G. Aneiros-perez and P. Vieu, Semi-functional partial linear regression, Statistics & Probability Letters, vol.76, issue.11, pp.1102-1110, 2006.
DOI : 10.1016/j.spl.2005.12.007

C. Borggaard and H. H. Thodberg, Optimal minimal neural interpretation of spectra, Analytical Chemistry, vol.64, issue.5, pp.545-551
DOI : 10.1021/ac00029a018

D. Bosq, Linear Processes in Function Spaces: Theory and Applications Lecture Notes in Statistics 149, 2000.
DOI : 10.1007/978-1-4612-1154-9

F. Burba, F. Ferraty, and P. Vieu, -Nearest Neighbour method in functional nonparametric regression, Journal of Nonparametric Statistics, vol.1, issue.4, pp.453-469, 2009.
DOI : 10.1214/aos/1176345969

URL : https://hal.archives-ouvertes.fr/hal-01337539

R. Cao, Rate of convergencefor the wild bootstrap in nonparametric regression Annals Statist, pp.2226-2231, 1991.

H. Cardot, F. Ferraty, A. Mas, and P. Sarda, Testing Hypothesys in the Functional Linear Model Scandinavian Journal of, Statistics, vol.30, pp.241-255, 2003.

H. Cardot, A. Goia, and P. Sarda, Testing for No Effect in Functional Linear Regression Models, Some Computational Approaches, Communications in Statistics - Simulation and Computation, vol.13, issue.1, pp.179-199, 2004.
DOI : 10.2307/2289535

S. X. Chen and I. Van-keilegom, A goodness-of-fit test for parametric and semi-parametric models in multiresponse regression, Bernoulli, vol.15, issue.4, pp.955-976, 2009.
DOI : 10.3150/09-BEJ208

C. Crambes, A. Kneip, and P. Sarda, Smoothing splines estimators for functional linear regression, The Annals of Statistics, vol.37, issue.1, pp.35-72, 2009.
DOI : 10.1214/07-AOS563

URL : https://hal.archives-ouvertes.fr/hal-00627068

A. Cuevas and R. Fraiman, On the bootstrap methodology for functional data. (English summary) COMPSTAT 2004?Proceedings in Computational Statistics, pp.127-135, 2004.

A. Cuevas, M. Febrero, and R. Fraiman, On the use of the bootstrap for estimating functions with functional data, Computational Statistics & Data Analysis, vol.51, issue.2, pp.1063-1074, 2006.
DOI : 10.1016/j.csda.2005.10.012

S. Dabo-niang, F. Ferraty, and P. Vieu, Mode estimation for functional random variable and its application for curves classification, Far East J. Theor. Stat, vol.18, issue.1, pp.93-119, 2006.

M. Davidian, X. Lin, W. , and J. , Introduction [Emerging issues in longitudinal and functional data analysis], Statist. Sinica, vol.14, issue.3, pp.613-614, 2004.

L. Delsol, Régression sur variable fonctionnelle: Estimation, Tests de structure et Applications, 2008.

L. Delsol, F. Ferraty, and P. Vieu, Structural test in regression on functional variables, Journal of Multivariate Analysis, vol.102, issue.3, pp.422-447, 2011.
DOI : 10.1016/j.jmva.2010.10.003

URL : https://hal.archives-ouvertes.fr/hal-00630999

B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, vol.7, issue.1, pp.1-26, 1979.
DOI : 10.1214/aos/1176344552

F. Ferraty, Editorial to the special issue Statistical Methods and Problems in Infinite-dimensional Spaces Journal of Multivariate Analysis, pp.305-306, 2010.

F. Ferraty, A. Laksaci, and P. Vieu, Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models, Statistical Inference for Stochastic Processes, vol.41, issue.1, pp.47-76, 2006.
DOI : 10.1007/s11203-004-3561-3

F. Ferraty, A. Mas, and P. Vieu, Advances on nonparametric regression for fonctionnal data, ANZ Journal of Statistics, vol.49, pp.267-286, 2007.

F. Ferraty, R. , and Y. , The Oxford handbook of functional data analysis, 2011.

F. Ferraty, I. Van-keilegom, and P. Vieu, On the validity of the bootstrap in nonparametric functionl regression. Scand, J. Stat, vol.37, pp.286-306, 2010.

F. Ferraty and P. Vieu, Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés Compte Rendus de l, Académie des Sciences Paris, vol.330, pp.403-406, 2000.

F. Ferraty and P. Vieu, The functional nonparametric model and application to spectrometric data, Computational Statistics, vol.17, issue.4, pp.545-564, 2002.
DOI : 10.1007/s001800200126

F. Ferraty and P. Vieu, Nonparametric modelling for functional data, 2006.

F. Ferraty and P. Vieu, Additive prediction and boosting for functional data, Computational Statistics & Data Analysis, vol.53, issue.4, pp.1400-1413, 2009.
DOI : 10.1016/j.csda.2008.11.023

URL : https://hal.archives-ouvertes.fr/hal-00628614

F. Ferraty, P. Vieu, and S. Viguier-pla, Factor-based comparison of groups of curves, Computational Statistics & Data Analysis, vol.51, issue.10, pp.4903-4910, 2007.
DOI : 10.1016/j.csda.2006.10.001

URL : https://hal.archives-ouvertes.fr/hal-00635689

L. Ferré and N. Villa, Multilayer Perceptron with Functional Inputs: an Inverse Regression Approach, Scandinavian Journal of Statistics, vol.1, issue.4, pp.807-823, 2006.
DOI : 10.1214/aos/1032526955

L. Ferré and A. Yao, Smoothed functional inverse regression, Statist. Sinica, vol.15, issue.3, pp.665-683, 2005.

D. Gadiaga and R. Ignaccolo, Test of no-effect hypothesis by nonparametric regression, Afr. Stat. 1, issue.1, pp.67-76, 2005.

W. González-manteiga, M. D. Martinez-miranda, P. Gonzalez, and A. , The choice of smoothing parameter in nonparametric regression through Wild Bootstrap, Computational Statistics & Data Analysis, vol.47, issue.3, pp.487-515, 2004.
DOI : 10.1016/j.csda.2003.12.007

W. Gonzalez-manteiga, A. Quintela-del-río, and P. Vieu, A note on variable selection in nonparametric regression with dependent data, Statistics & Probability Letters, vol.57, issue.3, pp.259-268, 2002.
DOI : 10.1016/S0167-7152(02)00056-1

G. Manteiga, W. Vieu, and P. , Statistics for Functional Data, Computational Statistics & Data Analysis, vol.51, issue.10, pp.4788-4792, 2007.
DOI : 10.1016/j.csda.2006.10.017

URL : https://hal.archives-ouvertes.fr/hal-00795618

P. Hall, Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems, Journal of Multivariate Analysis, vol.32, issue.2, pp.177-203, 1990.
DOI : 10.1016/0047-259X(90)90080-2

P. Hall, On Bootstrap Confidence Intervals in Nonparametric Regression, The Annals of Statistics, vol.20, issue.2, pp.695-711, 1992.
DOI : 10.1214/aos/1176348652

P. Hall and J. Hart, Bootstrap Test for Difference between Means in Nonparametric Regression, Journal of the American Statistical Association, vol.48, issue.412, pp.1039-1049, 1990.
DOI : 10.1214/aos/1176346788

W. Härdle and E. Mammen, Comparing Nonparametric Versus Parametric Regression Fits, The Annals of Statistics, vol.21, issue.4, pp.1926-1947, 1993.
DOI : 10.1214/aos/1176349403

W. Härdle and J. S. Marron, Semiparametric Comparison of Regression Curves, The Annals of Statistics, vol.18, issue.1, pp.63-89, 1990.
DOI : 10.1214/aos/1176347493

N. Hernandez, R. J. Biscay, and I. Talavera, Support Vector Regression Methods for Functional Data, Lecture Notes Comput. Sci, vol.4756, pp.564-573, 2008.
DOI : 10.1007/978-3-540-76725-1_59

G. James and B. W. Silverman, Functional Adaptive Model Estimation, Journal of the American Statistical Association, vol.100, issue.470, pp.565-576, 2005.
DOI : 10.1198/016214504000001556

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.164.4045

T. Laloë, A k-nearest neighbor approach for functional regression, Statistics & Probability Letters, vol.78, issue.10, pp.1189-1193, 2007.
DOI : 10.1016/j.spl.2007.11.014

R. Leardi, Nature-inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks, 2003.

S. E. Leurgans, R. A. Moyeed, and B. W. Silverman, Canonical correlation analysis when the data are curves, J. Roy. Statist. Soc. Ser. B, vol.55, issue.3, pp.725-740, 1993.

E. Mammen, Bootstrap and Wild Bootstrap for High Dimensional Linear Models, The Annals of Statistics, vol.21, issue.1, pp.255-285, 1993.
DOI : 10.1214/aos/1176349025

A. Mas and B. Pumo, Functional linear regression with derivatives, Journal of Nonparametric Statistics, vol.23, issue.1, 2007.
DOI : 10.1007/s001800200126

URL : https://hal.archives-ouvertes.fr/hal-00104298

H. Müller and U. Stadtmüller, Generalized functional linear models, The Annals of Statistics, vol.33, issue.2, pp.774-805, 2005.
DOI : 10.1214/009053604000001156

J. Ramsay and C. Dalzell, Some tools for functional data analysis, J. R. Statist. Soc. B, vol.53, pp.539-572, 1991.

J. Ramsay and B. Silverman, Functional Data Analysis, 1997.

J. Ramsay and B. Silverman, Applied functional data analysis: Methods and case studies Spinger-Verlag, 2002.

J. Ramsay and B. Silverman, Functional Data Analysis (Second Edition) Spinger-Verlag, 2005.

W. Stute, W. Gonzalez-manteiga, P. Quindimil, and M. , Bootstrap Approximations in Model Checks for Regression, Journal of the American Statistical Association, vol.14, issue.441, pp.93-141, 1998.
DOI : 10.1080/01621459.1998.10474096

M. Valderrama, An overview to modelling functional data, Computational Statistics, vol.53, issue.2, pp.331-334, 2007.
DOI : 10.1007/s00180-007-0043-2