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Optimization of Fault Detection Performance
for a Class of Nonlinear Systems

Denis Efimov, Ali Zolghadri

Abstract— The problem of observer design for fault detectiorin a class of nonlinear systems subject to paraméat and signal
uncertainties is studied. The design procedure incties formalized optimization of observer free paramters in terms of trade-offs
for fault detection performance and robustness to>dernal disturbances and model uncertainties. The thnique makes use of
some monotonicity conditions imposed on the estimah error dynamics. Efficiency of the proposed apprach is demonstrated

through the Oscillatory Failure Case in aircraft cantrol surface servo-loops.

I. MOTIVATIONS AND PROBLEM SETTING

Model-based Fault Detection and Isolation (FDI)dgnamical systems has been an active researchiarieg the last
three decades (see [1f2} a recent survey). Different design and eva@ratbols to enhance the robustness of FDI schemes
against small parameter variations and other diahaes have been proposed ([7], [9]). An imporfaciis has been on the
use of observer-based schemes. In the linear itdses been shown that any linear fault detectiber fcan be transformed
into an observer-based form [6], providing a uniffeamework for analysis and implementation [8P]}415], [26], [27].
From an estimation point of view, the problem ofim@al noise filtering for stochastic linear systeh@s many solutions
[14], [22]. For nonlinear systems, a general framdwdoes notexist, although numerical or suboptimal solutions a
available [1], [16], [20]. Typically, the observdesign problem is solvable ifthe system model can be transformed into a
canonical form that may be a hard assumption isfgah many applications [4], [17].

Usually various linear approximations are usedptingize the fault detection performance of a nadinobserver. In
this paper, a formal approach is developed forineal fault detection observer design, togethen wiprocedure for pa-
rameter tuning. For the latter, the design is maaer monotonicity assumption [23] for the estimatérror dynamic. In
this case, using an appropriate linear parametstinga(LPV) transformation [21], [5], [13], the dgs of minorant and
majorant monotone linear systems is possible, wlogsions form an envelope for the original systeajectories. Solv-
ing an optimization problem for the minorant andarant systems (the solution is straightforward tlugéheir linearity), it
is possible to obtain a suboptimal solution for dhiginal nonlinear system. This solution couldtbe locally optimal one
when the system solutions converge to the minayantajorant flows. The optimization problem is fafiated in the pres-
ence of uncertain parameters and disturbancesgd#leis to maximize robustness with respect taudistnces and sensi-
tivity with respect to faults.

In some applications the faulty signal is knowrb&dong to a specific class of signals. Sacpriori available informa-
tion simplifies the process of searching the sohytsince specific techniques can be used for ¢éisggd of observer gains.
For example, the early and robust detection of l@soiy Failure Case (OFC) in aircraft control sué servo-loops is an

important practical problem [11]. An OFC is a hamaofunction of time with unknown frequency and nokvn amplitude
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that can be propagated through the control lodapeacontrol surface and could produce unacceptthletural loads and
vibrations [11], [2]. The research work presentethis paper is originally motivated by the abopelaation.
In this work we will consider the following modefl @ nonlinear system:

X=AXx+GF(Hx,u +f ,0)+Sv, y =Cx +d, 1)
wherexOR", uOR™, yORP are the system state, input and outpfiRY, d ORP are the state and the output distur-

bances;f OR™ is the faulty signal (unknown portion of the inpud RY is the vector of unknown parameters; the matri-

cesA, G, H, S, C are known and constant having appropriate dimessitne functionF : R'*™*4 _, RY is continu-
ously differentiable. The matrice and H are introduced to take into account more accwréke influence of nonlin-
earity on the system behavior. For simplicity oégentation, the signdl is considered to act on the control signal as-addi
tive disturbance. However the approach can be egppdi multiplicative faults also. Assume that aput signalsu, f, v

andd are (Lebesgue) measurable and essentially bouhded,

I [l esssup, It (¥teo.

The objective is to design an observer for (1) gishe available noisy measuremegtsand the inputu, and ensuring

robustness with respect to the paramefriand the signal/, d uncertainties. Moreover, for fault detection itégjuired to
find the observer gains maximizing sensitivity loé toutput estimation error with respectftoand robustness with respect
to v andd.

Note that, if the fault detection problem is noirterest, therf can be considered as an additional unknown input.

Two solutions of this problem are presented beldowe is based on LMIs verification (Section 4), &eotutilizes the
monotone systems routine for analysis and optiaizgSection 5).

The proposed routine for observer gains optimizatimnages the design trade-off in terms of robsstaad perform-
ance. The choice of the observer gains plays adeyin the overall observer design and a generahdlized methodology
is required for their selection. Typically, the ebger design approaches guarantee the estimationstability and without
such a procedure, the observer could behave vamypand the fault detection specifications willthe satisfied. An im-
portant contribution of this paper is to includestproblem as an integral part for design nonlirfealt detection observers.

The paper is organized as follows. Preliminariesgaven in Section 2. The observer equations dredaced in Section
3. Stability conditions based on LMis are presente&ection 4 (the optimization possibilities ofsttapproach are also
discussed). An alternative approach for the obsestadility analysis and the new optimization teghe are given in Sec-
tion 5. In Section 6 the overall approach is iltastd through its application to oscillatory fadudetection in aircraft con-

trol surface servo-loops.

[I. PRELIMINARIES
This section introduces some basic notions aboubtone systems and LPV representation of nonlitiesri
A. LPV representation of nonlinear functions

For any two vectorp andp’ of the same dimension defindp,p’) ={Ap +(1 -A)p’,0< A <1} (the line connecting the

points p and p'). Since the vector valued functidh in (1) is continuously differentiable, then acdagito the Mean



Value Theorem, for anyh,h'OHX , u,u'O0UOF, 6,000Q there existn'j1 OL(h,h"), mjOLu,uY, n? 0L(e,0’),

j =1,g such that
F(h,u,0)-Fh'u',0)=A, h—-h)+A,U-u)+A,0-6"),

. 0FEv0)

_OFGEv,0) A =2FiGva) L
X | aé )

Y o uj ™ . 1=19,

e=n; o= g=n; &= v=n g=1y] &=n},v=n,q=n;

where the symbold, ;, A, ;, Ag; denote th¢-th row of the corresponding matrix.

The application of this technique givesexactequivalent LPV representation of a nonlinear fiorctlt is not a lineari-
zation around a single point (or around a trajgdteince the above expression is an equality. TR¥ bpproach allows us

to transform nonlinear models to linear ones degndn unknown parameters, , A, and Ag. Therefore, the complex-
ity of the nonlinear model (1) can be replaced witharged parametric uncertainty of a linear ortés Tool will be applied
in the next section to analyze the estimation edgoramics of the observer.

B. Monotone system theory

The system

x=f(t,x), xOX,t=20

with the solutionx(t,x, ) for the initial conditionx(0) = x, is calledmonotoneif x; <&, = X(t,Xy )< x(t,&,) for all
t=0 [23] (for the vectorsxg, &y the inequalityx, <&, is understood elementwise). The system is caltexperativeif

0 fi(t,x)/0x; 20 forall 1<i#j<n, tOR andxOX [23]. Cooperative systems form a subclass of nam®bnes. A
matrix A with dimensionnxn is called Metzler ifA ; 20 for all 1<i # j <n. Note that for the cooperative stable sys-

tem (the matrixA is Metzler and Hurwitz)
§(t)= Agt)+r(t), sOR", rOR", t=0
the propertiess(0)=>0, r(t)=0 for all t=0 imply s(t)=0 for t=0 and, converselys(0)< 0, r(t)<0 forall t=0

ensuress(t) <0 for t=0.

[ll. ROBUST OBSERVER EQUATIONS
This section is based on the following assumption.
Assumption 1 Letthe compact setX OR", UOR™, FOR™, VORY, DORP and QORY be given
such that for almost alt = 0:
xOOX, u®)OU, fOOF, v)OV, dt)OD and00Q. m
Such constraints are rather common in nonlineaemes design theory stating that the system (1)dmasided inputs
and the state, and the admissible bounds on thensygajectories and inputs are known.

Consider the following Luenberger type observer(fgr

z=7(z,y,u)=Az+GF[Hz+L,(y -Cz),u+ 5
+Ly(/ ~C2),0% 4Ly ~C2)] +L {y ~C2), @)



where zOR" is an estimate of the statg L, , i =1,4 are the observer gains to be desigriéd] Q is a supporting fixed
value for the vector of unknown parameters. Inti2) output injection term is introduced for all angents of the nonlinear
function F. The gainL, is standard, it is used to ensure stability ofghee linear part of the estimation errer x- z
dynamics. The gairL , has been proposed in [3] in order to improve rutess abilities of (2) and to relax restrictiveness
of the LMIs used for the observer design. The gaigs L , have been introduced in [2] to improve robustridbe sys-

tem with respect tosr, d, 6 and sensitivity with respect tb. These gains have to be assigned to guarantde fiod a
trade-off) the system stability and performancesatisfy the required estimation and fault detecipecifications.
To apply the LPV technique below, the observerh@j to be equipped with a projection algorithm enguthat z(t)
belongs to the seX forall t=0:
z=projy{Zzy, u}, ®)
the equations of the projection algorithm can henébin [19] (smooth projection).
From (1), (2) the estimation errer dynamics can be given by:

e= Ax+GF(Hx,u+f,0)+Sv- Az- GHHz+

+L,(y ~Cz).u +L 3 ~Cz),0*+L 4y ~C2)] -

-L,(y -Cz)=(A-LLCe-Ld +Sv +

+G{HHx,u +f, ) —-HHz +L (y -C2),u +

+L3(y —C2),0™ +L ,(y -C2)]}.
Under Assumption 1 witte 01 X due to (3), and applying the LPV transformatiornthnd we can show that there exist
some mapsA, iR - R%' A iR - R¥™, Ag:R - R9*9 such that for alt = 0

F(Hx,u +f,0)-F[Hz +L,(y —Cz),u +L 3y -Cz),0* +
+L, —C2)] =AMI(H-L Le -L d] +
+A,()[f -LLe-Ld]+Aqy()[0-6* -L Ce-L d.

The exact values of the matrix functiong(t) , A,(t), Ag(t) are unknown, but the set of admissible values@n (the
values of the functiorF gradientonX', U, F, V, D and Q O RY), i.e. there are the known sets of matridgs Y,,,
Yy such that for alk > 0:

AMDY,, A,OOY,, Ag®)DYy.

Having enabled the projection algorithm (3), we oaw apply a LPV transformation to the equatiorestimation error

dynamics:
e={(A-LO) +GA()(H-LL) -A[(JLL -
“Ag(OLLle{ L +G AfJLo+A() L g+ (4)
+Ag(H)L ) +Sv+G ALY T +A¢ Y[ 0 -0}
The signalCe(t) is available for measurements and can be usegd$atual generation in fault detection.
Remark. As we can conclude from (4), the influeatthe measurement noigk on Ce is hard to attenuate since the
multiplicative gain for this input is proportiont the sum of allL; , i =1,4. However, robustness with respect to the in-

puts v, f and the parametric mismat¢h-0* can be augmented by a proper choice of the gajns =1,4 (the same

with the sensitivity with respect tb). o



In the following sections two techniques are préserior stability analysis of (4) and performanegiovement of (2),

(3) as well.

V. LMI BASED STABILITY CONDITIONS
Denote the identity matrix with dimensiamx n by |,,, and state the symbols,,(P), A, (P) for the maximal and

minimal eigenvalues of a square matkx

A. Stability conditions

Theorem 1 Assume that
1. Assumption 1 is satisfied.

2. There exist matrice8V, , W,, Wy such that
LAJA, =~ AW, WA —a ) (<0, TAJA, ~AW, =W (A ,—a | ;<O, TeAgAg — AWy —~WgAg —agly <0

forall A, 0Y,, A,0Y,, AgOY, andsome realt,, 1,, Tg, O,, O, Og.

3. ThegainsL,, i =1,4 for someP = P" >0 admit the matrix inequality
(A-LC)'P+P(A-LC) PG PG PG z -HLL)W, {¢)W,] G )W,
v G'P 0 0 0| | WH-LEL) g 0 0
G'P 0 0 0] “WLE 0 Uy U
-G'P 0O 0 O WL £ 0 0 g
where

Z=-vl,-a,H-LE)H 1G)-
—a,(LL) L L) -l €)TC G )

Then in (1)—(3) for allt =0 we have

le(t) < k{] €0) |e 02 = PY 4+ 471 (x, |Id |
SISl IIF TAg 0-0 %]},

K=\ re(P) A inP) s Ag = MaX, oy, A A5G T PPGA ),

Ag =Max, gy ov,a,0v, Amax (L 11GIAL 5+
+ALg+AgL ITPRL +G AL, +A L 5+ AgLTY),

Ay =Anax(STPPY, A =max, oy Apax ALGTPPGA, ).
Proof. The projection algorithm ensures the trajges boundedness in the larggt) 0 X for all t =0), let us ana-
lyze the error dynamics (4) into the s¥t using the Lyapunov functiol/ (€) = €' Pe:

V=e[(A-LC)"P+P(A-LLC)le+2e" K GA(D(H -
“LL)-AMLL -Ag()L Lhe—2€"R L+

+G[A ()L, + A (DL 3+ Ag(H)L J}d +2e"PSv+

+2e" PG{A,()f + Ag(t)[0 — 6]},

For p(t,e) =[e A, (t)(H-L Ll A,(t)LLe Ag(t)L pe]T , applying some algebra we get:



V=p(te) Yp(te)-
—2e" L+ GA(DL, +A (DL g+ Ag(DL J}d +
+2e" PSv+2€ PGA,(D)f +Ag(t)[0 — 64}
Using the matrix inequality fol¥ introduced in the theorem we obtain:
p(t,€)" Yp(t,e)< € {-v I, +(H-L,0) T,A(DAD
~ALOW, ~W A, -a ) JH-L L)+
+(LL)ITAIOA D) ~ALOW,~W A (1) -
—0yl gL £) +L £)[TeAs(DAg(H) —Ag()We -
~Wg Ag () =0l g 1L £)le.

Substitution of the inequalities fov, , W, , W, gives:

p(t,©)" Yp(t,e)<s -ve e

then
Vs-ve'e-2d R+ GA (YL, +A (DL 4+
+Ag()L,J}d +2e"PSv+2 € PGA(D T +
+Ag(D[0 -0} <0.5ve e+8v (A, d d+
+AS S+ f+A[0-0] T0-6]).
That provides the estimate on the ereobehavior and terminates the proof. [

Comment. The condition on existence of the matridgs, qL{x u & looks like hard to satisfy, however it can be

easily fulfilled under certain structural restrasts imposed orf-. For example, this condition is always true #; =0

and somet,, o, such thatr,AjA,<a

qr BAgAgsad g, ai{xu@ (introduction of W, #0 may relax the conservatism of LMI).

Additionally, the conditions foW,, qU{x u @& have the form of Lyapunov inequalities and foeinal setsY, they

solutions can be obtained by a conventional LMIebasoutine. Next, if for allF;, j =1,g the partial derivatives are sign
definite elementwise, then it is possible to fiodne W, such that for alA, DY, the inequalities are true:

AqWq+W4A420, q0{x u &, ®)
then the condition of Theorem 1 holds foy =a, =0 (if the inequalities (5) are strict, them, =0 only), in these cases
the theorem conditions are reduced to LMI checking. o

B. Performance optimization

The estimate derived in Theorem 1 gives some bintpossible performance optimization for the obse(2). For ex-

ample, minimization of the value /v improves overall accuracy of estimation. The valye,(P) regulates the rate of
the system convergence. Additional minimizatiornthef valuesA,,, Ay and A4 allows us to increase robustness margins of
the estimation error dynamics with respect to gpoading variables. Simultaneous maximization efwhlue) ; ensures

improvement of the sensitivity with respectfto The obtained expressions for these coefficiendicate that their parallel

optimization is not possible and a trade-off habddound. Since such optimization is based onpgeuestimate tuning, it



does not provide an optimal solution (the convérgas about a suboptimal one).

The above discussion on the coefficiehis Ay, A; ., Ay optimization reveals that it is rather hard toimfte robust-

ness of the system with respect to all variablesd , d with simultaneous improvement of sensitivity wittspect to the
faults f . Additionally, such an adjustment needs applicatibthe nonlinear optimization routine. In theldoling section

we will focus our attention on particular cases(rstness with respect 0 or sensitivity to harmonic signafs).

V. MONOTONE SYSTEM APPROACH

Another approach for stability analysis and perfamnge optimization is based on the system (4) réatutd linear majo-
rant and minorant systems usimgnotonesystem techniques, with posterior solution ofdpémization problem for these

linear simplified systems. To apply the monotongtems theory, rewrite the equation (4):
e= A(t) e+ wt), (6)
where
A =(A-LL)G[AMH-L L) -A (L L -Ag(L £],

w(t) =L +GIAL) L, +A YL+ A(JL 1} +
+Sv(t) + GIA(DF(D) +Ag(O[ 0 -6}

Under Assumption 1 the signal is bounded |(w |k + ) as well as the matrix function of timé .
Assumption 2LetforallA,0Y,, A,0Y,, Ag OY, the matrix
(A-LL)+G[A(H-L L) -ALL -AlL £]
be Metzler, all non-zero elements®@fhave the same sign o

Assumption 2 means that the system (6) is moncaoidewe can apply the above mentioned theory to #meilysis and

optimization. This assumption can be relaxed assgrakistence of a linear transformatierns X¢, such that in the new
coordinatese the matrix X A(t)X is Metzler for all A OY,, A, 0OY,, AgOYy. This relaxation is technical and
skipped here for brevity of presentation. The ma@i satisfies this assumption in a conventional c@se[l 0...0], thus
this condition is also a question of coordinat@sfarmation.
A. Stability conditions
Theorem 2Letassumptions 1 and 2 holcet the gainsl;, i = 1,4 be chosen to satisfy the elementwise constraint
(A-LL)+G[A(H-LL)-AL L -AlL £]<A
forall A, OY,, A,0Y,, Ag OYy, where
A=(A-LL)+G[A,(H-LL)-ALL-AL L]
is Metzler and Hurwitz for some matricas , k0{x u & . Then in (1), (2) the estimation errar stays bounded for all

t=0.

Proof. Introduce the following auxiliary dynamiclstems (they will be used for analysis purposég:on

g =Ad +W(t), rO{m M}, (7)



—o0 <WM(t) s w(t) swM(t) < +oo, wM(t) <0< wM(t)
for all t=0, wheree’ OR", r O{m M} and the initial conditions are™(0) < g0)< & (0), €™(0)< 0< €" (0) (all vec-
tor inequalities are understood elementwise). Stheematrix A is Hurwitz and||w" |K+o, r O{m M} the variables
e, r0{m M} are bounded for alt =0. Moreover,eV (t)>0, e™(t)<0 for all t=0 for Metzler matrix A and sign
definite initial conditions and input signa¥s’ , r O{m M} . Define two relative errors™ =e" - e ande™ =e- €", then

M = AeM - At)e+ wM (t) - w(t) =
=At)e" +[A-AM]e™ +[w"() —w()],

gM=A(t)e- Ae™+ w(t) - w"(t) =
=A™ +[A(t) ~Ale™+[W() —w D]

By Assumption 2 the matrixA(t) is Metzler for all t=0 and the signals[A -A(t)]e™ +[wM(t) —w(1)] ,
[A(t) —-Ale™ +[w() —w"(©)] are elementwise positive for al>0, therefore the variables" (t), £™(t) are also posi-
tive for all t =0 sincee™ (0)= 0, £™(0)= 0. Indeed, if there exists a coordinag(t) , iD{l,_n} , rO0{m M} approaching
zero for somet>0, then necessarilj¢{ (t) =0 from the conditions above, that prevents changehef sign. Thus
e™(t) < t) < €' (t) for all t =0 due to positivity ofe" (t) , €™(t), that impliese boundedness. "

It follows from Theorem 2, that under the monotdyidssumption 2 the matrix inequalities from Theor 1 can be re-

placed with some simple additive linear matrix d¢oaists. The projection algorithm (3) becomes rethmt in this case.
B. Performance optimization

To formulate the optimization criteria we need tokowing definitions. Lety: R, - R, be the stability margin gain
(that is a nonlinear counterpart bff, gain [24]) for the estimation erra@ with respect to the input, i.e.
lim,_ .o [et) [< y(l v ]
For any f(t) =sasin(t), €=[1...1] OR™ and somea >0, w>0 let v: R? _ R, be the output frequency response
map for (1), (2) (see [18] for such function detfiom for the class of convergent systems, for genesse such type of
maps can be introduced using the theory of Caualnsagnd asymptotic amplitudes [25]), i.e.
lim,_ ., | Ce(t) [gv(a,w).
Corollary 1.Letall conditions of Theorem 2 hold, then
VAV IDS ATS IV, v(0,0) < o ma gy W' @)
where
§, =1 I.i=1n, j=1v;W'(9=C(,s-A)G",
G" =max{sup, oy GA, ~ inf, ;v GA,}, G™=-G".
Proof. The systems (7) determine the asymptoti@bieh for (1), (2) (the estimation accuracy bounasy the limit

quality of transients. These upper and lower boucals be exact in the cases whéft) — A and w(t) - w'(t),



r O0{m M} . The systems (7) are linear, their robustnesssanditivity analysis is simple and numerically tedte. For a
linear system (due to the superposition princifiejesponse to different inputs can be analyzddpendently.

The inputw depends orv in linear fashion with the constant ga® then in the signalsy’ , r O{m M} this term can

be taken into account & V(t), Wheresﬂ =-1$; |, S'j’j' =18 V=l i =1,n, j=1v. For linear systems
e = Ad + $\(t), rO{m M}
we have thatim, _ ., | €' (t) [<|A™'S [|[v [ [A'S ||V . Therefore,y(|v )< A7S ||V , S=S".

The harmonic inpuf influence on the signals/", r O{m M} can be evaluated using the te@if (t), r O{m M} ,
where GM =max{sup, (. GA, ~ inf ;. GA,}, G™=-GM; f(t)=a|sin@t)|, k=1m. Then the following equations
can be analyzed:

g =Ad + G {(t), rO{m M} .
According to Assumption 2 the matri@ has all elements with the same sign, thus

ce™(t) < Cet) < Cé'(t)

for all t=0 with positive elements o€ , the reverse sign inequalities are satisfied lierriegative elements & . There-
fore in the system (1), (2), the outp@t response on the harmonic fault indutcan be estimated using the standard Bode
magnitude plot:

V(0 W) S 0mMax gy W' (),

W' (9=C(l,sA)'G", rO{m M} . .
This approach provides clear guidelines for thefgserance optimization: minimization of the norrtn&‘lsr l,

rO{m M} leads to robustness improvement, maximizatiornefgain|W" (iw) |, r O{m M} enhances the system sensi-
tivity with respect to harmonic componentsfinwith the frequencyw. In some cases an analytical solution can be édai
for minimization/maximization of| Al | and [W' (iw) ], r O{m M} . However, Assumption 2 could be rather restric-

tive: first, it may fail in some applications, sech even being verified the system with non monetdynamics may have

better performance.

VI. NUMERICAL EXAMPLE: OSCILLATORY FAILURE CASE

In this section the ideas presented in this papeillastrated through analytical design of a hanindDFC detector in the
Electronic Flight Control System [11]. OFC couldué in unacceptable high loads and vibrationsigalerly if they reso-
nate at a frequency critical for the aircraft stame [11]. For example, an OFC occurring on anrailecreates inertial mo-
ment and aerodynamic forces (hinge moment). Dubdaontrol surface oscillation, vibrations appearthe wing leading
to the its bending and thus loads are generatedqudckly on the wing and then on the whole aircr@he capability to
detect OFC, robustly and as fast as possible,rig imgortant because it has an impact on the strattiesign of the air-
craft. In this paper only failures located in the consetvo-loop of the moving surfaces is considered. [@abitually, such

type of failure generates spurious sinusoidal $gyfraainly due to electronic components) propaggtimough the control



servo-loop, leading to control surface oscillati@ee Fig. 1, where the structural scheme of seyop-is shown). The
faulty components may be located inside the fliginitrol computer, the analogue inputs/outputs,pibgition sensors or
the actuators. The flight control computer may asoerate unwanted oscillations of the commandeotigent to the ac-
tuator servo-valve. The fault signals are considdoebe sinusoidal with amplitude and frequencyfarmily distributed

over the range 1-10 Hz (above 10 Hz, the failuserwsignificant effects because of the low-passraaf the actuator).
The detection time is expressed in period numhleus, depending on the failure frequency, the timenissible for detec-

tion is varying.

P
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Flight Control
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Hydraulic ~ Ses

Fig. 1. Structural scheme of the actuator sereg-lo

The following actuator model is considered [11]:
X®) =o[y; (9 - () + Y+ I+ ¥}, ®)
ye(®=We (B[ XY— @3- ()], y(t) =x()+d(,
where x[OR is the actuator rod positiom, 1R is the control signaly R is the available measurement outptif IR is

the sinusoidal faulty andd are the disturbances as befoyg; is the output of a filterp is stated for the time differentia-
tion operator,W; (p) is the filter transfer function. The functiap and its derivative are given in Fig. 2, for sirofli of
presentation a high pass filter is consideredimwork: W; (p) =-Tp/ ( Tp+1), T =10.

The model (8) can be presented in the form (1péhicing the following functions and matrices:

it ey 2 rour]H)

M -1 a7
s<lo] - w=[3] -ela]-
Assume that the sets required in Assumption 1 aengSince the system (8) has one nonlinearity @hle condition

(5) is satisfied), after some transformations theesver (2) can be presented as follows:
a=0(0[e- &+ f-(L+ LJ(g+ o - L{ e Y+ , (9a)
&=T'a- f-@-(lp- T" (g ¥, (9b)

where A=¢'(n") and according to Fig. D<A(t) < $ax =18.11for all t=0. For the matrixP =1, the estimate from
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Theorem 1 on the error dynamics takes form:

le(t) I<|e(0) [T + 2/ 2[[¢,0 + 41T |If I
IV I+ (Lyg + e Lot L3 +2(L1o=TLI) Id 1]

Thus the gain beforfd || is the only one available for optimization usihg bbserver gains tuning.

104%®

20 -10 0 10 20

Fig. 2. The actuator nonlinearity.
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Fig. 3. Performance functional values.

To apply Theorem 2 note that the system (9) is rtwraus whileT 2(1- L) 2 Ly,. Under this constraint

A = ["—11_(1‘F L, +L)A() A(t)}

T (L -Thy  -T1

is a Metzler matrix for an® < A(t) < ¢,,,.- Then

A= Ly 0] max
= 1 1
T (le T L3) T
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an=| P o <t

and A is Metzler. The matrixA is Hurwitz under proper choice of the gaibg, L,, L;. The analytical formulas for

gains to be optimized are as follows:
|'&_1§ |:V(M1'M2)=\/1+M§ /lMl_q)ma)M 2 "
WM (i00) [= B0, My M2 )= O o 4+ T2 /D60, M1 M ),

IW™ (i00) |= § e T2 / D@, My, M),

D0 My, M) = o 1+ MiT Y2 + (M= Tw? = ¢ oM )2
whereM; =L;; and M, =1- LT + L; are new tuning parameters. Note that
maXqmwy W' @) F MW" @)$B @M, M, .
The values ofy(M;,M,) and B(w, M;,M,) could be optimized numerically for new set of @laparametersvi;, M,

taking in mind stability of the matri¥A and the monotonicity constraimdl, > 0. The following functional has been cho-

sen for minimization:

J(Mg, My) = Ky(My, M) + (1-K) /Z“DQ' Bw.My,My),
where Q; ={1,2,3,4,5,7} is the set of the fault most important frequesdigat could happer)<k <1 is a weighting

parameter. The contour plot of this functional fo= 0.3 is shown in Fig. 3, where the left low uncolorestrer corre-

sponds to the cases with unstable ma&ix The following values of the observer gains previde minimum of this func-

tional:

L,=12, L,=0.1, L, =1, L, =0.08.

0.1
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Fig. 4. Behavior of the output residual.

12



0 100 200 300 400 500 t

Fig. 5. The output residual in the ADDSAFE benchHma

These gains form a suboptimal solution in the sefishe observer (2) response optimization. An gXanof the residual

signal g obtained for these observer gains is shown in&iwhere for simulation it was used
u=sin(t)+ sin(0.2  cos(®, v(t) =sin(1Q),

o :[g.gsitnfffl)(?i’f t> 10
For nonlinear systems any type of optimization omplex issue, even choice of an optimizing fuorei correspond-
ing to the posed performance goal is a hard problerthis example, for instance, application of dtem 1 does not pro-
vide a hint how to evaluate the output estimationresensitivity with respect to harmonic faulthelTheorem 2 provides
us with a performance functional in a systematig,waat is a big advantage of the presented apprddus technique has
been successfully verified on the OFC detectiorblem in the European FP7 ADDSAFE project, the tesithis algo-
rithm operation in the ADDSAFE benchmark is showirig. 5.

VIl. CONCLUSION

The problem of nonlinear observer design for faletection with optimized performance is studieds lassumed that
the plant model contains unknown parameters aigsitibjected by external disturbances and faults& @pproaches for
observer design are presented. The first one isdbas solution of LMIs, its novelty consists inrdduction of additional
observer gains in the conventional routine for Ubélsed observer design. The additional observesgaay be used for
performance optimization. The second method usasotoaicity assumption on the estimation error dyieamit intro-
duces a new tool to design nonlinear observersadvantage of the second approach is that it giv@siple technique to
tune the observer gains in order to optimize thut fdetection performance and robustness. Effigiesfahe proposed ap-

proach is demonstrated through the oscillatoryfaitase in aircraft control surface servo-loops.
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