ICAR, a tool for Blind Source Separation using Fourth Order Statistics only

Abstract : The problem of blind separation of overdetermined mixtures of sources, that is, with fewer sources than (or as many sources as) sensors, is addressed in this paper. A new method, named ICAR (Independent Component Analysis using Redundancies in the quadricovariance), is proposed in order to process complex data. This method, without any whitening operation, only exploits some redundancies of a particular quadricovariance matrix of the data. Computer simulations demonstrate that ICAR offers in general good results and even outperforms classical methods in several situations: ICAR ~(i) succeeds in separating sources with low signal to noise ratios, ~(ii) does not require sources with different SO or/and FO spectral densities, ~(iii) is asymptotically not affected by the presence of a Gaussian noise with unknown spatial correlation, (iv) is not sensitive to an over estimation of the number of sources.
Type de document :
Article dans une revue
IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2005, 53 (10), pp.3633-3643. <10.1109/TSP.2005.855089>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00743890
Contributeur : Pierre Comon <>
Soumis le : dimanche 21 octobre 2012 - 17:09:59
Dernière modification le : jeudi 20 octobre 2016 - 11:31:18
Document(s) archivé(s) le : mardi 22 janvier 2013 - 03:39:13

Fichier

Albera_ICAR_hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

UNICE | LTSI | I3S

Citation

Laurent Albera, Anne Férreol, Pascal Chevalier, Pierre Comon. ICAR, a tool for Blind Source Separation using Fourth Order Statistics only. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2005, 53 (10), pp.3633-3643. <10.1109/TSP.2005.855089>. <hal-00743890>

Partager

Métriques

Consultations de
la notice

608

Téléchargements du document

251