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Abstract

The robust transient stabilization problem (with stability proof) of a synchronous gen-
erator in an uncertain power network with transfer conductances is rigorously formulated
and solved. The generator angular speed and electrical power are required to be kept close,
when mechanical and electrical perturbations occur, to the synchronous speed and me-
chanical input power, respectively, while the generator terminal voltage is to be regulated,
when perturbations are removed, to its pre-fault reference constant value. A robust adap-
tive nonlinear feedback control algorithm is designed on the basis of a third order model
of the synchronous machine: only two system parameters (synchronous machine damping
and inertia constants) along with upper and lower bounds on the remaining uncertain
ones are supposed to be known. The conditions to be satisfied by the remote network
dynamics for guaranteeing L2 and L∞ robustness and asymptotic relative speed and volt-
age regulation to zero are weaker than those required by the single machine-infinite bus
approximation: dynamic interactions between the local deviations of the generator states
from the corresponding equilibrium values and the remote generators states are allowed.

Keywords. Robust nonlinear control, adaptive control, L2 and L∞ disturbance attenuation,
large-scale systems, power systems control.

1 Introduction

Power networks are among the most complex large-scale, interconnected nonlinear systems
(see [1], [2] for the development of dynamical models of increasing complexity). They have
continuously increased in size, power and number of components, but with a large acceleration
in the last two decades. A rather difficult control problem, which attracted in the past the
interest of the control community and has recently become a major concern as the dramatic
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blackouts in North America, Italy and Germany confirm, is represented by the power systems
transient stabilization: dynamic nonlinear systems interconnected through a large-scale net-
work are required to be controlled, on the basis of partial measurements of the local state
variables only, in spite of time varying perturbations of almost all system parameters. In par-
ticular, the transient stabilization problem consists in the design of suitable excitation feedback
controls such that: i) the angular speed and electrical power of each generator are kept close to
the synchronous speed and mechanical input power, respectively, when mechanical and elec-
trical perturbations, such as load shedding, generation tripping or short circuits, occur; ii) the
terminal voltage of each generator is regulated to its pre-fault reference constant value when
perturbations are removed. Decentralized linear controllers were first designed on the basis
of linear approximations around operating conditions. This strategy was motivated by the
fact that power systems were relatively small since production and consumption areas were
not far. However, this situation has largely changed in the last two decades since the small
power systems have been interconnected in order to increase performance and security: large
amounts of electric power fluxes are transmitted from one region to another to cope with time-
varying consumption and production levels. As a consequence, the overall system complexity
has largely increased and the behaviour of such scattered plants has become unpredictable with
disregarded nonlinear network phenomena arising: linear controllers may be no longer able to
guarantee the power grid stability (see [3]) and to handle the severe disturbances and contin-
gencies typically occurring in power networks. In the recent years, several nonlinear algorithms
have been proposed for power systems control. For a particular power systems structure M
consisting of a group of generators tied together by a strong network of transmission lines
and linked to a single generator gm by a comparatively weak set of tie lines, the well-known
single machine-infinite bus approximation, which models all the remaining network as a fixed
voltage source and an impedance, is advantageous in the nonlinear control design: transient
stabilization of the generator gm can be achieved, with a stability proof, even without requiring
the knowledge of critical parameters ([3], [4], [5], [6], [7], [8], [9], [10], [11], [12]). In particular,
L2 and L∞ robustness and asymptotic relative speed regulation to zero are guaranteed in [8]
despite uncertainties in all system parameters.
In this paper, we rigorously formulate and solve the transient stabilization problem (with
stability proof) for the particular power systems structure M above considered. The single
machine-infinite bus model, used in [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] - which neglects
the transient behaviour of the other generators as well as the interconnections between them,
does not capture the typical multivariable nature with nonlinear complex coupling of power
systems (see for instance the inter-area oscillations) and does not take into account the effect
of the generator gm dynamics on the remote nework dynamics - is not used since interactions
between the dynamics of the generator gm and the remote network machines are allowed: the
transient behaviour of the remote generators states is allowed to depend on the local deviations
of the generator states from the corresponding equilibrium values. Following the theoretical
developments in [13], [14], [15] (even though they do not apply to the model considered in this
paper in which an uncertain function multiplies the control input), a robust adaptive nonlinear
feedback control is designed for the generator gm which does not assume the knowledge of the
overall system parameters excepting for the machine damping and inertia constants. On the
basis of upper and lower bounds on the uncertain model parameters, L2 and L∞ robustness
and transient stabilization are guaranteed under a set of assumptions on the network dynamics
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which are weaker than those required by the single machine-infinite bus approximation. The
presented approach in conjunction with the special structure of power systems considered here
allows us to rigorously formulate and solve the robust transient stabilization problem (with L2

and L∞ robustness) of a synchronous generator in a power network in the presence of transfer
conductances and uncertainties in almost all system parameters under possible dynamic inter-
actions between the local deviations of the generator states from the corresponding equilibrium
values and the remote generators states: this constitutes the main original contribution of the
paper with respect to the results obtained in the literature for more general structures of power
systems (see for instance [9], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]). Simulation
results with reference to a general 3-machine, 9-buses power network show that the proposed
robust nonlinear excitation control prevents each network machine from going out of step in
the presence of electrical parameter perturbations and unmodelled dynamics and improves
the performance with respect to the controller in [8] based on the single machine-infinite bus
approximation.

2 System dynamic model

A power system consisting of n generators interconnected through a transmission network is
described by the 3n-order nonlinear models in [26], 1 ≤ i ≤ n,

δ̇i = ωi

ω̇i = −
Di

2Hi

ωi +
ω0

2Hi

Pmi −
ω0

2Hi

Pei (1)

Ė′
qi =

kci

T ′
d0i

ufi −
E′

qi

T ′
d0i

−
(xdi − x′

di)

T ′
d0i

Idi

in which the first two equations represent the i-th generator mechanical dynamics involving the
power angle δi(rad), the relative angular speed ωi(rad/s), the active electrical power Pei(p.u.),
the mechanical input power Pmi(p.u.), the synchronous speed ω0(rad/s), the damping constant
Di(p.u.) (which is an often neglected non-negative parameter) and the inertia constant Hi(s),
while the third equation constitutes the i-th generator electrical dynamics involving the tran-
sient EMF E′

qi(p.u.) in the quadrature axis, the input ufi(p.u.) to the thyristor amplifier, the
gain kci of the excitation amplifier, the direct axis transient open circuit time constant T ′

d0i(s),
the direct axis reactance xdi(p.u.) and the direct axis transient reactance x′

di(p.u.). The i-th
generator electrical equations are

Pei = E′2
qiGii + E′

qi

n
∑

j=1,j 6=i

[

E′
qjGij cos (δij) + E′

qjBij sin (δij)
]

= vdiIdi + vqiIqi

Qei = −E′2
qiBii + E′

qi

n
∑

j=1,j 6=i

[

E′
qjGij sin (δij) − E′

qjBij cos (δij)
]

− x′
di

(

I2
di + I2

qi

)

= vqiIdi − vdiIqi

Idi = −E′
qiBii +

n
∑

j=1,j 6=i

[

E′
qjGij sin (δij) − E′

qjBij cos (δij)
]

(2)
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Iqi = E′
qiGii +

n
∑

j=1,j 6=i

[

E′
qjGij cos (δij) + E′

qjBij sin (δij)
]

δij = δi − δj

Vti =

√

(

x′
diIqi

)2
+

(

E′
qi − x′

diIdi

)2
=

√

v2
di + v2

qi

in which (for the i-th generator): Qei(p.u.) is the reactive electrical power, Idi(p.u.) is the
direct axis current, Iqi(p.u.) is the quadrature axis current, Vti(p.u.) is the terminal voltage
with (d, q)-components (vdi, vqi), Gij(p.u.) and Bij(p.u.) are the i-th row and the j-th column
element of nodal conductance and susceptance matrices, respectively, at the internal nodes
after eliminating all physical buses, which depend on x′

di(p.u.), on the transformer reactance
xTi(p.u.), on the loads and on the transmission line reactance xij(p.u.) between the i-th
generator and the j-th generator. The nodal conductance and susceptance matrices represent
the full power network of transmission lines and loads connecting the power generators: the
network reduction of the load busses makes unsatisfactory the assumption of negligible transfer
conductances (see [19]), which is typically used in power systems control design.
The pre-fault equilibrium, 1 ≤ i ≤ n,

δi = δis

ωi = 0

E′
qi = E′

qi0

with

Pei = Pmi

guarantees, when all model parameters take their unperturbed values, that the voltages Vti,
1 ≤ i ≤ n, are equal to their corresponding reference constant values V ∗

ti , 1 ≤ i ≤ n.
In this paper, we study a particular structure of power systems, i.e., a group GM of n −
1 generators, tied together by a strong network of transmission lines, which is linked to a
generator gm (in the following referred to as r-th generator) by a comparatively weak set of
tie lines. First note that the electrical power Pei affinely appears in the relative angular speed
dynamics in (1): it represents an actually measured variable (thus available for feedback as a
measured output) which is to be kept close to the mechanical input power during perturbations
(thus to be controlled as a controlled output). Therefore it is advantageous to explicitly
compute its dynamics in order to obtain a triangular structure for system (1) which is suitable
for control design. Let us restrict the analysis to the r-th generator and let us compute [Grj

and Brj , 1 ≤ j ≤ n, are assumed to be constant]

Ṗer = Ė′
qr

[

Iqr + E′
qrGrr

]

+ E′
qr

n
∑

j=1,j 6=r

[

Ė′
qjGrj cos (δrj) + Ė′

qjBrj sin (δrj)
]

−E′
qr

n
∑

j=1,j 6=r

[

E′
qjGrj sin (δrj) − E′

qjBrj cos (δrj)
][

ωr − ωj

]

.

We assume that there exist bounded connected open sets Dδ and Dp such that E′
qr(0) > 0,

δr(t) ∈ Dδ and Per(t) ∈ Dp imply Iqr(t) > cIr > 0, which describes the whole practical
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operating region of the generator (see [9]). The r-th generator third order dynamic model can
be thus written as

δ̇r = ωr

ω̇r = −
Dr

2Hr

ωr +
ω0

2Hr

Pmr −
ω0

2Hr

Per (3)

Ṗer = −θ1rPer − θ2rIdrIqr − θ3r

IdrPer

Iqr

− θ4r

P 2
er

I2
qr

+
[θ5rI

2
qr + θ6rPer

Iqr

]

ufr

−
(

Qer + Brr

P 2
er

I2
qr

+ x′
dr(I

2
dr + I2

qr)
)

ωr +
Per

Iqr

Rr

in which δr, ωr, Per are the state variables, ufr is the control input, θ1r = 1
T ′

d0r

, θ2r =
(xdr−x′

dr)
T ′

d0r

,

θ3r =
Grr(xdr−x′

dr)
T ′

d0r

, θ4r = Grr

T ′

d0r

, θ5r = kcr

T ′

d0r

, θ6r = Grrkcr

T ′

d0r

and the term

Rr =

n
∑

j=1,j 6=r

˙̃
E

′

qj

[

Grj cos (δrj) + Brj sin (δrj)
]

+
n

∑

j=1,j 6=r

ωj

[

E′
qjGrj sin (δrj) − E′

qjBrj cos (δrj)
]

represents the effect of the network remote dynamics (the group GM of generators) on the
r-th generator, where Ẽ′

qj = E′
qj − E′

qj0, 1 ≤ j ≤ n, j 6= r. The expression of the function
Rr(t) will be crucial in the control design since it will allow us to rigorously formulate and
solve the robust transient stabilization problem (with L2 and L∞ robustness) of a synchronous
generator in a power network characterized by the special structure in exam.

In the practice, the exact values of the model parameters are hard to obtain, and in partic-
ular Pmr, Grr, Brr are lumped parameters which account for unmodelled dynamics such as
turbine and load dynamics. Those parameters may undergo sudden on-line variations due to
mechanical and electrical perturbations and faults. In the following, we will suppose the pa-
rameters ω0, Dr, Hr to be known1 and will assume that: the uncertain piecewise continuous
parameters T ′

d0r(t), xdr(t), x′
dr(t), kcr(t) and the uncertain constant parameter Grr are within

the corresponding known positive bounds (T ′
d0rm, T ′

d0rM ), (xdrm, xdrM ), (x′
drm, x′

drM ), (kcrm,
kcrM ), (Grrm, GrrM ); the uncertain constant parameter Brr is within the corresponding known
bounds (Brrm, BrrM ); the mechanical input power Pmr(t) ∈ Dp is a class C1 function satisfying:

PmrM ≥ Pmr(t) ≥ Pmrm and |Ṗmr(t)| ≤ ṖMr, with Pmrm, PmrM , ṖMr known positive reals.
Physical considerations concerning transmission lines, loads and mechanical turbines make the
above assumptions reasonable in the transient stabilization problem of power networks: upper
and lower bounds on the equivalent conductances and susceptances can be computed, while the
mechanical input power is usually the output of a slower first order dynamic system (controlled
by a higher level control). On the other hand, the knowledge of bounds on the uncertain model
parameters somehow restricts the on-line variations which can be tolerated by the controller
and this is in line with the local result which will be obtained in the following.

1The parameters Dr, Hr typically represent mechanical characteristics of the physical machine.
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3 Control problem formulation

A suitable control problem formulation is introduced in this section, which will allow us to
solve the transient stabilization problem for the synchronous generator gm by quantitatively
characterizing the robustness with respect to both permanent and vanishing model parameter
perturbations. Let the pre-fault constant value for the power angle δr satisfying δrs ∈ Dδ and
let θirm, θirM be the known positive bounds on the uncertain parameters θir(t), 1 ≤ i ≤ 6,
with P̂mr(t) a suitable estimate of the uncertain mechanical power Pmr.
We will introduce in the following certain assumptions which are to be satisfied by the re-
maining part of the network in order to guarantee desired transient and asymptotic closed
loop properties: they will impose conditions on the performance achieved by the controllers
of the remote network generators (and in particular restrictions on the disturbance caused
by remote network dynamics in response to the local deviations of the generator states from
the corresponding equilibrium values) and will represent less restrictive conditions than those
required by the single machine-infinite bus approximation in which no interaction between the
local r-th generator deviations from (δr − δrs, ωr, Per − Pmr) = 0 and the remote network
dynamics is taken into account. They will allow dynamic (and not only static as in [16] and
[22]) interactions between the local deviations of the generator states from the corresponding
equilibrium values and the remote generators states: assumptions imposing only static interac-
tions between the local deviations of the generator states from the corresponding equilibrium
values and the remote generators states may not be able to comply with the typical instabil-
ity phenomena in which the behaviour of generators in the network becomes oscillatory with
increasing amplitudes. Let Σr(yr1, yr2, yr3, Rr) be the system consisting of the j-th generators
(j 6= r, 1 ≤ j ≤ n) with inputs the yr(t) vector components yr1(t), yr2(t), yr3(t) (i.e. the local
r-th generator deviations from (δr − δrs, ωr, Per − Pmr) = 0) and output the function Rr(t).
The subsequent assumption ii) will be satisfied if the controllers of the remote network genera-
tors make the system Σr(yr1, yr2, yr3, Rr) Input to Output Stable with uniform gain functions
ϕ̄µr(·), ϕ̄νr(·), ϕ̄ρr(·), while the subsequent assumption iv) will be satisfied if the controllers of
the remote network generators force the system Σr(yr1, yr2, yr3, Rr) to have uniform finite L2

gains (recall that functions in L2 represent signals having finite energy over the infinite time
interval (t0,+∞) and therefore the L2 gain can be interpreted as the ratio between the energies
of the input and the output). Finally, the subsequent condition vi) will impose that, in the case
of vanishing perturbations, the pre-fault state values for the remaining part of the network are
asymptotically recovered provided that asymptotic regulation (S3) (for the r-th generator) is
achieved. The transient stabilization problem addressed in this paper is rigorously formulated
as follows.

Definition 1 (Transient Stabilizing Control): Assume that (t ≥ 0):

i) for each j 6= r, 1 ≤ j ≤ n, the j-th generator power angle δj(t), the relative angular speed
ωj(t) and the quadrature axis transient EMF E′

qj(t) are piecewise differentiable functions
of time t and boundedness of the r-th generator variables δr(t), ωr(t), Per(t) implies
boundedness of E′

qj(t);
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ii) there exist µr, νr, ρr (unknown) non-negative reals, ϕ̄µr(·), ϕ̄νr(·), ϕ̄ρr(·) known K∞

functions2 and gr(t) (unknown) bounded non-negative real-valued function of time t such
that the following inequality:

|Rr(t)| ≤ sup
0≤τ≤t

{gr(τ)} + µrϕ̄µr

(

max
0≤τ≤t

{|δr(τ) − δrs|}
)

+ νrϕ̄νr

(

max
0≤τ≤t

{|ωr(τ)|}
)

+ρrϕ̄ρr

(

max
0≤τ≤t

{|Per(τ) − Pmr(τ)|}
)

holds uniformly in ufr(·).

Define [εjr, εxr, εBr (1 ≤ j ≤ 6) are positive reals]:

yr(t) =
[

δr(t) − δrs, ωr(t), Per(t) − Pmr(t)
]T

ξr(t) =
[

yr(t)
T , Pmr(t) − P̂mr(t)

]T

wdr(t) =
[

Ṗmr(t), θ1rM − θ1rm + ε1r, θ2rM − θ2rm + ε2r, θ3rM − θ3rm + ε3r, θ4rM − θ4rm + ε4r,

max{θ5rM − θ5rm + ε5r, θ6rM − θ6rm + ε6r}, x
′
drM − x′

drm + εxr, BrrM − Brrm + εBr,

sup
0≤τ≤t

{gr(τ)}, µr, νr, ρr

]T
.

A bounded piecewise continuous real-valued control law ufr(·) is called a transient stabilizing
control for the r-th generator if it guarantees the closed loop system to satisfy the following:

(S1) L∞ disturbance attenuation property, i.e.

ω2
r(t) + (Per(t) − Pmr(t))

2 ≤ h1r(ξr(0))e−crt +
1

kr

γ1r(‖wdr(·)‖∞)

holds for all t ≥ 0, where h1r(ξr(0)) ≥ 0, cr > 0 and γ1r(r) is a class K∞ function;

(S2) L2 disturbance attenuation property, i.e.

∫ T

0

[

ω2
r(τ) + (Per(τ) − Pmr(τ))2

]

dτ ≤ h2r(ξr(0)) +
1

kr

∫ T

0

γ2r(‖wdr(τ)‖)dτ

holds for any given T > 0, where h2r(ξr(0)) ≥ 0 and γ2r(r) is a class K∞ function.

According to the previous definition, the effect of model parameters variations from their
unperturbed values is quantified by properties (S1)-(S2), which give bounds on L∞ and L2

regulation errors. While the formulation introduced in Definition 1 leads to a closed loop
robustness characterization, the adaptive formulation introduced in the following definitions
allows us to obtain asymptotic relative speed regulation to zero in the case of definitely constant

2The requirement that the K∞ functions ϕ̄µr(·), ϕ̄νr(·), ϕ̄ρr(·) are known, which makes them to play the
role of design functions, somehow restricts the remote network disturbance effects tolerated by the resulting
controller, in line with the local result we are going to obtain.
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permanent parameter perturbations and asymptotic voltage regulation in the case of vanishing
parameter perturbations.

Definition 2 (Transient Adaptive Stabilizing Control): Assume that, in addition to
assumptions i)-ii), there exist non-negative reals t0, MRr, γδr, γωr and γpr such that:

iii) the uncertain machine parameters Pmr(t), T ′
d0r(t), xdr(t), x′

dr(t), kcr(t) are constant for
all t ≥ t0;

iv) the following inequality:

lim
t→+∞

∫ t

t0

R2
r(τ)dτ ≤ MRr + γδr lim

t→+∞

∫ t

t0

[δr(τ) − δrs]
2dτ + γωr lim

t→+∞

∫ t

t0

[ωr(τ)]2dτ

+γpr lim
t→+∞

∫ t

t0

[Per(τ) − Pmr(τ)]2dτ

holds uniformly in ufr(·).

A transient stabilizing control ufr(·) is called a transient adaptive stabilizing control for the
r-th generator if it guarantees, the additional property:

(S3) asymptotic regulation, i.e.

lim
t→+∞

∥

∥

∥

[

δr(t) − δrs, ωr(t), Per(t) − Pmr

]

∥

∥

∥
= 0.

Definition 3 (Adaptive Regulating Control): Assume that, in addition to assumptions
i)-ii), iv)

v) there exist a non-negative real t̃0 such that all the model parameters take their unperturbed
values (i.e. all the perturbations are removed) for all t ≥ t̃0;

vi) under the asymptotic regulation property (S3), for each j 6= r,

lim
t→+∞

[δj(t) − δjs] = 0

lim
t→+∞

[ωj(t)] = 0

lim
t→+∞

[

E′
qj(t) − E′

qj0

]

= 0.

A transient stabilizing control ufr(·) is called an adaptive regulating control for the r-th gener-
ator if it guarantees, the additional property:

(S4) asymptotic voltage regulation, i.e.

lim
t→+∞

[Vtr(t) − V ∗
tr] = 0.
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4 Nonlinear robust design and stability analysis

By virtue of techniques similar to those used in [6], we design, in this section, a transient
adaptive stabilizing control3 for the r-th generator according to Definitions 1 and 2. The
subsequent control design is motivated by the choice of the quadratic function Vr and Wr

which will be introduced in the following. Define the power angle regulation and relative
angular speed tracking errors

δ̃r = δr − δrs

ω̃r = ωr − ω∗
r

with δrs being the power angle constant reference value and ω∗
r being the relative angular speed

time-varying reference signal

ω∗
r = −

5

4
kδr δ̃r. (4)

We design the active electrical power time-varying reference signal P ∗
er as

P ∗
er =

2Hr

ω0

[5

4
kωrω̃r +

5

4
kδrωr −

Dr

2Hr

ω∗
r + δ̃r +

1

kωpr

ω̃r

]

+ P̂mr (5)

which relies on the estimate P̂mr of the uncertain mechanical power Pmr satisfying the estima-
tion law4

P̂mr = φr +
2Hr

ω0

(5

4
kper +

kr

4
+

1

kr

+
ω2

0

16H2
r

kωpr

)

ωr (6)

φ̇r =
(5

4
kper +

kr

4
+

1

kr

+
ω2

0

16H2
r

kωpr

)[

−φr +
Dr

ω0
ωr + Per

−
2Hr

ω0

(5

4
kper +

kr

4
+

1

kr

+
ω2

0

16H2
r

kωpr

)

ωr

]

Pmrm ≤ P̂mr(0) ≤ PmrM

and introduce the active electrical power tracking error

P̃er = Per − P ∗
er.

3Note that the control techniques developed in [8], [13], [14], [15] do not apply to the model (3) due to the
presence of the uncertain term (θ5rI2

qr + θ6rPer) multiplying the control input ufr.
4Note that the dynamics of the relative angular speed ωr can be rewritten in the more compact form

ω̇r = ̟r +
ω0

2Hr

Pmr

in which

̟r = −
Dr

2Hr

ωr −
ω0

2Hr

Per

is available for feedback.
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We design the robust control law ufr with the robustifying terms vr, πr as

ufr =
Iqr

(

θ̂5rI2
qr + θ̂6rPer

)vr −
krIqr

(

2I4
qr + 2P 2

er

)

v2
r P̃er

4
(

θ̂5rI2
qr + θ̂6rPer

)2(

θ5rmI2
qr + θ6rmPer

)

vr = −
5

4
kprP̃er +

ω0

2Hr

ω̃r +
5Drkδr

4ω0
ωr +

2Hr

ω0
ωr + θ̂1rPer + θ̂2rIdrIqr + θ̂3r

IdrPer

Iqr

+θ̂4r

P 2
er

I2
qr

+ B̂rr

P 2
erωr

I2
qr

+ x̂′
dr

(

I2
dr + I2

qr

)

ωr + Qerωr −
5kδr

4ω0

[

Drωr − ω0(P̂mr − Per)
]

−
2Hr

ω0

(5

4
kωr +

1

kωpr

)[(5

4
kωr +

Dr

2Hr

)

ω̃r + δ̃r +
ω0

2Hr

P̃er +
1

kωpr

ω̃r

]

+ πr (7)

πr = −
kRr

4

P 2
er

I2
qr

P̃er −
kr

4
P̃er

[

P 2
er + I2

drI
2
qr +

I2
drP

2
er

I2
qr

+
P 4

er

I4
qr

(

1 + ω2
r

)

+ ω2
r

(

I2
dr + I2

qr

)2]

−
kr

4

(5

4
kωr +

5

4
kδr +

5

4
kper +

kr

4
+

1

kr

+
ω2

0

16H2
r

kωpr +
1

kωpr

)2

P̃er

−
kr

4

P 2
er

I2
qr

P̃er

[

ϕ̄2
µr

(

max
0≤τ≤t

{δ̃r(τ)}
)

+ ϕ̄2
νr

(

max
0≤τ≤t

{ω̃r(τ)} +
5

4
kδr max

0≤τ≤t
{δ̃r(τ)}

)

+ϕ̄2
ρr

(

max
0≤τ≤t

{P̃er(τ)} + PmrM − Pmrm +
ṖMr

kper

+
2Hr

ω0

(5

4
kωr +

1

kωpr

+
5

4
kδr

)

max
0≤τ≤t

{ω̃r(τ)}

+
[2Hr

ω0

(

1 +
25

16
k2

δr

)

+
5Drkδr

4ω0

]

max
0≤τ≤t

{δ̃r(τ)}
)

+ 1
]

which5 rely on the estimates θ̂jr, x̂′
dr, B̂rr of the uncertain parameters θjr, x′

dr, Brr whose
estimation laws (1 ≤ j ≤ 6) [functions ξθj

(t), ξx(t), ξb(t) are yet to be chosen]

˙̂
θ1r = Proj

[

ξθj
(t), θ̂jr, θjrm, θjrM , εjr

]

, θjrm ≤ θ̂jr(0) ≤ θjrM

˙̂x
′

dr = Proj
[

ξx(t), x̂′
dr, x

′
drm, x′

drM , εxr

]

, x′
drm ≤ x̂′

dr(0) ≤ x′
drM

˙̂
Brr = Proj

[

ξb(t), B̂rr, Brrm, BrrM , εBr

]

, Brrm ≤ B̂rr(0) ≤ BrrM

will be designed by using the projection algorithm Proj[ζ, ẑr, zrm, zrM , εzr] in [8] [(zrm−εzr) >

0]

Proj[ζ, ẑr] =



























ζ if zrm ≤ ẑr ≤ zrM

ζ if ẑr < zrm and ζ ≥ 0
ζ if ẑr > zrM and ζ ≤ 0

ζ
[

1 −
zrm

2−ẑ2

r

zrm
2−(zrm−εzr)2

]

if ẑr < zrm and ζ < 0

ζ
[

1 −
ẑ2

r−zrM
2

(zrM+εzr)2−zrM
2

]

if ẑr > zrM and ζ > 0

5Note that infinite memory is formally required by the controller (7) to compute the time function
max0≤τ≤t{f(τ)} with f(·) : R

+

0
→ R piecewise differentiable (see Section 5 for a finite memory implemen-

tation of the controller).
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whose properties are the following:

1. zrm − εzr ≤ ẑr(t) ≤ zrM + εzr, ∀t ≥ 0;

2. Proj[ζ, ẑr, ·, ·, ·] is Lipschitz continuous;

3. |Proj[ζ, ẑr, zrm, zrM , εzr]| ≤ |ζ|;

4. (zr − ẑr)Proj[ζ, ẑr, zrm, zrM , εzr] ≥ (zr − ẑr)ζ

[which hold provided that the uncertain constant zr and the initial condition ẑr(0) belong to
the compact set [zrm, zrM ]]. Define the estimation errors (1 ≤ j ≤ 6)

θ̃jr = θjr − θ̂jr

x̃′
dr = x′

dr − x̂′
dr

B̃rr = Brr − B̂rr

so that, on the basis of the r-th generator dynamics (3), we obtain the error dynamics

˙̃
δr = −

5

4
kδr δ̃r + ω̃r

˙̃ωr = −
(5

4
kωr +

Dr

2Hr

)

ω̃r − δ̃r +
ω0

2Hr

P̃mr −
ω0

2Hr

P̃er −
1

kωpr

ω̃r (8)

˙̃
P er = −

5

4
kprP̃er +

ω0

2Hr

ω̃r − θ̃1rPer − θ̃2rIdrIqr − θ̃3r

IdrPer

Iqr

− x̃′
dr

(

I2
dr + I2

qr

)

ωr

−θ̃4r

P 2
er

I2
qr

+ θ̃5r

I2
qrvr

(

θ̂5rI2
qr + θ̂6rPer

) + θ̃6r

Pervr
(

θ̂5rI2
qr + θ̂6rPer

) − B̃rr

P 2
erωr

I2
qr

−
kr

4

(

2I4
qr + 2P 2

er

)(

θ5rI
2
qr + θ6rPer

)

v2
r P̃er

(

θ̂5rI2
qr + θ̂6rPer

)2(

θ5rmI2
qr + θ6rmPer

)

+
Per

Iqr

Rr + πr

−
(5

4
kωr +

5

4
kδr +

5

4
kper +

kr

4
+

1

kr

+
ω2

0

16H2
r

kωpr +
1

kωpr

)

P̃mr

˙̃
Pmr = −

(5

4
kper +

kr

4
+

1

kr

+
ω2

0

16H2
r

kωpr

)

P̃mr + Ṗmr.

Consider the quadratic function

Vr =
1

2

(

δ̃2
r + ω̃2

r + P̃ 2
er + P̃ 2

mr

)

and compute the time derivative of function Vr along the trajectories of the error system (8).
By using property 1. of the projection algorithm and by completing the squares, we obtain

V̇r ≤ −
5

4

(

kδr δ̃
2
r + kωrω̃

2
r + kprP̃

2
er + kperP̃

2
mr

)

+
1

kr

[

Ṗ 2
mr + θ̃2

1r + θ̃2
2r + θ̃2

3r + θ̃2
4r

+max
{

θ̃2
5r, θ̃

2
6r

}

+ x̃′2
dr + B̃2

ir + sup
0≤τ≤t

{gr(τ)}2 + µ2
r + ν2

r + ρ2
r

]
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so that, according to (4)-(5) and property 1. of the projection algorithm, we can establish
that the robust adaptive nonlinear feedback control algorithm (4)-(7) is a transient stabilizing
control for the r-th generator. Suppose that, in addition to assumptions i)-ii), assumptions
iii)-iv) hold and consider the quadratic function

Wr = Vr +
1

2

6
∑

j=1

βjr θ̃
2
jr +

1

2
βxrx̃

′2
dr +

1

2
βBrB̃

2
ir

whose time derivative along the trajectories of the error system (8), for all t ≥ t0, is given by

Ẇr = −
5

4
kδr δ̃

2
r −

(5

4
kωr +

Dr

2Hr

)

ω̃2
r +

ω0

2Hr

P̃mrω̃r −
1

kωpr

ω̃2
r −

5

4
kprP̃

2
er + πrP̃er

−
kr

4

(

2I4
qr + 2P 2

er

)(

θ5rI
2
qr + θ6rPer

)

v2
r P̃ 2

er

(

θ̂5rI2
qr + θ̂6rPer

)2(

θ5rmI2
qr + θ6rmPer

)

+
Per

Iqr

RrP̃er −
(5

4
kωr +

5

4
kδr +

5

4
kper

+
kr

4
+

1

kr

+
ω2

0

16H2
r

kωpr +
1

kωpr

)

P̃mrP̃er −
(5

4
kper +

kr

4
+

1

kr

+
ω2

0

16H2
r

kωpr

)

P̃ 2
mr

+ṖmrP̃mr − θ̃1r

[

PerP̃er + β1r
˙̂
θ1r

]

− θ̃2r

[

IdrIqrP̃er + β2r
˙̂
θ2r

]

− θ̃3r

[

IdrPerP̃er

Iqr

+ β3r
˙̂
θ3r

]

−x̃′
dr

[(

I2
dr + I2

qr

)

ωrP̃er + βxr
˙̂x
′

dr

]

− θ̃4r

[

P 2
erP̃er

I2
qr

+ β4r
˙̂
θ4r

]

− B̃rr

[

P 2
erωrP̃er

I2
qr

+ βBr
˙̂
Brr

]

+θ̃5r





I2
qrvrP̃er

(

θ̂5rI2
qr + θ̂6rPer

) − β5r
˙̂
θ5r



 + θ̃6r





PervrP̃er
(

θ̂5rI2
qr + θ̂6rPer

) − β6r
˙̂
θ6r



 .

If we choose the yet to be defined functions ξθj
(t), ξx(t), ξb(t) (1 ≤ j ≤ 6) so that

˙̂
θ1r = Proj

[

−
PerP̃er

β1r

, θ̂1r, θ1rm, θ1rM , ε1r

]

, θ1rm ≤ θ̂1r(0) ≤ θ1rM

˙̂
θ2r = Proj

[

−
IdrIqrP̃er

β2r

, θ̂2r, θ2rm, θ2rM , ε2r

]

, θ2rm ≤ θ̂2r(0) ≤ θ2rM

˙̂
θ3r = Proj

[

−
IdrPerP̃er

Iqrβ3r

, θ̂3r, θ3rm, θ3rM , ε3r

]

, θ3rm ≤ θ̂3r(0) ≤ θ3rM

˙̂
θ4r = Proj

[

−
P 2

erP̃er

I2
qrβ4r

, θ̂4r, θ4rm, θ4rM , ε4r

]

, θ4rm ≤ θ̂4r(0) ≤ θ4rM (9)

˙̂
θ5r = Proj

[

I2
qrvrP̃er

(

θ̂5rI2
qr + θ̂6rPer

)

β5r

, θ̂5r, θ5rm, θ5rM , ε5r

]

, θ5rm ≤ θ̂5r(0) ≤ θ5rM

˙̂
θ6r = Proj

[

PervrP̃er
(

θ̂5rI2
qr + θ̂6rPer

)

β6r

, θ̂6r, θ6rm, θ6rM , ε6r

]

, θ6rm ≤ θ̂6r(0) ≤ θ6rM
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˙̂x
′

dr = Proj
[

−

(

I2
dr + I2

qr

)

ωrP̃er

βxr

, x̂′
dr, x

′
drm, x′

drM , εxr

]

, x′
drm ≤ x̂′

dr(0) ≤ x′
drM

˙̂
Brr = Proj

[

−
P 2

erωrP̃er

βBrI2
qr

, B̂rr, Brrm, BrrM , εBr

]

, Brrm ≤ B̂rr(0) ≤ BrrM

then, by using property 4. of the projection algorithm and by completing the squares, we obtain

Ẇr ≤ −
5

4
kδr δ̃

2
r −

5

4
kωrω̃

2
r −

5

4
kprP̃

2
er −

5

4
kperP̃

2
mr +

Rr(t)
2

kRr

. (10)

Since δ̃r, ω̃r, P̃er, P̃mr are bounded, according to (8) and assumption i),
˙̃
δr, ˙̃ωr,

˙̃
P er,

˙̃
Pmr are

bounded so that δ̃r(t), ω̃r(t), P̃er(t), P̃mr(t) are uniformly continuous for all t ≥ t0. On the
other hand, by virtue of assumptions iii)-iv), if

kRr > max
{4γ̄δr

kδr

,
4γ̄ωr

kωr

,
16γpr

kpr

,
16γpr

kper

}

with

γ̄δr = γδr +
25

8
γωrk

2
δr + 4

[2Hr

ω0

(25

16
k2

δr + 1
)

+
5

4

Drkδr

ω0

]2

γpr

γ̄ωr = 2γωr + 4
[2Hr

ω0

(5

4
kωr +

5

4
kδr +

1

kωpr

)]2

γpr (11)

then, by integrating (10) we obtain

lim
t→+∞

∫ t

t0

[

kδr δ̃
2
r(τ) + kωrω̃

2
r(τ) + kprP̃

2
er(τ) + kperP̃

2
mr(τ)

]

dτ ≤ Wr(t0) +
MRr

kRr

(12)

so that, according to (4)-(5) and Barbalat’s Lemma, we can establish that the robust adaptive
nonlinear feedback control algorithm (4)-(7), (9) is a transient adaptive stabilizing control for
the r-th generator. Finally, from (2) it is straightforward to establish that, under the additional
assumptions v) (implying iii)) and vi), asymptotic voltage regulation (S4) is achieved so that
the robust adaptive nonlinear feedback control algorithm (4)-(7), (9) is an adaptive regulating
control for the r-th generator. The result holds for any initial condition (of the r-th generator)
and positive control parameter kr maintaining, according to (S1), δr(t) ∈ Dδ and Per(t) ∈ Dp

(guaranteeing Iqr(t) > cIr > 0) for all t ≥ 0.

The main result of this paper can be summarized in the following theorem, which somehow6

extends the recent theoretical contribution in [8].

Theorem: The robust adaptive nonlinear feedback control algorithm (4)-(7), (9) is:

• a transient stabilizing control for the r-th generator;

6Here the machine damping and inertia constants are assumed to be known.
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• a transient adaptive stabilizing and an adaptive regulating control for the r-th generator
when (see (11))

kRr > max
{4γ̄δr

kδr

,
4γ̄ωr

kωr

,
16γpr

kpr

,
16γpr

kper

}

,

for any initial condition (of the r-th generator) and positive control parameter kr maintaining,
according to (S1), δr(t) ∈ Dδ and Per(t) ∈ Dp (guaranteeing Iqr(t) > cIr > 0 so that singular-
ities in the controller are avoided) for all t ≥ 0.

The robust adaptive nonlinear feedback control algorithm (4)-(7), (9) relies on: the available
signals7 δr(t), ωr(t), (Idr(t), Iqr(t)) (depending on a common reference for measuring the
machine rotor angle), Per(t), Qer(t) (recall (2) and see for instance [16], [17], [22], [24]); the
positive control parameters kδr, kωr, kpr, kper, kωpr, kr, kRr, βjr, βxr, βBr, εjr, εxr, εBr

(1 ≤ j ≤ 6) whose role may be evaluated by examining both the closed loop error equations
and the corresponding functions Vr and Wr with their time derivatives. The parameters kδr,
kωr, kpr, kper direct affect the dynamics of δ̃r, ω̃r, P̃er and P̃mr, respectively; the parameters
kωpr, kr, kRr characterize the robustifying terms in (5), (6) and (7); the parameters βjr, βxr,

βBr (1 ≤ j ≤ 6) are the adaptation gains for θ̂jr, x̂′
dr, B̂rr (1 ≤ j ≤ 6) and the larger they are

chosen the slower the adaptations for θ̂jr, x̂′
dr, B̂rr (1 ≤ j ≤ 6) result.

5 Simulation results

In this section we illustrate the performance and the robustness of the feedback control al-
gorithm (4)-(7), (9) in the presence of unmodelled dynamics: the proposed control is applied
to each generator of the popular Western System Coordinating Council (WSCC) 3-machine,
9-bus system reported in [26] and [30] [Di = 0, 1 ≤ i ≤ 3] and described by the two-axis model
([26]) [1 ≤ i ≤ 3]

δ̇i = ωi

ω̇i = −
Di

2Hi

ωi +
ω0

2Hi

Pmi −
ω0

2Hi

Pei

Ė′
di = −

E′
di

T ′
q0i

+
(xqi − x′

di)

T ′
q0i

Iqi

Ė′
qi =

kci

T ′
d0i

ufi −
E′

qi

T ′
d0i

−
(xdi − x′

di)

T ′
d0i

Idi

Pei = E′
qiIqi + E′

diIdi = vdiIdi + vqiIqi

Qei = E′
qiIdi − E′

diIqi − x′
di

(

I2
di + I2

qi

)

= vqiIdi − vdiIqi

Idi =
n

∑

j=1

[

E′
qjGij sin (δij) − E′

qjBij cos (δij) + E′
djGij cos (δij) + E′

djBij sin (δij)
]

7Methods for measuring the power angle δr can be found in [27], [28], [29].
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Iqi =
n

∑

j=1

[

E′
qjGij cos (δij) + E′

qjBij sin (δij) − E′
djGij sin (δij) + E′

djBij cos (δij)
]

Vti =

√

(

E′
di + x′

diIqi

)2
+

(

E′
qi − x′

diIdi

)2
=

√

v2
di + v2

qi

from which the model (1) has been derived by neglecting the dynamics of the fast damper-
winding E′

di and by using the simplification xqi = x′
di with xqi(p.u.) being the quadrature axis

reactance. The initial conditions for the state variables are computed by systematically solving
the load-flow equations of the network and by computing the values of the algebraic variables.
For 1 ≤ i ≤ 3, the functions ϕ̄µi(·), ϕ̄νi(·), ϕ̄ρi(·) are set equal to I(·)∣

∣[0,+∞)
[I(·) is the identity

function] i.e. ϕ̄ji(q) = q, j = µ, ν, ρ (q ∈ [0,+∞)), the control parameters are chosen as
kδi = kωi = kpei = kωpi = 1, kpi = 720, ki = 0.001, kRi = 0.1, β1i = β2i = β3i = β4i =
β5i = β6i = βxi = βBi = 348000 while the initial conditions for the parameter estimates are
set equal to the corresponding unperturbed values. The time function s(t) = max0≤τ≤t{f(τ)}
is implemented as

s(t) =

{

f(t), if f(t) > s(t − h)
s(t − h), otherwise

, t ≥ h

s(0) = f(0)

with h the integration step and t = lh (l ∈ N0). In order to avoid division by zero8, for
1 ≤ i ≤ 3, η(Pei) and η(Iqi) replace Pei and Iqi in the control algorithm (4)-(7), (9), respectively,
where

η(ξ) =

{

ξ, if ξ ≥ 0.05
0.05, otherwise.

The goal of the simulation is to verify the effects of a three-phase fault occurring near bus 7
at the end of line 5-7 at t = 0.001 s, which is cleared at 0.084 s by opening line 5-7 (circuit
breakers reclose at t = 1 s). Figure 1-2 show a satisfactory performance of the proposed control
even with the physical saturations (which are hit several times according to Fig. 2(b)): despite
the considered severe perturbation, synchronous speeds are quickly restored while regulation of
both electrical power and terminal voltage is guaranteed. For comparison, the same simulation
is performed by applying (to each generator of the network) the nonlinear robust adaptive
control (with control parameters kδ = 0.1, kω = 3, kp = 120, k = 0.001, βi = 0.0000001,

1 ≤ i ≤ 7 and initial conditions9 θ̂i(0) = 0 i = 1, 2, 4, 5, θ̂6(0) =
ufr0 sin(δr(0))

v̄2(0)
, θ̂3(0) = Pmr,

θ̂7(0) = 1)

ufr =
θ̂6

sin(δr)
v̄2 −

k

4 sin(δr)
P̃erv̄

2
2

P ∗
er = θ̂7v̄1 +

k

4
ω̃rv̄

2
1

8Recall that the simulation is carried out by using the fourth order model and by applying the proposed
controller to each generator of the network.

9We denote by ufr0 the nominal input value.

15



v̄1 = −θ̂1ωr + θ̂3 + kδωr +
k

4
ω̃rω

2
r +

k

4
ω̃r + kωω̃r + δ̃r

˙̂
θi = βiProj

[

(

φ2iω̃r + φ̄3iP̃er

)

, θ̂i

]

, θ̂i(0) ∈ [θim, θiM ], i = 1, 3, 4, 5

˙̂
θ2 = β2Proj

[

(

φ̄32P̃er − ω̃rP̃er

)

, θ̂i

]

, θ̂2(0) ∈ [θ2m, θ2M ]

˙̂
θ6 = β6Proj

[

−v̄2P̃er, θ̂i

]

, θ̂6(0) ∈ [θ6m, θ6M ]

˙̂
θ7 = β7Proj

[

v̄1ω̃r, θ̂i

]

, θ̂7(0) ∈ [θ7m, θ7M ]

Proj[ζ, θ̂i] =































ζ if θim ≤ θ̂i ≤ θiM

ζ if θ̂i < θim and ζ ≥ 0
ζ if θ̂i > θiM and ζ ≤ 0

ζ
[

1 −
θim

2−θ̂2

i

θim
2−(θim−ρi)

2

]

if θ̂i < θim and ζ < 0

ζ
[

1 −
θ̂2

i −θiM
2

(θiM+ρi)
2−θiM

2

]

if θ̂i > θiM and ζ > 0

θim(θim − ρi) ≥ 0, θiM (θiM + ρi) ≥ 0

v̄2 = −kpP̃er + θ̂2ω̃r −
k

4
ω̃2

r P̃er − φ̄30 −

5
∑

i=1

φ̄3iθ̂i −
k

4
P̃er

5
∑

i=1

φ̄2
3i

φ21 = −ωr, φ23 = 1, φ24 = φ25 = 0

φ̄30 = Perωrcotg(δr) − kδ

[

(k

4
ω2

r +
k

4
+ kω +

1

kδ

)(

θ̂7 +
k

2
ω̃rv̄1

)

+
k

4
v̄2
1

]

ωr

−
˙̂
θ7v̄1 +

(

˙̂
θ1ωr −

˙̂
θ3

)(

θ̂7 +
k

2
ω̃rv̄1

)

φ̄31 = ωrφ̄s, φ̄32 = Perφ̄s, φ̄33 = −φ̄s, φ̄34 = −Per, φ̄35 = ωr sin2(δr)

φ̄s =

[

(k

4
ω2

r +
k

4
+ kω + kδ − θ̂1 +

k

2
ω̃rωr

)(

θ̂7 +
k

2
ω̃rv̄1

)

+
k

4
v̄2
1

]

δ̃r = δr − δrs, ω̃r = ωr + kδ δ̃r, P̃er = Per − P ∗
er

designed in [8] on the basis of a (third order) single machine-infinite bus model. As illustrated
by the simulation results reported in Figs. 3-4, neglecting the transient behaviour of the other
generators and the interconnections between them may be critical for the control design in [8]:
in the presence of the considered perturbation, synchronous speeds are not quickly restored
while electrical power and terminal voltage regulations are not satisfactorily obtained.

Conclusions

The transient stabilization problem (with stability proof) has been rigorously formulated in
Section 3 and solved in Section 4 for a particular power systems structure M consisting of
a group of generators tied together by a strong network of transmission lines and linked to
a single generator gm by a comparatively weak set of tie lines. A robust adaptive nonlinear
feedback control (4)-(7), (9) has been designed for the generator gm which does not assume
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Figure 1: Proposed control algorithm [Generator 1 (solid), Generator 2 (dot), Generator 3
(dash)]: a) Power angle regulation errors δi − δis (1 ≤ i ≤ 3); b) Relative angular speeds ωi

(1 ≤ i ≤ 3); c) Active electrical powers Pei (1 ≤ i ≤ 3).

the knowledge of the overall system parameters excepting for the machine damping and inertia
constants: an innovative design technique has been used since available techniques developed in
[8], [13], [14], [15] do not apply to the model (3). The proposed controller guarantees the L2 and
L∞ disturbance attenuation and asymptotic regulation properties (S1)-(S4) under assumptions
i)-vi) on the network dynamics generalizing those required by the single machine-infinite bus
approximation (which does not capture the typical multivariable nature with nonlinear complex
coupling of power systems and does not take into account the effect of the generator gm

dynamics on the remote nework dynamics) and allowing dynamic interactions between the
local deviations of the generator states from the corresponding equilibrium values and the
remote generators states (in order to comply with the typical instability phenomena in which
the behaviour of generators in the network becomes oscillatory with increasing amplitudes).
In our view the result of this paper constitutes a first step towards rigorous mathematical
formulations and solutions to the multimachine transient stabilization problem.
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Figure 2: Proposed control algorithm [Generator 1 (solid), Generator 2 (dot), Generator 3
(dash)]: a) Terminal voltages Vti (1 ≤ i ≤ 3); b) Control signals ufi (1 ≤ i ≤ 3).
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