] but they usually 
do not focus on dynamic services. Our work claims that 
reactive and proactive actions should be both supported in 
order to allow dynamic adaptation and evolution of the 
running systems in controlled ways. Hence, our approach 
uses multiple runtime models simultaneously, including 
development models. Using development models at runtime 
allows us to support continuous design, blurring the line 
between development-time and runtime [19]. 

V. CONCLUSIONS  

In this paper we have presented a model-driven approach 
to design, develop, execute and manage service-based 
applications, such as dynamic and ubiquitous ones. Our 
contribution lies in an abstract, flexible and automated 
composition process that promotes opportunistic and 
dynamic behaviors at runtime. We propose first a component 
metamodel that brings to service-based architectures the 
advantages of component-based development (such as 
description, composability and encapsulation). 

Second, we propose design and development 
environments allowing developing components and 
composites defined at a high-level of abstraction. Our 
composition environment supports adding specific functional 
or non-functional concerns (to be defined in independent 
models) in order to complete the definition of an application. 

Finally, we propose a runtime platform supporting and 
managing the concurrent execution of multiple dynamic 
applications, ensuring the satisfaction of their specified 
goals. Our runtime platform can be extended by concern-
specific managers in order to support specific-concern 
management during execution. Our approach uses models 
from design to runtime. Extending the use of design and 
development models to runtime, allows us to control and 
ensure a consistent execution of the running applications, 
and also to perform some design and development activities 
if needed. This work is currently extended for the design and 
execution of autonomic applications. 
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