Sparse stabilization and control of the Cucker-Smale model
Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat

To cite this version:

HAL Id: hal-00743792
https://hal.archives-ouvertes.fr/hal-00743792
Submitted on 20 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sparse Stabilization and Control of the Cucker-Smale Model

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat

October 19, 2012

Abstract

From a mathematical point of view self-organization can be described as patterns to which certain dynamical systems modeling social dynamics tend spontaneously to be attracted. In this paper we explore situations beyond self-organization, in particular how to externally control such dynamical systems in order to eventually enforce pattern formation also in those situations where this wished phenomenon does not result from spontaneous convergence. Our focus is on dynamical systems of Cucker-Smale type, modeling consensus emergence, and we question the existence of stabilization and optimal control strategies which require the minimal amount of external intervention for nevertheless inducing consensus in a group of interacting agents. First we follow a greedy approach, by designing instantaneous feedback controls with two different sparsity properties: componentwise sparsity, meaning that the controls have at most one nonzero component at every instant of time and their implementation is based on a variational criterion involving ℓ_1-norm penalization terms; time sparsity, meaning that the number of switchings is bounded on every compact interval of time, and such controls are realized by means of a sample-and-hold procedure. Controls sharing these two sparsity features are very realistic and convenient for practical issues. Moreover we show that among the controls built out of the mentioned variational principle, the maximally sparse ones are instantaneously optimal in terms of the decay rate of a suitably designed Lyapunov functional, measuring the distance from consensus. As a consequence we provide a mathematical justification to the general principle according to which “sparse is better” in the sense that a policy maker, who is not allowed to predict future developments, should always consider more favorable to intervene with stronger action on the fewest possible instantaneous optimal leaders rather than trying to control more agents with minor strength in order to achieve group consensus. We then establish local and global sparse controllability properties to consensus. Finally, we analyze the sparsity of solutions of the finite time optimal control problem where the minimization criterion is a combination of the distance from consensus and of the ℓ_1-norm of the control. Such an optimization models the situation where the policy maker is actually allowed to observe future developments. We show that the lacunarity of sparsity is related to the codimension of certain manifolds in the space of cotangent vectors.

Keywords: Cucker-Smale model, consensus emergence, ℓ_1-norm minimization, optimal complexity, sparse stabilization, sparse optimal control.

MSC 2010: 34D45, 35B36, 49J15, 65K10, 93D15, 93B05
1 Introduction

1.1 Self-organization Vs organization via intervention

In recent years there has been a very fast growing interest in defining and analyzing mathematical
models of multiple interacting agents in social dynamics. Usually individual based models, described
by suitable dynamical systems, constitute the basis for developing continuum descriptions of the agent
distribution, governed by suitable partial differential equations. There are many inspiring applications,
such as animal behavior, where the coordinated movement of groups, such as birds (starlings, geese,
etc.), fishes (tuna, capelin, etc.), insects (locusts, ants, bees, termites, etc.) or certain mammals (wilde-
beasts, sheep, etc.) is considered, see, e.g., [2, 6, 18, 19, 45, 48, 49, 56, 63, 65] or the review chapter [8],
and the numerous references therein. Models in microbiology, such as the Patlak-Keller-Segel model
[39, 50], describing the chemotactical aggregation of cells and multicellular micro-organisms, inspired
a very rich mathematical literature [35, 36, 52], see also the very recent work [4] and references therein.
Human motion, including pedestrian and crowd modeling [21, 22], for instance in evacuation process
simulations, has been a matter of intensive research, connecting also with new developments such as
mean field games, see [40] and the overview in its Section 2. Certain aspects of human social behav-
ior, as in language evolution [23, 25, 38] or even criminal activities [58], are also subject of intensive
study by means of dynamical systems and kinetic models. Moreover, relevant results appeared in the
economical realm with the theoretical derivation of wealth distributions [27] and, again in connection
with game theory, the description of formation of volatility in financial markets [41]. Beside applica-
tions where biological agents, animals and micro-(multi)cellular organisms, or humans are involved,
also more abstract modeling of interacting automatic units, for instance simple robots, are of high
practical interest [11, 37, 61, 42, 51, 57].
One of the leading concepts behind the modeling of multiagent interaction in the past few years has been self-organization [6, 45, 48, 49, 63], which, from a mathematical point of view, can be described as the formation of patterns, to which the systems tend naturally to be attracted. The fascinating mechanism to be revealed by such a modeling is how to connect the microscopical and usually binary rules or social forces of interaction between individuals with the eventual global behavior or group pattern, forming as a superposition in time of the different microscopical effects. Hence, one of the interesting issues of such socio-dynamical models is the global convergence to stable patterns or, as more often and more realistically, the instabilities and local convergence [52].

While the description of pattern formation can explain some relevant real-life behaviors, it is also of paramount interest how one may enforce and stabilize pattern formation in those situations where global and stable convergence cannot be ensured, especially in presence of noise [68], or, vice versa, how one can avoid certain rare and dangerous patterns to form, despite that the system may suddenly tend stably to them. The latter situations may refer, for instance, to the so-called “black swans”, usually referred to critical (financial or social) events [3, 62]. In all these situations where the independent behavior of the system, despite its natural tendencies, does not realize the desired result, the active intervention of an external policy maker is essential. This naturally raises the question of which optimal policy should be considered.

In information theory, the best possible way of representing data is usually the most economical for reliably or robustly storing and communicating data. One of the modern ways of describing economical description of data is their sparse representation with respect to an adapted dictionary [43, Chapter 1]. In this paper we shall translate these concepts to realize best policies in stabilization and control of dynamical systems modeling multiagent interactions. Beside stabilization strategies in collective behavior already considered in the recent literature, see e.g. [55, 57], the conceptually closest work to our approach is perhaps the seminal paper [42], where externally driven “virtual leaders” are inserted in a collective motion dynamics in order to enforce a certain behavior. Nevertheless our modeling still differs significantly from this mentioned literature, because we allow us directly, externally, and instantaneously to control the individuals of the group, with no need of introducing predetermined virtual leaders, and we shall specifically seek for the most economical (sparsest) way of leading the group to a certain behavior. In particular, we will mathematically model sparse controls, designed to promote the minimal amount of intervention of an external policy maker, in order to enforce nevertheless the formation of certain interesting patterns. In other words we shall activate in time the minimal amount of parameters, potentially limited to certain admissible classes, which can provide a certain verifiable outcome of our system. The relationship between parameter choices and result will be usually highly nonlinear, especially for several known dynamical system, modeling social dynamics.

Were this relationship linear instead, then a rather well-established theory predicts how many degrees of freedom are minimally necessary to achieve the expected outcome, and, depending on certain spectral properties of the linear model, allows also for efficient algorithms to compute them. This theory is known in mathematical signal processing under the name of compressed sensing, see the seminal work [7] and [26], see also the review chapter [30]. The major contribution of these papers was to realize that one can combine the power of convex optimization, in particular ℓ₁-norm minimization, and spectral properties of random linear models in order to show optimal results on the ability of ℓ₁-norm minimization of recovering robustly sparsest solutions. Borrowing a leaf from compressed sensing, we will model sparse stabilization and control strategies by penalizing the class of vector valued controls $u = (u_1, \ldots, u_N) \in (\mathbb{R}^d)^N$ by means of a mixed $\ell_1^N - \ell_2^N$-norm, i.e.,

$$\sum_{i=1}^{N} \|u_i\|,$$
where here $\| \cdot \|$ is the ℓ_2-Euclidean norm on \mathbb{R}^d. This mixed norm has been used for instance in [29] as a joint sparsity constraint and it has the effect of optimally sparsifying multivariate vectors in compressed sensing problems [28]. The use of (scalar) ℓ_1-norms to penalize controls dates back to the 60’s with the models of linear fuel consumption [20]. More recent work in dynamical systems [66] resumes again ℓ_1-minimization emphasizing its sparsifying power. Also in optimal control with partial differential equation constraints it became rather popular to use L_1-minimization to enforce sparsity of controls [9, 13, 14, 34, 53, 60, 67]. Differently from this previously mentioned work, we will investigate in this paper optimally sparse stabilization and control to enforce pattern formation or, more precisely, convergence to attractors in dynamical systems modeling multiagent interaction. A simple, but still rather interesting and prototypical situation is given by the individual based particle system we are considering here as a particular case

$$
\begin{align*}
\dot{x}_i &= v_i \\
\dot{v}_i &= \frac{1}{N} \sum_{j=1}^{N} \frac{v_j - v_i}{(1 + \|x_j - x_i\|^2)^{\beta}}
\end{align*}
$$

for $i = 1, \ldots, N$, where $\beta > 0$ and $x_i \in \mathbb{R}^d$, $v_i \in \mathbb{R}^d$ are the state and consensus parameters respectively. Here one may want to imagine that the v_is actually represent abstract quantities such as words of a communication language, opinions, invested capitals, preferences, but also more classical physical quantities such as the velocities in a collective motion dynamics. This model describes the emerging of consensus in a group of N interacting agents described by $2d$ degrees of freedom each, trying to align (also in terms of abstract consensus) with their social neighbors. One of the motivations of this model proposed by Cucker and Smale was in fact to describe the formation and evolution of languages [23, Section 6], although, due to its simplicity, it has been eventually related mainly to the description of the emergence of consensus in a group of moving agents, for instance flocking in a swarm of birds [24]. One of the interesting features of this simple system is its rather complete analytical description in terms of its ability of convergence to attractors according to the parameter $\beta > 0$ which is ruling the communication rate between far distant agents. For $\beta \leq \frac{1}{2}$, corresponding to a still rather strong long - social - distance interaction, for every initial condition the system will converge to a consensus pattern, characterized by the fact that all the parameters $v_i(t)$s will tend for $t \to +\infty$ to the mean $\bar{v} = \frac{1}{N} \sum_{i=1}^{N} v_i(t)$ which is actually an invariant of the dynamics. For $\beta > \frac{1}{2}$, the emergence of consensus happens only under certain concentration conditions in state and consensus parameters, i.e., when the group is sufficiently close to its state center of mass or when the consensus parameters are sufficiently close to their mean. Nothing instead can be said a priori when at the same time one has $\beta > \frac{1}{2}$ and the mentioned concentration conditions are not provided. Actually one can easily construct counterexamples to formation of consensus, see our Example 1 below. In this situation, it is interesting to consider external control strategies which will facilitate the formation of consensus, which is precisely the scope of this work.

1.2 The general Cucker-Smale model and introduction to its control

Let us introduce the more general Cucker-Smale model under consideration in this article.

The model. We consider a system of N interacting agents. The state of each agent is described by a pair (x_i, v_i) of vectors of the Euclidean space \mathbb{R}^d, where x_i represents the main state of an agent and the v_i its consensus parameter. The main state of the group of N agents is given by the N-uple $x = (x_1, \ldots, x_N)$. Similarly for the consensus parameters $v = (v_1, \ldots, v_N)$. The space of main states
and the space of consensus parameters is \((\mathbb{R}^d)^N\) for both, the product \(N\)-times of the Euclidean space \(\mathbb{R}^d\) endowed with the induced inner product structure.

The time evolution of the state \((x_i, v_i)\) of the \(i\)th agent is governed by the equations

\[
\begin{aligned}
\dot{x}_i(t) &= v_i(t), \\
\dot{v}_i(t) &= \frac{1}{N} \sum_{j=1}^{N} a(\|x_j(t) - x_i(t)\|)(v_j(t) - v_i(t)),
\end{aligned}
\]

for every \(i = 1, \ldots, N\), where \(a \in C^1([0, +\infty))\) is a nonincreasing positive function. Here, \(\|\cdot\|\) denotes again the \(\ell_2^d\)-Euclidean norm in \(\mathbb{R}^d\). The meaning of the second equation is that each agent adjusts its consensus parameter with those of other agents in relation with a weighted average of the differences. The influence of the \(j\)th agent on the dynamics of the \(i\)th is a function of the (social) distance of the two agents. Note that the mean consensus parameter \(\bar{v} = \frac{1}{N} \sum_{i=1}^{N} v_i(t)\) is an invariant of the dynamics, hence it is constant in time.

As mentioned previously, an example of a system of the form (2) is the influential model of Cucker and Smale [23] in which the function \(a\) is of the form

\[
a(\|x_j - x_i\|) = \frac{K}{(\sigma^2 + \|x_i - x_j\|^2)^\beta},
\]

where \(K > 0\), \(\sigma > 0\), and \(\beta > 0\) are constants accounting for the social properties of the group of agents.

In matrix notation, System (2) can be written as

\[
\begin{aligned}
\dot{x} &= v, \\
\dot{v} &= -L_x v,
\end{aligned}
\]

where \(L_x\) is the Laplacian\(^1\) of the \(N \times N\) matrix \((a(\|x_j - x_i\|)/N)_{i,j=1}^{N}\) and depends on \(x\). The Laplacian \(L_x\) is an \(N \times N\) matrix acting on \((\mathbb{R}^d)^N\), and verifies \(L_x(v, \ldots, v) = 0\) for every \(v \in \mathbb{R}^d\). Notice that the operator \(L_x\) always is positive semidefinite.

Consensus. For every \(v \in (\mathbb{R}^d)^N\), we define the mean vector \(\bar{v} = \frac{1}{N} \sum_{i=1}^{N} v_i\) and the symmetric bilinear form \(B\) on \((\mathbb{R}^d)^N \times (\mathbb{R}^d)^N\) by

\[
B(u, v) = \frac{1}{2N^2} \sum_{i,j=1}^{N} \langle u_i - u_j, v_i - v_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \langle u_i, v_i \rangle - \langle \bar{u}, \bar{v} \rangle,
\]

where \(\langle \cdot, \cdot \rangle\) denotes the scalar product in \(\mathbb{R}^d\). We set

\[
\begin{aligned}
\mathcal{V}_f &= \{(v_1, \ldots, v_N) \in (\mathbb{R}^d)^N \mid v_1 = \cdots = v_N \in \mathbb{R}^d\}, \\
\mathcal{V}_\perp &= \{(v_1, \ldots, v_N) \in (\mathbb{R}^d)^N \mid \sum_{i=1}^{N} v_i = 0\}.
\end{aligned}
\]

These are two orthogonal subspaces of \((\mathbb{R}^d)^N\). Every \(v \in (\mathbb{R}^d)^N\) can be written as \(v = v_f + v_\perp\) with \(v_f = (\bar{v}, \ldots, \bar{v}) \in \mathcal{V}_f\) and \(v_\perp \in \mathcal{V}_\perp\).

\(^1\)Given a real \(N \times N\) matrix \(A = (a_{ij})_{i,j}\) and \(v \in (\mathbb{R}^d)^N\) we denote by \(Av\) the action of \(A\) on \((\mathbb{R}^d)^N\) by mapping \(v\) to \((a_{i1}v_1 + \cdots + a_{iN}v_N)_{i=1,\ldots,N}\). Given a nonnegative symmetric \(N \times N\) matrix \(A = (a_{ij})_{i,j}\), the Laplacian \(L\) of \(A\) is defined by \(L = D - A\), with \(D = \text{diag}(d_1, \ldots, d_N)\) and \(d_k = \sum_{j=1}^{N} a_{kj}\).
Lemma 1. \(B \) restricted to \(\mathcal{V}_\perp \times \mathcal{V}_\perp \) coincides, up to the factor \(1/N \), with the scalar product on \((\mathbb{R}^d)^N \). Moreover \(B(u,v) = B(u_\perp,v) = B(u,v) \). Indeed \(B(u,v_f) = 0 = B(u_f,v) \) for every \(u,v \in (\mathbb{R}^d)^N \).

Given a solution \((x(t),v(t))\) of (2) we define the quantities

\[
X(t) := B(x(t),x(t)) = \frac{1}{2N^2} \sum_{i,j=1}^N \|x_i(t) - x_j(t)\|^2,
\]
and

\[
V(t) := B(v(t),v(t)) = \frac{1}{2N^2} \sum_{i,j=1}^N \|v_i(t) - v_j(t)\|^2 = \frac{1}{N} \sum_{i=1}^N \|v(t)_\perp\|^2.
\]

Consensus is a state in which all agents have the same consensus parameter.

Definition 1 (Consensus point). A steady configuration of System (2) \((x,v) \in (\mathbb{R}^d)^N \times \mathcal{V}_f\) is called a consensus point in the sense that the dynamics originating from \((x,v)\) is simply given by rigid translation \(x(t) = x + tv\). We call \((\mathbb{R}^d)^N \times \mathcal{V}_f\) the consensus manifold.

Definition 2 (Consensus). We say that a solution \((x(t),v(t))\) of System (2) tends to consensus if the consensus parameter vectors tend to the mean \(\bar{v} = \frac{1}{N} \sum_i v_i\), namely if \(\lim_{t \to \infty} v_i(t) = \bar{v}\) for every \(i = 1, \ldots, N\).

Remark 1. Because of uniqueness, a solution of (2) cannot reach consensus within finite time, unless the initial datum is already a consensus point. The consensus manifold is invariant for (2).

Remark 2. The following definitions of consensus are equivalent:

(i) \(\lim_{t \to \infty} v_i(t) = \bar{v}\) for every \(i = 1, \ldots, N\);

(ii) \(\lim_{t \to \infty} v_i(t) = 0\) for every \(i = 1, \ldots, N\);

(iii) \(\lim_{t \to \infty} V(t) = 0\).

The following lemma, whose proof is given in the Appendix, shows that actually \(V(t)\) is a Lyapunov functional for the dynamics of (2).

Lemma 1. For every \(t \geq 0\)

\[
\frac{d}{dt} V(t) \leq -2a \left(\sqrt{2NX(t)} \right) V(t).
\]

In particular if \(\sup_{t \geq 0} X(t) \leq \bar{X}\) then \(\lim_{t \to \infty} V(t) = 0\).

For multi-agent systems of the form (2) sufficient conditions for consensus emergence are a particular case of the main result of [32] and are summarized in the following proposition, whose proof is recalled in the Appendix, for self-containedness and reader’s convenience.

Proposition 1. Let \((x_0,v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N\) be such that \(X_0 = B(x_0,v_0)\) and \(V_0 = B(x_0,v_0)\) satisfy

\[
\int_{\sqrt{X_0}}^\infty a(\sqrt{2Nr})dr \geq \sqrt{V_0}.
\]

Then the solution of (2) with initial data \((x_0,v_0)\) tends to consensus.
In the following we call the subset of \((\mathbb{R}^d)^N \times (\mathbb{R}^d)^N\) satisfying (7) the consensus region, which represents the basin of attraction of the consensus manifold. Notice that the condition (7) is actually satisfied as soon as \(V_0\) and \(X_0\) are sufficiently small, i.e., the system has initially sufficient concentration in the consensus parameters and in the main states.

Although consensus forms a rigidly translating stable pattern for the system and represents in some sense a “convenient” choice for the group, there are initial conditions for which the system does not tend to consensus, as the following example shows.

Example 1 (Cucker–Smale system: two agents on the line). Consider the Cucker–Smale system (2)-(3) in the case of two agents moving on \(\mathbb{R}\) with position and velocity at time \(t\), \((x_1(t), v_1(t))\) and \((x_2(t), v_2(t))\). Assume for simplicity that \(\beta = 1, K = 2,\) and \(\sigma = 1\). Let \(x(t) = x_1(t) - x_2(t)\) be the relative main state and \(v(t) = v_1(t) - v_2(t)\) be the relative consensus parameter. Equation (2), then reads:

\[
\begin{aligned}
\dot{x} &= v \\
\dot{v} &= -\frac{v}{1 + x^2}
\end{aligned}
\]

with initial conditions \(x(0) = x_0\) and \(v(0) = v_0 > 0\). The solution of this system can be found by direct integration, as from \(\dot{v} = -\dot{x}/(1 + x^2)\) we have

\[v(t) - v_0 = -\arctan x(t) + \arctan x_0.\]

If the initial conditions satisfy \(\arctan x_0 + v_0 < \pi/2\) then the relative main state \(x(t)\) is bounded uniformly by \(\tan(\arctan x_0 + v_0)\), satisfying the sufficient boundedness condition on the space variables in Lemma 1 for consensus.

On the other hand, whenever \(\arctan x_0 + v_0 > \pi/2\), which implies \(\arctan x_0 + v_0 \geq \pi/2 + \varepsilon\) for some \(\varepsilon > 0\), the consensus parameter \(v(t)\) remains bounded away from 0 for every time, since

\[v(t) = -\arctan x(t) + \arctan x_0 + v_0 \geq \pi/2 - \arctan x(t) + \varepsilon \geq \varepsilon > 0,
\]

for every \(t > 0\). In other words, the system does not tend to consensus.

Control of the Cucker-Smale model. When the consensus in a group of agents is not achieved by self-organization of the group, as in Example 1, it is natural to ask whether it is possible to induce the group to reach it by means of an external action. In this sense we introduce the notion of organization via intervention. We consider the system (2) of \(N\) interacting agents, in which the dynamics of every agent are moreover subject to the action of an external field. Admissible controls, accounting for the external field, are measurable functions \(u = (u_1, \ldots, u_N): [0, +\infty) \to (\mathbb{R}^d)^N\) satisfying the \(\ell_1^N - \ell_2^d\)-norm constraint

\[
\sum_{i=1}^{N} \|u_i(t)\| \leq M,
\]

for every \(t > 0\), for a given positive constant \(M\). The time evolution of the state is governed by

\[
\begin{aligned}
\dot{x}_i(t) &= v_i(t), \\
\dot{v}_i(t) &= \frac{1}{N} \sum_{j=1}^{N} a(||x_j(t) - x_i(t)||)(v_j(t) - v_i(t)) + u_i(t),
\end{aligned}
\]

for \(i = 1, \ldots, N\), and \(x_i \in \mathbb{R}^d, v_i \in \mathbb{R}^d\). In matrix notation, the above system can be written as

\[
\begin{aligned}
\dot{x} &= v \\
\dot{v} &= -L_x v + u,
\end{aligned}
\]
where L_x is the Laplacian defined in Section 1.2.

Our aim is then to find admissible controls steering the system to the consensus region in finite time. In particular, we shall address the question of quantifying the minimal amount of intervention one external policy maker should use on the system in order to lead it to consensus, and we formulate a practical strategy to approach optimal interventions.

Our first approach will be a greedy one, in the sense that we will design a feedback control which will optimize instantaneously three fundamental quantities:

(i) it has the minimal amount of components active at each time;

(ii) it has the minimal amount of switchings equispaced in time within the finite time interval to reach the consensus region;

(iii) it maximizes at each switching time the rate of decay of the Lyapunov functional measuring the distance to the consensus region.

This approach models the situation where the external policy maker is actually not allowed to predict future developments and has to make optimal decisions based on instantaneous configurations. Note that a componentwise sparse feedback control as in (i) is more realistic and convenient in practice than a control simultaneously active on more or even all agents, because it requires acting only on at most one agent, at every instant of time. The adaptive and instantaneous rule of choice of the controls is based on a variational criterion involving $\ell_1^N - \ell_2^d$-norm penalization terms. Since however such componentwise sparse controls are likely to be chattering, i.e., requiring an infinite number of changes of the active control component over a bounded interval of time, we will also have to pay attention in deriving control strategies with property (ii), which are as well sparse in time, and we therefore call them time sparse controls.

Our second approach is based on a finite time optimal control problem where the minimization criterion is a combination of the distance from consensus and of the $\ell_1^N - \ell_2^d$-norm of the control. Such an optimization models the situation where the policy maker is actually allowed to make deterministic future predictions of the development. We show that componentwise sparse solutions are again likely to be the most favorable.

The rest of the paper is organized as follows: Section 2 is devoted to establishing sparse feedback controls stabilizing System (9) to consensus. We investigate the construction of componentwise and time sparse controls. In Section 3 we discuss in which sense the proposed sparse feedback controls have actually optimality properties and we address a general notion of complexity for consensus problems. In Section 4 we combine the results of the previous sections with a local controllability result near the consensus manifold in order to prove global sparse controllability of Cucker-Smale consensus models. We study the sparsity features of solutions of a finite time optimal control of Cucker-Smale consensus models in Section 5 and we establish that the lacunarity of their sparsity is related to the codimension of certain manifolds. The paper is concluded by an Appendix which collects some of the merely technical results of the paper.
2 Sparse Feedback Control of the Cucker-Smale Model

2.1 A first result of stabilization

Note first that if the integral \(\int_0^\infty a(r)\,dr \) diverges then every pair \((X, V) > 0\) satisfies (7), in other words the interaction between the agents is so strong that the system will reach the consensus no matter what the initial conditions are. In this section we are interested in the case where consensus does not arise autonomously therefore throughout this section we will assume that

\[
a \in L^1(0, +\infty).
\]

As already clarified in Lemma 1 the quantity \(V(t) \) is actually a Lyapunov functional for the uncontrolled System (2). For the controlled System (9) such quantity actually becomes dependent on the choice of the control, which can nevertheless be properly optimized. As a first relevant and instructive observation we prove that an appropriate choice of the control law can always stabilize the system to consensus.

Proposition 2. For every \(M > 0 \) and initial condition \((x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N\), the feedback control defined pointwise in time by \(u(t) = -\alpha v_\perp(t) \), with \(0 < \alpha \leq M \sqrt[2]{N} \sqrt{B(v_0, v_0)} \), satisfies the constraint (8) for every \(t \geq 0 \) and stabilizes the system (9) to consensus in infinite time.

Proof. Consider the solution of (9) with initial data \((x_0, v_0) \) associated with the feedback control \(u = -\alpha v_\perp \), with \(0 < \alpha \leq M \sqrt[2]{N} \sqrt{B(v_0, v_0)} \). Then, by non-negativity of \(L_x \),

\[
\frac{d}{dt} V(t) = \frac{d}{dt} B(v(t), v(t))
\]

\[
= -2B(L_x v(t), v(t)) + 2B(u(t), v(t))
\]

\[
\leq 2B(u(t), v(t))
\]

\[
= -2\alpha B(v_\perp(t), v_\perp(t))
\]

\[
= -2\alpha V(t).
\]

Therefore \(V(t) \leq e^{-2\alpha t} V(0) \) and \(V(t) \) tends to 0 exponentially fast as \(t \to \infty \). Moreover

\[
\sum_{i=1}^N \|u_i(t)\| \leq \sqrt{N} \sum_{i=1}^N \|u_i(t)\|^2 = \alpha \sqrt{N} \sum_{i=1}^N \|v_\perp(t)\|^2 = \alpha N \sqrt{V(t)} \leq \alpha N \sqrt{V(0)} = M,
\]

and thus the control is admissible. \(\square \)

In other words the system (8)-(9) is semi-globally feedback stabilizable. Nevertheless this result has a merely theoretical value: the feedback stabilizer \(u = -\alpha v_\perp \) is not convenient for practical purposes since it requires to act at every instant of time on all the agents in order to steer the system to consensus, which may require a large amount of instantaneous communications. In what follows we address the design of more economical and practical feedback controls which can be both componentwise and time sparse.

2.2 Componentwise sparse feedback stabilization

We introduce here a variational principle leading to a componentwise sparse stabilizing feedback law.
Definition 3. For every $M > 0$ and every $(x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, let $U(x, v)$ be defined as the set of solutions of the variational problem

$$\min \left(B(v, u) + \gamma(B(x, x)) \sum_{i=1}^{N} \|u_i\| \right) \quad \text{subject to} \quad \sum_{i=1}^{N} \|u_i\| \leq M, \quad (11)$$

where

$$\gamma(X) = \int_{\sqrt{N}}^{\infty} a(\sqrt{2N}r) dr. \quad (12)$$

The meaning of (11) is the following. Minimizing the component $B(v, u) = B(v_\perp, u)$ means that, at every instant of time, the control $u \in U(x, v)$ is of the form $u = -\alpha \cdot v_\perp$, for some $\alpha = (\alpha_1, \ldots, \alpha_N)$ sequence of nonnegative scalars. Hence it acts as an additional force which pulls the particles towards having the same mean consensus parameter. Imposing additional $\ell_1^N - \ell_2^d$-norm constraints has the function of enforcing sparsity, i.e., most of the α_i’s will turn out to be zero, as we will in more detail clarify below. Eventually, the threshold $\gamma(X)$ is chosen in such a way that the control switches-off as soon as the criterion (7) gets fulfilled.

The componentwise sparsity feature of feedback controls $u(x, v) \in U(x, v)$ is analyzed in the next remark, where we make explicit the set $U(x, v)$ according to the value of (x, v) in a partition of the space $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$.

Remark 3. First of all, it is easy to see that, for every $(x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ and every element $u(x, v) \in U(x, v)$ there exist nonnegative real numbers α_i’s such that

$$u_i(x, v) = \begin{cases} 0 & \text{if } v_\perp i = 0, \\ -\alpha_i \frac{v_\perp i}{\|v_\perp i\|} & \text{if } v_\perp i \neq 0, \end{cases} \quad (13)$$

where $0 \leq \sum_{i=1}^{N} \alpha_i \leq M$.

The componentwise sparsity of u depends on the possible values that the α_i’s may take in function of (x, v). Actually, the space $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ can be partitioned in the union of the four disjoint subsets C_1, C_2, C_3, and C_4 defined by

$$C_1 = \{ (x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mid B(v, v) < \gamma(B(x, x))^2 \},$$

$$C_2 = \{ (x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mid B(v, v) = \gamma(B(x, x))^2 \},$$

$$C_3 = \{ (x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mid B(v, v) > \gamma(B(x, x))^2 \},$$

and there exists a unique $i \in \{1, \ldots, N\}$ such that $\|v_\perp i\| > \|v_\perp j\|$ for every $j \neq i$,

$$C_4 = \{ (x, v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \mid B(v, v) > \gamma(B(x, x))^2 \}$$

and there exist $k \geq 2$ and $i_1, \ldots, i_k \in \{1, \ldots, N\}$ such that $\|v_\perp i_1\| = \cdots = \|v_\perp i_k\|$ and $\|v_\perp i_1\| > \|v_\perp j\|$ for every $j \notin \{i_1, \ldots, i_k\}$.

The subsets C_1 and C_3 are open, and the complement $(C_1 \cup C_3)^c$ has Lebesgue measure zero. Moreover for every $(x, v) \in C_1 \cup C_3$, the set $U(x, v)$ is single valued and its value is a sparse vector with at most one nonzero component. More precisely, one has $U|_{C_1} = \{0\}$ and $U|_{C_3} = \{0, \ldots, 0, -Mv_\perp /\|v_\perp\|, 0, \ldots, 0\}$ for some unique $i \in \{1, \ldots, N\}$.

If $(x, v) \in C_2 \cup C_4$ then a control in $U(x, v)$ may not be sparse: indeed in these cases the set $U(x, v)$ consists of all $u = (u_1, \ldots, u_N) \in (\mathbb{R}^d)^N$ such that $u_i = -\alpha_i v_\perp /\|v_\perp\|$ for every $i = 1, \ldots, N$, where the α_i’s are nonnegative real numbers such that $0 \leq \sum_{i=1}^{N} \alpha_i \leq M$ whenever $(x, v) \in C_2$, and $\sum_{i=1}^{N} \alpha_i = M$ whenever $(x, v) \in C_4$.

10
By showing that the choice of feedback controls as in Definition 3 optimizes the Lyapunov functional $V(t)$, we can again prove convergence to consensus.

Theorem 1. For every $(x,v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, and $M > 0$, set $F(x,v) = \{(v,-L_xv + u) \mid u \in U(x,v)\}$, where $U(x,v)$ is as in Definition 3. Then for every initial datum $(x_0,v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, the differential inclusion

$$\dot{x}, \dot{v} \in F(x,v) \quad (14)$$

with initial condition $(x(0),v(0)) = (x_0,v_0)$ is well-posed and its solutions converge to consensus as t tends to $+\infty$.

Remark 4. By definition of the feedback controls $u(x,v) \in U(x,v)$, and from Remark 3, it follows that, along a closed-loop trajectory, as soon as $V(t)$ is small enough with respect to $\gamma(B(x,x))$ the trajectory has entered the consensus region defined by (7). From this point in time no action is further needed to stabilize the system, since Proposition 1 ensures then that the system is naturally stable to consensus. In particular the control switches-off automatically by being set to 0 forever. It follows from the proof of Theorem 1 below that the time T needed to steer the system to the consensus region is not larger than $\frac{N}{M} \left(\sqrt{V(0)} - \gamma(X) \right)$, where γ is defined by (12), and $X = 2X(0) + \frac{N^4}{2M^2}V(0)^2$.

Proof of Theorem 1. First of all we prove that (14) is well-posed, by using general existence results of the theory of differential inclusions (see e.g. [1, Theorem 2.1.3]). For that we address the following steps:

- the set $F(x,v)$ non-empty, closed, and convex for every $(x,v) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ (see Remark 3), we show that $F(x,v)$ is upper semi-continuous; this will imply local existence of solutions of (14);

- we will then argue the global extension of these solutions for every $t \geq 0$ by the classical theory of ODE’s, as it is sufficient to remark that there exist positive constants c_1, c_2 such that $\|F(x,v)\| \leq c_1\|v\| + c_2$.

Let us address the upper semi-continuity of $F(x,v)$, that is for every (x_0,v_0) and for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$F(B_\delta(x_0,v_0)) \subseteq B_\varepsilon(F(x_0,v_0)),$$

where $B_\delta(y), B_\varepsilon(y)$ are the balls of $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ centered in y with radius δ and ε respectively. As the composition of upper semi-continuous functions is upper semi-continuous (see [1, Proposition 1.1.1]), then it is sufficient to prove that $U(x,v)$ is upper semi continuous. For every $(x,v) \in C_1 \cup C_3, U(x,v)$ is single valued and continuous. If $(x,v) \in C_2$ then there exist i_1, \ldots, i_k such that $\|v_{\perp i_1}\| = \cdots = \|v_{\perp i_k}\|$ and $\|v_{\perp l}\| > \|v_{\perp i}\|$ for every $l \notin \{i_1, \ldots, i_k\}$. If $\delta < \min_{i \in \{i_1, \ldots, i_k\}}\left(\|v_{\perp i}\| - \|v_{\perp i}\|\right)$ then $U(B_\delta(x,v)) = U(x,v)$ hence, in particular, it is upper semi continuous. With a similar argument it is possible to prove that $U(x,v)$ is upper semi continuous for every $(x,v) \in C_4$. This establishes the well-posedness of (14).

Now, let $(x(\cdot),v(\cdot))$ be a solution of (14). Let T the minimal time needed to reach the consensus, that is T is the smallest number such that $V(T) = \gamma(X(T))^2$, with the convention that $T = +\infty$ if the system does not reach consensus. Let $t \in (0,T)$, then $V(t) > \gamma(X(t))^2$. Thus the trajectory $(x(\cdot),v(\cdot))$ is in C_3 or C_4 and there exist indices i_1, \ldots, i_k in $\{1, \ldots, N\}$ such that $\|v_{\perp i_1}(t)\| = \cdots = \|v_{\perp i_k}(t)\|$ and $\|v_{\perp i_j}(t)\| > \|v_{\perp j}(t)\|$ for every $j \notin \{i_1, \ldots, i_k\}$. Hence if $u(t) \in U(x(t),v(t))$ then

$$u_j(t) = \begin{cases} -\alpha_j \frac{v_{\perp j}(t)}{\|v_{\perp j}(t)\|} & \text{if } j \in \{i_1, \ldots, i_k\}, \\ 0 & \text{otherwise}, \end{cases}$$

11
where \(\sum_{j=1}^{k} \alpha_{ij} = M \). Then,

\[
\frac{d}{dt} V(t) = \frac{d}{dt} B(v(t), v(t)) \\
\leq 2B(u(t), v(t)) \\
= \frac{2}{N} \sum_{i=1}^{N} \langle u_i(t), v_{\perp_i}(t) \rangle \\
= -\frac{2}{N} \sum_{j=1}^{k} \alpha_{ij} \| v_{\perp_j}(t) \| \\
= -\frac{2M}{N} \| v_{\perp_j}(t) \| \\
\leq -\frac{2M}{N} \sqrt{V(t)}.
\]

For clarity, notice that in the last inequality we used the maximality of \(\| v_{\perp_1}(t) \| \) for which

\[
\frac{N}{N^2} \| v_{\perp_1}(t) \|^2 \geq \frac{1}{N^2} \sum_{j=1}^{N} \| v_{\perp_j}(t) \|^2,
\]

or

\[
\frac{\sqrt{N}}{N} \| v_{\perp_1}(t) \| \geq \frac{1}{\sqrt{N}} \left(\frac{1}{N} \sum_{j=1}^{N} \| v_{\perp_j}(t) \|^2 \right)^{1/2},
\]

and eventually

\[
-\frac{1}{N} \| v_{\perp_1}(t) \| \leq -\frac{1}{N} \sqrt{V(t)}.
\]

Let \(V_0 = V(0) \) and \(X_0 = X(0) \). It follows from Lemma 5 in Appendix, or simply by direct integration, that

\[
V(t) \leq \left(\sqrt{V_0} - \frac{M}{N} t \right)^2,
\]

and

\[
X(t) \leq 2X_0 + \frac{N^4}{2M^2} V_0^2 = \bar{X}.
\]

Note that the time \(T \) needed to steer the system in the consensus region is not larger than

\[
T_0 = \frac{N}{M} \left(\sqrt{V_0} - \gamma(\bar{X}) \right),
\]

and in particular it is finite. Indeed, for every \(t > T_0 \) we have

\[
\sqrt{V(t)} < \sqrt{V(T_0)} \leq \sqrt{V_0} - \frac{M}{N} T_0 = \gamma(\bar{X}) \leq \gamma(X(t)),
\]

and Proposition 1, in particular (7), implies that the system is in the consensus region.

Since we have \(V(t) = B(v(t), v(t)) < \gamma(X(t))^2 \) for every \(t \geq T \), it follows that \((x(t), v(t)) \in C_1 \), which implies that \(U(x(t), v(t)) = \{0\} \). Then by Lemma 1 we infer that \(V(t) \) tends to 0.

Within the set \(U(x, v) \) as in Definition 3, which in general does not contain only sparse solutions, there are actually selections with maximal sparsity.
Definition 4. We select the componentwise sparse feedback control \(u^o = u^o(x, v) \in U(x, v) \) according to the following criterion:

- if \(B(v, v) < \gamma(x)^2 \), then \(u^o = 0 \),
- if \(B(v, v) \geq \gamma(B(x, x))^2 \), let \(i \in \{1, \ldots, N\} \) be the smallest index such that
 \[
 \|v_{\perp i}\| \geq \gamma(B(x, x)) \quad \text{and} \quad \|v_{\perp j}\| \geq \|v_{\perp i}\| \quad \text{for every } j = 1, \ldots, N,
 \]
 then
 \[
 u^o_i = -M \frac{v_{\perp i}}{\|v_{\perp i}\|} \quad \text{and} \quad u^o_j = 0 \quad \text{for every } j \neq i.
 \]

We would like to prove that actually there exists a solution to (14) which uses exclusively the componentwise sparse control \(u^o \) as in Definition 4, i.e.,

\[
z(t) = z_0 + \int_0^t (f(z(s)) + u^o(z(s))) \, ds, \quad z = (x, v), \quad f(z) = (v, -L_x v),
\]

is an absolutely continuous solution of (14) in the sense of Clarke, Ledyaev, Sontag, and Subbotin [12]. To do that, we will first construct piecewise \(C^1 \) solutions by sampling in time the componentwise sparse feedback control \(u^o \), and then we will show, by a compactness argument, that such sampled solutions actually converge uniformly to the one in (18). In particular we shall prove in Section 2.4 the following formal statement.

Theorem 2. For every \(M > 0 \) there exists a solution of (14) associated with the componentwise sparse control \(u^o \) as defined in Definition 4.

Let us stress that, as a byproduct of our analysis, we shall eventually construct practical feedback controls which are both componentwise and time sparse.

2.3 Time sparse feedback stabilization

Theorem 1 gives the existence of a feedback control whose behavior may be, in principle, very complicated and that may be nonsparse. In this section we are going to exploit the variational principle (11) to give an explicit construction of a piecewise constant and componentwise sparse control steering the system to consensus. The idea is to take a selection of a feedback in \(U(x, v) \) which has at most one nonzero component for every \((x, v) \in (\mathbb{R}^d)^{N} \), as in Definition 4, and then sample it to avoid chattering phenomena (see, e.g., [69]).

The following definition of solution for discontinuous feedback has been given in [12].

Definition 5 (Sampling solution). Let \(U \subset \mathbb{R}^m \), \(f: \mathbb{R}^n \times U \mapsto f(x, u) \) be continuous and locally Lipschitz in \(x \) uniformly on compact subset of \(\mathbb{R}^n \times U \). Given a feedback \(u: \mathbb{R}^n \to U \), \(\tau > 0 \), and \(x_0 \in \mathbb{R}^n \) we define the sampling solution of the differential system

\[
\dot{x} = f(x, u(x)), \quad x(0) = x_0,
\]

as the continuous (actually piecewise \(C^1 \)) function \(x: [0, T] \to \mathbb{R}^n \) solving recursively for \(k \geq 0 \)

\[
\dot{x}(t) = f(x(t), u(x(k\tau))), \quad t \in [k\tau, (k+1)\tau]
\]

using as initial value \(x(k\tau) \), the endpoint of the solution on the preceding interval, and starting with \(x(0) = x_0 \). We call \(\tau \) the sampling time.
Theorem 3. Fix $M > 0$ and consider the control u^o law given by Definition 4. Then for every initial condition $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ there exists $\tau_0 > 0$ small enough, such that for all $\tau \in (0, \tau_0]$ the sampling solution of (9) associated with the control u^o, the sampling time τ, and initial datum (x_0, v_0) reaches the consensus region in finite time.

Remark 5. The maximal sampling time τ_0 depends on the number of agents N, the $\ell_1^N - \ell_2^N$-norm bound M on the control, the initial conditions (x_0, v_0), and the rate of communication function $a(\cdot)$. The precise bounding condition (19) is given in the proof below. Moreover, as in Remark 4, the sampled control is switched-off as soon as the sampled trajectory enters the consensus region defined by (7). This occurs within time $T \leq T_0 = \frac{2N}{M}(\sqrt{V(0)} - \gamma(X))$, where $X = 2B(x_0, x_0) + \frac{2N^4}{M^2}B(v_0, v_0)^2$.

Proof of Theorem 3. Let

$$\tilde{X} = 2B(x_0, x_0) + \frac{2N^4}{M^2}B(v_0, v_0)^2.$$

and let $\tau > 0$ satisfy the following condition

$$\tau \left(a(0)(1 + \sqrt{N})\sqrt{B(v_0, v_0)} + M\right) + \tau^2a(0)M \leq \frac{\gamma(X)}{2}. \quad (19)$$

Denote by (x, v) the sampling solution of System (9) associated with the control u^o, the sampling time τ, and the initial datum (x_0, v_0). Here $\lfloor \cdot \rfloor$ denotes the integer part of a real number. Let $\tilde{u}(t) = u^o(x(\tau t/\tau), v(\tau t/\tau))$ and denote for simplicity $u^o(t) = u^o(x(t), v(t))$, then $\tilde{u}(t) = u^o(\tau t/\tau)$.

Let $T > 0$ be the smallest time such that $\sqrt{V(T)} = \gamma(X)$ with the convention that $T = +\infty$ if $\sqrt{V(t)} > \gamma(X)$ for every $t \geq 0$. (If $\sqrt{V(0)} = \gamma(X)$ the system is in the consensus region and there is nothing to prove.) For almost every $t \in [0, T]$, and by denoting $n = \lfloor t/\tau \rfloor$, we have

$$\frac{d}{dt} V(t) = \frac{d}{dt} B(v(t), v(t)) \leq 2B(\tilde{u}(t), v(t)) = 2B(u^o(n\tau), v(t)). \quad (20)$$

Let i in $\{1, \ldots, N\}$ be the smallest index such that $\|v_{\perp,i}(n\tau)\| \geq \|v_{\perp,i}(n\tau)\|$ for every $k \neq i$, so that $u^o_i(n\tau) = -Mv_{\perp,i}(n\tau)/\|v_{\perp,i}(n\tau)\|$ and $u^o_k(n\tau) = 0$ for every $k \neq i$. Then (20) reads

$$\frac{d}{dt} V(t) \leq -\frac{2M}{N} \phi(t), \quad (21)$$

where

$$\phi(t) = \frac{\langle u^o_i(n\tau), v_{\perp,i}(n\tau) \rangle}{\|v_{\perp,i}(n\tau)\|}.$$

Note that

$$\phi(n\tau) = \|v_{\perp,i}(n\tau)\| \geq \sqrt{V(n\tau)}. \quad (22)$$

Moreover, by observing $\|v_{\perp,i}(t)\|^2 \leq N \left(\frac{1}{N} \sum_{j=1}^{N} \|v_{\perp,j}(t)\|^2\right)$, we have also the following estimates from above

$$-\phi(t) \leq \|v_{\perp,i}(t)\| \leq \sqrt{N} \sqrt{V(t)}. \quad (23)$$

We combine (23) and (21) to obtain

$$\frac{d}{dt} V(t) \leq \frac{2M}{\sqrt{N}} \sqrt{V(t)},$$
and, by integrating between \(s \) and \(t \), we get
\[
\sqrt{V(t)} \leq \sqrt{V(s)} + (t-s) \frac{M}{\sqrt{N}}.
\] (24)

Now, we prove that \(V \) is decreasing in \([0, T]\). Notice that
\[
\frac{d}{dt} v_{\perp}(t) = \frac{1}{N} \sum_{k \neq i} a(\|x_k - x_i\|)(v_{\perp_k}(t) - v_{\perp_i}(t)) + \vec{u}_i - \frac{1}{N} \sum_{t=1}^{N} \vec{u}_t
\]
\[
= \frac{1}{N} \sum_{k \neq i} a(\|x_k - x_i\|)(v_{\perp_k}(t) - v_{\perp_i}(t)) - \frac{M}{N} \sum_{k \neq i} v_{\perp_i}(n\tau) \|v_{\perp_k}(n\tau)\|^{-1}.
\]

Moreover, observing that by Cauchy-Schwarz
\[
\sum_{k=1}^{N} \|v_{\perp_k}\| \leq \sqrt{N} \left(\sum_{k=1}^{N} \|v_{\perp_k}\|^2 \right)^{1/2} = N \left(\frac{1}{N} \sum_{k=1}^{N} \|v_{\perp_k}\|^2 \right)^{1/2},
\]
we have the following sequence of estimates
\[
\frac{1}{N} \sum_{k \neq i} \|v_{\perp_k}(t) - v_{\perp_i}(t)\| \leq \frac{1}{N} \sum_{k \neq i} \|v_{\perp_k}(t)\| + \|v_{\perp_i}(t)\| \leq \frac{1}{N} \sum_{k=1}^{N} \|v_{\perp_k}(t)\| + \sqrt{N} \sqrt{V(t)} \leq (1 + \sqrt{N}) \sqrt{V(t)}.
\]

Hence
\[
\frac{d}{dt} \phi(t) = \frac{\langle v_{\perp_i}(n\tau), v(t)\rangle}{\|v_{\perp_i}(n\tau)\|}
\]
\[
= \frac{1}{N\|v_{\perp_i}(n\tau)\|} \sum_{k \neq i} a(\|x_k - x_i\|) \langle v(t)_{\perp_k} - v(t)_{\perp_i}, v_{\perp_i}(n\tau) \rangle - \frac{N-1}{N} M
\]
\[
\geq -\frac{1}{N} a(0) \sum_{k \neq i} \|v(t)_{\perp_i} - v(t)_{\perp_k}\| - M
\]
\[
\geq -a(0)(1 + \sqrt{N}) \sqrt{V(t)} - M.
\]

By mean-value theorem there exists \(\xi \in [n\tau, t] \) such that
\[
\phi(t) \geq \phi(n\tau) - (t-n\tau) \left(a(0)(1 + \sqrt{N}) \sqrt{V(\xi)} + M \right).
\]

Then, using the growth estimate (24) on \(\sqrt{V} \), and estimating \(\sqrt{V(\xi)} \) from above by \(\sqrt{V(n\tau)} + \tau M/\sqrt{N} \), we have
\[
\phi(t) \geq \phi(n\tau) - \tau \left(a(0)(1 + \sqrt{N}) \sqrt{V(n\tau)} + M \right) - \tau^2 2a(0) M.
\]

Plugging this latter expression again in (21) and using (22), we have
\[
\frac{d}{dt} V(t) \leq -\frac{2M}{N} \left(\sqrt{V(n\tau)} - \tau \left(a(0)(1 + \sqrt{N}) \sqrt{V(n\tau)} + M \right) - \tau^2 2a(0) M \right).
\] (25)
We prove by induction on n that $V(t)$ is decreasing on $[0, T]$. Let us start on $[0, \tau]$ by assuming $\sqrt{V(0)} > \gamma(X)$, otherwise we are already in the consensus region and there is nothing further to prove. By (25) and using the condition (19) on τ, we infer
\[
\frac{d}{dt} V(t) \leq -\frac{2M}{N} \left(\sqrt{V(0)} - \tau \left(a(0)(1 + \sqrt{N}) \sqrt{V(0)} + M \right) - \tau^2 a(0)M \right)
\leq -\frac{2M}{N} \left(\gamma(X) - \frac{\gamma(X)}{2} \right)
= -\frac{M}{N} \gamma(X) < 0.
\] (26)

Now assume that V is actually decreasing on $[0, n\tau]$, $n\tau < T$, and thus $\sqrt{V(n\tau)} > \gamma(X)$. Let us prove that V is decreasing also on $[n\tau, \text{min}\{T, (n+1)\tau\}]$. For every $t \in (n\tau, \text{min}\{T, (n+1)\tau\})$, we can recall again equation (25), and use the inductive hypothesis of monotonicity for which $\sqrt{V(0)} \leq \sqrt{V(n\tau)}$, and the condition (19) on τ to show
\[
\frac{d}{dt} V(t) \leq -\frac{2M}{N} \left(\sqrt{V(n\tau)} - \tau \left(a(0)(1 + \sqrt{N}) \sqrt{V(n\tau)} + M \right) - \tau^2 a(0)M \right)
\leq -\frac{2M}{N} \left(\gamma(X) - \tau \left(a(0)(1 + \sqrt{N}) \sqrt{V(0)} + M \right) - \tau^2 a(0)M \right)
\leq -\frac{M}{N} \gamma(X) < 0.
\]

This proves that V is decreasing on $[0, T]$.

Let us now use a bootstrap argument to derive an algebraic rate of convergence towards the consensus region. For every $t \in (0, T)$ by using (25), the fact that V is decreasing, and the condition (19) on τ we have
\[
\frac{d}{dt} V(t) \leq -\frac{2M}{N} \left(\sqrt{V(n\tau)} - \frac{\gamma(X)}{2} \right)
\leq -\frac{M}{N} \sqrt{V(t)}.
\]

Then
\[
\sqrt{V(t)} \leq \sqrt{V(0)} - \frac{M}{2N} t,
\]
for every $t \in [0, T]$. Finally we get $T \leq 2N(\sqrt{V(0)} - \gamma(X))/M$. \qed

2.4 Componentwise sparse selections are absolutely continuous solutions

We are now ready to prove Theorem 2, which states, in particular, that there exists a componentwise sparse stabilizer for System (9) with at most one nonzero component.

\textbf{Proof of Theorem 2.} Denote $z = (x, v)$ an element of $(\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$. Let u^o be the sparse feedback of Definition 4. Fix $z_0 = (x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$. Let τ be an admissible sampling time arbitrarily small as in Proposition 3 which determines a sampling solutions which converges to consensus. For every $n > 1/\tau$ consider the sampling solution z_n of (9) associated with the feedback u, the sampling time $1/n$, and the initial data z_0. Therefore if $u_n(t) = u^o(z([nt]/n))$ and $f(z) = (v, -L_xv)$ we have that
\[
z_n(t) = z_0 + \int_0^t (f(z_n(s)) + u_n(s)) \, ds.
\]
For a suitable constant $\alpha > 0$, the linear growth estimate $\|f(z)\| \leq \alpha(\|z\| + 1)$ holds, so that, in particular we have
$$\|z_n(t)\| \leq \frac{e^{\alpha t}(\alpha\|z_0\| + \alpha + M) - \alpha - M}{\alpha},$$
where the bound is uniform in n. Therefore the sequence of continuous functions $(z_n)_{n \in \mathbb{N}}$ is equi-bounded by the constant
$$C = \frac{e^{\alpha T_0}(\alpha\|z_0\| + \alpha + M) - \alpha - M}{\alpha}.$$

The sequence $(z_n)_{n \in \mathbb{N}}$ is also equicontinuous. Indeed
$$\|z_n(t) - z_n(s)\| \leq \int_s^t (\|f(z_n(\xi))\| + M) \, d\xi \leq (t-s)(\alpha(C+1)+M)$$
for every n. For every $\varepsilon > 0$, if $\delta = \varepsilon/(\alpha(C+1)+M) > 0$ then for every n one has $\|z_n(t) - z_n(s)\| < \varepsilon$ whenever $|t-s| < \delta$. By Ascoli–Arzelà Theorem, up to subsequences, z_n converges uniformly to an absolutely continuous function z. By continuity $f(z_n(t))$ converges to $f(z(t))$ for almost every t. Moreover, by definition $u_n(t)$ tends to $u^\circ(z(t))$ for almost every t. By the dominated convergence Theorem, the limit function z satisfies
$$z(t) = z_0 + \int_0^t (f(z(s)) + u^\circ(z(s))) \, ds,$$
and it is therefore a solution of the differential inclusion (14) associated with the sparse selection u°.

\[\] 3 Sparse is Better

3.1 Instantaneous optimality of componentwise sparse controls

The componentwise sparse control u° of Definition 4 corresponds to the strategy of acting, at each instant of time, on the agent whose consensus parameter is farthest from the mean and to steer it to consensus. Since this control strategy is designed to act on at most one agent at each time, we claim that in some sense it is instantaneously the “best one”. To clarify this notion of instantaneous optimality which also implies its greedy nature, we shall compare this strategy with all other feedback strategies $u(x, v) \in U(x, v)$ and discuss their efficiency in terms of the instantaneous decay rate of the functional V.

Proposition 3. The feedback control $u^\circ(t) = u^\circ(x(t), v(t))$ of Definition 4, associated with the solution $((x(t), v(t))$ of Theorem 2, is a minimizer of
$$\mathcal{R}(t, u) = \frac{d}{dt} V(t),$$
over all possible feedbacks controls in $U(x(t), v(t))$. In other words, the feedback control $u^\circ(t)$ is the best choice in terms of the rate of convergence to consensus.
Proof. Consider
\[
\frac{d}{dt} V(t) = \frac{1}{N} \frac{d}{dt} \sum_{i=1}^{N} \| v_{\perp_i} \|^2 \\
= \frac{2}{N} \sum_{i=1}^{N} \langle \dot{v}_{\perp_i}, v_{\perp_i} \rangle \\
= \frac{2}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha(\| x_i - x_j \|)(\langle v_{\perp_i}, v_{\perp_j} \rangle - \| v_{\perp_i} \|^2) + \frac{2}{N} \sum_{i=1}^{N} \langle u_i^0 - \frac{1}{N} \sum_{j=1}^{N} u_j^0, v_{\perp_i} \rangle.
\]

Now consider controls \(u_1, \ldots, u_N \) of the form (13), then
\[
\sum_{i=1}^{N} \langle u_i - \frac{1}{N} \sum_{j=1}^{N} u_j, v_{\perp_i} \rangle = - \sum_{\{i \mid v_{\perp_i} \neq 0\}} \alpha_i \| v_{\perp_i} \|^2 + \frac{1}{N} \sum_{\{i \mid v_{\perp_i} \neq 0\}} \sum_{\{j \mid v_{\perp_j} \neq 0\}} \alpha_j \frac{\langle v_{\perp_i}, v_{\perp_j} \rangle}{\| v_{\perp_j} \|} \\
= - \sum_{\{i \mid v_{\perp_i} \neq 0\}} \alpha_i \| v_{\perp_i} \|^2 + \frac{1}{N} \sum_{\{j \mid v_{\perp_j} \neq 0\}} \left(\sum_{\{i \mid v_{\perp_i} \neq 0\}} \alpha_j \frac{\langle v_{\perp_i}, v_{\perp_j} \rangle}{\| v_{\perp_j} \|} \right) \\
= - \sum_{\{i \mid v_{\perp_i} \neq 0\}} \alpha_i \| v_{\perp_i} \|^2
\]
since, by definition, \(\sum_{i=1}^{N} v_{\perp_i} = 0 \). Then maximizing the decay rate of \(V \) is equivalent to solve
\[
\max \sum_{j=1}^{N} \alpha_j \| v_{\perp_j} \|, \quad \text{subject to } \alpha_j \geq 0, \sum_{j=1}^{N} \alpha_j \leq M. \tag{27}
\]
In fact, if the index \(i \) is such that \(\| v_{\perp_i} \| \geq \| v_{\perp_j} \| \) for \(j \neq i \) as in the definition of \(u^0 \), then
\[
\sum_{j=1}^{N} \alpha_j \| v_{\perp_j} \| \leq \| v_{\perp_i} \| \sum_{j=1}^{N} \alpha_j \leq M \| v_{\perp_i} \|.
\]
Hence the control \(u^0 \) is a maximizer of (27). This variational problem has a unique solution whenever there exists a unique \(i \in \{1, \ldots, N\} \) such that \(\| v_{\perp_i} \| > \| v_{\perp_j} \| \) for every \(j \neq i \). \(\square \)

This result is somewhat surprising with respect to the perhaps more intuitive strategy of activating controls on more agents or even (although not realistic) all the agents at the same time as given in Proposition 2. This can be viewed as a mathematical description of the following general principle:

A policy maker, who is not allowed to have prediction on future developments, should always consider more favorable to intervene with stronger actions on the fewest possible instantaneous optimal leaders than trying to control more agents with minor strength.

Example 2. The limit case when the action of the sparse stabilizer and of a control acting on all agents is equivalent is represented by the symmetric case in which there exists a set of indices \(\Lambda = \{i_1, i_2, \ldots, i_k\} \) such that \(\| v_{\perp_{i_1}} \| = \| v_{\perp_{i_m}} \| \) and \(\| v_{\perp_{i_j}} \| > \| v_{\perp_{i_1}} \| \) for every \(j \notin \Lambda \) and for all \(i_1, i_m \in \Lambda \). In this case, indeed, the equation (27) of the proof of Proposition 3 has more solutions. Consider four
agents on the plane \mathbb{R}^2 with initial positions $x_1(0) = (-1, 0), x_2(0) = (0, 1), x_3(0) = (1, 0), x_4(0) = (0, -1)$ and velocities $v_1(0) = (-1, 0), v_2(0) = (0, 1), v_3(0) = (1, 0), v_4(0) = (0, -1)$. Let the interaction function be $a(x) = 2/(1 + x^2)$ and the bound on the control be $M = 1$. In Figure 1 we represent the time evolution of the velocities of this system. The free evolution of the system is represented in red. The evolution under the action of the sparse control u^c is in blue while in green the system under the action of a “distributed” control acting on all the four agents simultaneously with $\alpha_1 = \cdots = \alpha_4 = 1/4$. The system reaches the consensus region within a time $t = 3.076$ under the action of both the distributed and the sparse control.

Example 3. We consider a group of 20 agents starting with positions on the unit circle and with velocities pointing in various directions. Namely,

$$x_i(0) = (\cos(i + \sqrt(2)), \cos(i + 2\sqrt(2))) \text{ and } v_i(0) = (2 \sin(i \sqrt(3) - 1), 2 \sin(i \sqrt(3) - 2)).$$

The initial configuration is represented in Figure 2. We consider that the interaction potential, as in the Cucker–Smale system is of the form (3) with $K = \sigma = \beta = 1$, that is

$$a(x) = \frac{1}{1 + x^2}.$$

The sufficient condition for consensus (7) then reads

$$\sqrt{V} \leq \frac{1}{\sqrt{2N}} \left(\frac{\pi}{2} - \arctan(\sqrt{2NX}) \right).$$

The system in free evolution does not tend to consensus, as showed in Figure 3. After a time of 100 the quantity $\sqrt{V(100)} \simeq 1.23$ while $\gamma(X(100)) \simeq 0.10$.

On the other hand the componentwise sparse control steers the system to consensus in time $t = 22.3$. Moreover the totally distributed control, acting on the whole group of 20 agents, steers the system in a larger time, $t = 27.6$. The time evolution of \sqrt{V} and of $\gamma(X)$ is represented in Figure 4. In Figure 5 the detail of the moment in which the two systems enter the consensus region.
Figure 2: The initial configuration of Example 3.

Figure 3: The time evolution for $t \in [0, 100]$ of $\sqrt{V(t)}$ (solid line) and of the quantity $\gamma(X(t))$ (dashed line). The system does not reach the consensus region.

Figure 4: Comparison between the actions of the componentwise sparse control and the totally distributed control. The time evolution for $t \in [0, 30]$ of $\sqrt{V(t)}$ (solid line in the sparse case and dash-dot line in the distributed case) and of $\gamma(X(t))$ (dashed line in the sparse case and dotted line in the distributed case).
Figure 5: Detail of the time evolution of $\sqrt{V(t)}$ and of $\gamma(X(t))$ under the action of the componentwise sparse control and the completely distributed control near the time in which the two systems enter the consensus region. The solid line represents the evolution of $\sqrt{V(t)}$ under the action of the componentwise sparse control and the dash-dot line the evolution of $\sqrt{V(t)}$ under the action of the distributed control. The dashed line represents the evolution of $\gamma(X(t))$ under the action of the componentwise sparse control and the dotted line the evolution of $\gamma(X(t))$ under the action of the distributed control.

3.2 Complexity of consensus

The problem of determining minimal data rates for performing control tasks has been considered for more than twenty years. Performing control with limited data rates incorporates ideas from both control and information theory and it is an emerging area, see the survey Nair, Fagnani, Zampieri and Evans [44], and the references within the recent paper [15]. Similarly, in Information Based Complexity [46, 47], which is a branch of theoretical numerical analysis, one investigates which are the minimal amount of algebraic operations required by any algorithm in order perform accurate numerical approximations of functions, integrals, solutions of differential equations etc., given that the problem applies on a class of functions or on a class of solutions.

We would like to translate such concepts of universal complexity (universal because it refers to the best possible algorithm for the given problem over an entire class of functions) to our problem of optimizing the external intervention on the system in order to achieve consensus.

For that, and for any vector $w \in \mathbb{R}^d$, let us denote $\text{supp}(w) := \{i \in \{1, \ldots, d\} : u_i \neq 0\}$ and $#\text{supp}(w)$ its cardinality. Hence, we define the minimal number of external interventions as the sum of the actually activated components of the control $#\text{supp}(u(t))$ at each switching time t_ℓ, which a policy maker should provide by using any feedback control strategy u in order to steer the system to consensus at a given time T. Not being the switching times $t_0, t_1, \ldots, t_\ell, \ldots$ specified a priori, such a sum simply represents the amount of communication requested to the policy maker to activate and deactivate individual controls by informing the corresponding agents of the current mean consensus parameter \bar{v} of the group. (Notice that here, differently from, e.g., [44], we do not yet consider quantization of the information.)

More formally, given a suitable compact set $K \subset (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ of initial conditions, the $\ell_1^N - \ell_2^d$-norm control bound $M > 0$, the set of corresponding admissible feedback controls $\mathcal{U}(M) \subset B_{\ell_1^N - \ell_2^d}(M)$, the number of agents $N \in \mathbb{N}$, and an arrival time $T > 0$, we define the consensus
number as
\[
n := n(N, \mathcal{U}(M), \mathcal{K}, T) = \inf_{u \in \mathcal{U}(M)} \left\{ \sup_{(x_0, v_0) \in \mathcal{K}} \left\{ \sum_{\ell=0}^{k-1} \# \text{supp}(u(t_\ell)) : (x(T; u), v(T; u)) \text{ is in the consensus region} \right\} \right\}.
\]

Although it seems still quite difficult to give a general lower bound to the consensus numbers, Theorem 3 actually allows us to provide at least upper bounds: for \(T_0 = T_0(M, N, x_0, v_0, a(\cdot)) = \frac{2N}{M} (\sqrt{V(0)} - \gamma(\bar{X})) \), and \(\tau_0 = \tau_0(M, N, x_0, v_0, a(\cdot)) \) as in Theorem 3 and Remark 5, we have the following upper estimate
\[
n(N, \mathcal{U}(M), \mathcal{K}, T) \leq \begin{cases} \infty, & T < T_0 \\ \sup_{(x_0, v_0) \in \mathcal{K}} T_0(M, N, x_0, v_0, a(\cdot)), & T \geq T_0 \end{cases}.
\]

Depending on the particular choice of the rate of communication function \(a(\cdot) \), such upper bounds can be actually computed, moreover, one can also quantify them over a class of communication functions \(a(\cdot) \) in a bounded set \(\mathcal{A} \subset L^1(\mathbb{R}_+) \), simply by estimating the supremum.

The result of instantaneous optimality achieved in Proposition 3 suggests that the sampling strategy of Theorem 3 is likely to be close to optimality in the sense that the upper bounds (28) should be close to the actual consensus numbers. Clarifying this open issue will be the subject of further investigations which are beyond the scope of this paper.

4 Sparse Controllability Near the Consensus Manifold

In this section we address the problem of controllability near the consensus manifold. The stabilization results of Section 2 provide a constructive strategy to stabilize the multi-agent system (9): the system is first steered to the region of consensus, and then in free evolution reaches consensus in infinite time. Here we study the local controllability near consensus, and infer a global controllability result to consensus.

The following result states that, almost everywhere, local controllability near the consensus manifold is possible by acting on only one arbitrary component of a control, in other words whatever is the controlled agent it is possible to steer a group, sufficiently close to a consensus point, to any other desired close point. Recall that the consensus manifold is \((\mathbb{R}^d)^N \times \mathcal{V}_j \), where \(\mathcal{V}_j \) is defined by (5).

Proposition 4. For every \(M > 0 \), for almost every \(\bar{x} \in (\mathbb{R}^d)^N \) and for every \(\bar{v} \in \mathcal{V}_j \), for every time \(T > 0 \), there exists a neighborhood \(\mathcal{W} \) of \((\bar{x}, \bar{v})\) in \((\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \) such that, for all points \((x_0, v_0)\) and \((x_1, v_1)\) of \(\mathcal{W} \), for every index \(i \in \{1, \ldots, N\} \), there exists a componentwise and time sparse control \(u \) satisfying the constraint (8), every component of which is zero except the \(i^{th} \) (that is, \(u_j(t) = 0 \) for every \(j \neq i \) and every \(t \in [0, T] \)), steered the control system (9) from \((x_0, v_0)\) to \((x_1, v_1)\) in time \(T \).

Proof. Without loss of generality we assume \(i = 1 \), that is we consider the system (9) with a control acting only on the dynamics of \(v_1 \). Given \((\bar{x}, \bar{v}) \in (\mathbb{R}^d)^N \times \mathcal{V}_j \) we linearize the control system (9) at the consensus point \((\bar{x}, \bar{v})\), and get \(d \) decoupled systems on \(\mathbb{R}^N \times \mathbb{R}^N \)
\[
\begin{cases}
\dot{x}^k = v^k \\
\dot{v}^k = -L_{\bar{x}}v^k + Bu,
\end{cases}
\]
for every \(k = 1, \ldots, d \) where
\[
B = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.
\]

22
To prove the local controllability result, we use the Kalman condition. It is sufficient to consider the
decoupled control sub-systems corresponding to each value of $k = 1, \ldots, d$. Moreover the equations for x^k
do not affect the Kalman condition, the x^k plays only the role of an integrator. Therefore we
reduce the investigation of the Kalman condition for a linear system on \mathbb{R}^N of the form $\dot{v} = Av + Bu$
where $A = -L_x$. Since A is a Laplacian matrix then there exists an orthogonal matrix P such that
\[
D := P^{-1}AP = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \lambda_N
\end{pmatrix}.
\]
Moreover since $(1, \ldots, 1) \in \ker A$, we can choose all the coordinates of the first column of P and thus
the first line of $P^{-1} = P^T$ are equal to 1. We denote the first column of P^{-1} by
\[
B_1 = \begin{pmatrix}
1 \\
\alpha_2 \\
\vdots \\
\alpha_N
\end{pmatrix}.
\]
Notice that $B_1 = P^{-1}B$. Denoting the Kalman matrix of the couple (A, B) by
\[
K(A, B) = (B, AB, \ldots, A^{N-1}B)
\]
one has
\[
K(P^{-1}AP, P^{-1}B) = P^{-1}K(A, B)
\]
and hence it suffices to investigate the Kalman condition on the couple of matrices (D, B_1). Now,
there holds
\[
K(D, B_1) = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
\alpha_2 & \lambda_2\alpha_2 & \lambda_2^2\alpha_2 & \cdots & \lambda_2^{N-1}\alpha_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_N & \lambda_N\alpha_N & \lambda_N^2\alpha_N & \cdots & \lambda_N^{N-1}\alpha_N
\end{pmatrix}.
\]
This matrix is invertible if and only if all eigenvalues $0, \lambda_2, \ldots, \lambda_N$ are pairwise distinct, and all
coefficients $\alpha_2, \ldots, \alpha_N$ are nonzero. It is clear that these conditions can be translated as algebraic
conditions on the coefficients of the matrix A.

Hence, for almost every $\tilde{x} \in (\mathbb{R}^d)^N$ and for every $\tilde{v} \in V_I$, the Kalman condition holds at (\tilde{x}, \tilde{v}).
For such a point, this ensures that the linearized system at the equilibrium point (\tilde{x}, \tilde{v}) is controllable
(in any time T). Now, using a classical implicit function argument applied to the end-point mapping
(see e.g. [64]), we infer the desired local controllability property in a neighborhood of (\tilde{x}, \tilde{v}). By
construction, the controls are componentwise and time sparse. To prove the more precise statement of
Remark 7, it suffices to invoke the chain of arguments developed in [59, Lemma 2.1] and [33, Section
2.1.3], combining classical needle-like variations with a conic implicit function theorem, leading to the
fact that the controls realizing local controllability can be chosen as a perturbation of the zero control
with a finite number of needle-like variations.

\[\square\]

Remark 6. Actually the set of points $x \in (\mathbb{R}^d)^N$ for which the condition is not satisfied can be
expressed as an algebraic manifold in the variables $a(||x_i - x_j||)$. For example, if x is such that all
mutual distances $||x_i - x_j||$ are equal, then it can be seen from the proof of this proposition that
the Kalman condition does not hold, hence the linearized system around the corresponding consensus
point is not controllable.
Theorem 4. For every $(\tilde{x}_0, \tilde{v}_0) \in (\mathbb{R}^d)^N \times \mathcal{V}_f$, for almost every $(\tilde{x}_1, \tilde{v}_1) \in (\mathbb{R}^d)^N \times \mathcal{V}_f$, for every $\delta > 0$, and for every $i = 1, \ldots, N$ there exist $T > 0$ and a control $u : [0, T] \to [0, \delta]^d$ steering the system from (\tilde{x}, \tilde{v}) to (\tilde{x}, \tilde{v}), with the property $u_j(t) = 0$ for every $j \neq i$ and every $t \in [0, T]$.

Proof. Since the manifold of consensus points $(\mathbb{R}^d)^N \times \mathcal{V}_f$ is connected, it follows that, for all consensus points $(\tilde{x}_0, \tilde{v}_0)$ and $(\tilde{x}_1, \tilde{v}_1)$, there exists a C^1 path of consensus points $(\tilde{x}_\tau, \tilde{v}_\tau)$ joining $(\tilde{x}_0, \tilde{v}_0)$ and $(\tilde{x}_1, \tilde{v}_1)$, and parametrized by $\tau \in [0, 1]$. Then the we apply iteratively the local controllability result of Proposition 4, on a series of neighborhoods covering this path of consensus points (his can be achieved by compactness). At the end, to reach exactly the final consensus point $(\tilde{x}_1, \tilde{v}_1)$, it is required that the linearized control system at $(\tilde{x}_1, \tilde{v}_1)$ be controllable, whence the “almost every” statement. \hfill \Box

Note that on the one hand the control u can be of arbitrarily small amplitude, on the other hand the controllability time T can be large.

Now, it follows from the results of the previous section that we can steer any initial condition $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$ to the consensus region defined by (7), by means of a componentwise and time sparse control. Once the trajectory has entered this region, the system converges naturally (i.e., without any action: $u = 0$) to some point of the consensus manifold $(\mathbb{R}^d)^N \times \mathcal{V}_f$, in infinite time. This means that, for some time large enough, the trajectory enters the neighborhood of controllability whose existence is claimed in Proposition 4, and hence can be steered to the consensus manifold within finite time. Theorem 4 ensures the existence of a control able move the system on the consensus manifold in order to reach almost any other desired consensus point. Hence we have obtained the following corollary.

Corollary 1. For every $M > 0$, for every initial condition $(x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N$, for almost every $(x_1, v_1) \in (\mathbb{R}^d)^N \times \mathcal{V}_f$, there exist $T > 0$ and a componentwise and time sparse control $u : [0, T] \to (\mathbb{R}^d)^N$, satisfying (8), such that the corresponding solution starting at (x_0, v_0) arrives at the consensus point (x_1, v_1) within time T.

5 Sparse Optimal Control of the Cucker-Smale Model

In this section we investigate the sparsity properties of a finite time optimal control with respect to a cost functional involving the discrepancy of the state variables to consensus and a $\ell^1_N - \ell^0_d$-norm term of the control.

While the greedy strategies based on instantaneous feedback as presented in Section 2 model the perhaps more realistic situation where the policy maker is not allowed to make future predictions, the optimal control problem presented in this section actually describes a model where the policy maker is allowed to see how the dynamics can develop. Although the results of this section do not lead systematically to sparsity, what is interesting to note is that the lacunarity of sparsity of the optimal control is actually encoded in terms of the codimension of certain manifolds, which have actually null Lebesgue measure in the space of cotangent vectors.
We consider the optimal control problem of determining a trajectory solution of (9), starting at
\((x(0), v(0)) = (x_0, v_0) \in (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N\), and minimizing a cost functional which is a combination of
the distance from consensus with the \(\ell_1^N - \ell_2^d\)-norm of the control (as in [28, 29]), under the control
constraint (8). More precisely, the cost functional considered here is, for a given
\([0, T]\), which is characterized as follows. According to the Pontryagin Minimum Principle (see [54]),
there exist absolutely continuous functions \(p_x(\cdot), v(\cdot)\) (called adjoint vectors), defined on \([0, T]\)
and taking their values in \((\mathbb{R}^d)^N\), satisfying the adjoint equations
\[
\begin{align*}
\dot{p}_x &= -\frac{1}{N} \sum_{j=1}^{N} a(\|x_j - x_i\|)(x_j - x_i, v_j - v_i)(p_{v_j} - p_{v_i}), \\
\dot{v}_i &= -p_{x_i} - \frac{1}{N} \sum_{j \neq i} a(\|x_j - x_i\|)(p_{v_j} - p_{v_i}) - 2v_i + 2 \sum_{j=1}^{N} v_j,
\end{align*}
\] (30)
almost everywhere on \([0, T]\), and \(p_x(T) = v_i(T) = 0\), for every \(i = 1, \ldots, N\). Moreover, for almost
every \(t \in [0, T]\) the optimal control \(u(t)\) must minimize the quantity
\[
\sum_{i=1}^{N} \langle p_{v_i}(t), w_i \rangle + \gamma \sum_{i=1}^{N} \|w_i\|,
\] (31)
over all possible \(w = (w_1, \ldots, w_N) \in (\mathbb{R}^d)^N\) satisfying \(\sum_{i=1}^{N} \|w_i\| \leq M\).

In analogy with the analysis in Section 2 we identify five regions \(O_1, O_2, O_3, O_4, O_5\) covering the
(cotangent) space \((\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N \times (\mathbb{R}^d)^N\):

\(O_1 = \{(x, v, p_x, p_v) \mid \|p_{v_i}\| < \gamma \text{ for every } i \in \{1, \ldots, N\}\},\)

\(O_2 = \{(x, v, p_x, p_v) \mid \text{there exists a unique } i \in \{1, \ldots, N\} \text{ such that } \|p_{v_i}\| = \gamma \text{ and } \|p_{v_j}\| < \gamma \text{ for every } j \neq i\},\)

\(O_3 = \{(x, v, p_x, p_v) \mid \text{there exists a unique } i \in \{1, \ldots, N\} \text{ such that } \|p_{v_i}\| > \gamma \text{ and } \|p_{v_j}\| > \|p_{v_j}\| \text{ for every } j \neq i\},\)

\(O_4 = \{(x, v, p_x, p_v) \mid \text{there exist } k \geq 2 \text{ and } i_1, \ldots, i_k \in \{1, \ldots, N\} \text{ such that } \|p_{v_{i_1}}\| = \|p_{v_{i_2}}\| = \cdots = \|p_{v_{i_k}}\| > \gamma \text{ and } \|p_{v_{i_{\ell}}} > \|p_{v_{i_j}}\| \text{ for every } j \neq \ell, \ell \in \{i_1, \ldots, i_k\}\},\)

\(O_5 = \{(x, v, p_x, p_v) \mid \text{there exist } k \geq 2 \text{ and } i_1, \ldots, i_k \in \{1, \ldots, N\} \text{ such that } \|p_{v_{i_1}}\| = \|p_{v_{i_2}}\| = \cdots = \|p_{v_{i_k}}\| = \gamma \text{ and } \|p_{v_{i_j}}\| < \gamma \text{ for every } j \neq \ell, \ell \in \{i_1, \ldots, i_k\}\}.\)

The subsets \(O_1 \text{ and } O_3\) are open, the submanifold \(O_2\) is closed (and of zero Lebesgue measure) and \(O_1 \cup O_2 \cup O_3\) is of full Lebesgue measure in \((\mathbb{R}^d)^N \times (\mathbb{R}^d)^N\). Moreover if an extremal \((x(\cdot), v(\cdot), p_x(\cdot), p_v(\cdot))\) solution of (9)-(30) is in \(O_1 \cup O_3\) along an open interval of time then the control is uniquely determined from (31) and is componentwise sparse. Indeed, if there exists an interval \(I \subset [0, T]\) such that
\((x(t), v(t), p_x(t), p_v(t)) \in O_1 \text{ for every } t \in I,\) then (31) yields \(u(t) = 0\) for almost every \(t \in I\). If
\((x(t), v(t), p_x(t), p_v(t)) \in O_3 \text{ for every } t \in I\) then (31) yields \(u_j(t) = 0\) for every \(j \neq i\) and \(u_i(t) = 25\)
The submanifolds O with 0 of the form the interval of time the extremal ($\parallel p_{v_1}(t) \parallel$ with $0 \leq \alpha \leq M$, for almost every $t \in I$. Finally, if $(x(t), v(t), p_x(t), p_v(t)) \in \mathcal{O}_2$ for every $t \in I$, then (31) does not determine $u(t)$ in a unique way: it yields that $u_j(t) = 0$ for every $j \neq i$ and $u_i(t) = -\alpha \parallel p_{v_1}(t) \parallel$ for every $t \in I$. However u is still componentwise sparse on I.

The submanifolds \mathcal{O}_4 and \mathcal{O}_5 are of zero Lebesgue measure. When the extremal is in these regions, the control is not uniquely determined from (31) and is not necessarily componentwise sparse. More precisely, if $(x(t), v(t), p_x(t), p_v(t)) \in \mathcal{O}_4 \cup \mathcal{O}_5$ for every $t \in I$, then (31) is satisfied by every control of the form $u_j(t) = -\alpha_j \parallel p_{v_j}(t) \parallel$, $j = 1, \ldots, k$, and $u_0 = 0$ for every $l \notin \{i_1, \ldots, i_k\}$, where the α_i's are nonnegative real numbers such that $0 \leq \sum_{j=1}^k \alpha_j \leq M$ whenever $(x(t), v(t), p_x(t), p_v(t)) \in \mathcal{O}_5$, and such that $\sum_{j=1}^k \alpha_j = M$ whenever $(x(t), v(t), p_x(t), p_v(t)) \in \mathcal{O}_4$. We have even the following more precise result.

Proposition 5. The submanifolds \mathcal{O}_4 and \mathcal{O}_5 are stratified² manifolds of codimension larger than or equal to two. More precisely, \mathcal{O}_4 (resp., \mathcal{O}_5) is the union of submanifolds of codimension $2(k - 1)$ (resp., $2k$), where k is the index appearing in the definition of these subsets and is as well the number of active components of the control at the same time.

Proof. Since the arguments are similar for \mathcal{O}_4 and \mathcal{O}_5, we only treat in details the case of \mathcal{O}_4. Assume that $\parallel p_{v_1}(t) \parallel = \parallel p_{v_2}(t) \parallel > \gamma$, and that $\parallel p_{v_1}(t) \parallel < \parallel p_{v_1}(t) \parallel$ for every $j = 3, \ldots, N$ and for every $t \in I$. Differentiating with respect to t the equality

$$\parallel p_{v_1}(t) \parallel^2 = \parallel p_{v_2}(t) \parallel^2,$$

we obtain

$$\langle p_{v_2}, p_{x_2} \rangle - \langle p_{v_1}, p_{x_1} \rangle + \frac{1}{N} \sum_{j=3}^N \langle p_{v_j}, a(\parallel x_j - x_2 \parallel)p_{v_2} - a(\parallel x_j - x_1 \parallel)p_{v_1} \rangle +$$

$$+ \frac{1}{N} \parallel p_{v_1} \parallel^2 \sum_{j=3}^N (a(\parallel x_j - x_1 \parallel) - a(\parallel x_j - x_2 \parallel)) +$$

$$+ 2(\langle p_{v_2}, v_2 \rangle - \langle p_{v_1}, v_1 \rangle) + \frac{2}{N} \langle p_{v_1} - p_{v_2}, \sum_{j=1}^N v_j \rangle = 0. \quad (33)$$

These two relations are clearly independent in the cotangent space. Since a vector must satisfy (32) and (33), this means that the \mathcal{O}_4 is a submanifold of the cotangent space \mathbb{R}^{4dN} of codimension 2. Assume now that $\parallel p_{v_1}(t) \parallel = \parallel p_{v_2}(t) \parallel = \cdots = \parallel p_{v_k}(t) \parallel$, $\parallel p_{v_1}(t) \parallel > \gamma$, $\parallel p_{v_j}(t) \parallel < \parallel p_{v_1}(t) \parallel$ for $j = k + 1, \ldots, N$, for every $t \in I$. Then for every pair (p_{v_1}, p_{v_1}), $j = 2, \ldots, k$ we have a relation of the kind (32) and a relation of the kind (33). Hence \mathcal{O}_4 has codimension $2(k - 1)$. It follows clearly that \mathcal{O}_4 is a stratified manifold, whose strata are submanifolds of codimension $2(k - 1)$.

It follows from these results that the componentwise sparsity features of the optimal control are coded in terms of the codimension of the above submanifolds. By the way, note that, since $p_x(T) = p_v(T) = 0$, there exists $\varepsilon > 0$ such that $u(t) = 0$ for every $t \in [T - \varepsilon, T]$. In other words, at the end of the interval of time the extremal $(x(\cdot), v(\cdot), p_x(\cdot), p_v(\cdot))$ is in \mathcal{O}_1.

It is an open question of knowing whether the extremal may lie on the submanifolds \mathcal{O}_4 or \mathcal{O}_5 along a nontrivial interval of time. What can be obviously said is that, for generic initial conditions $((x_0, v_0), (p_x(0), p_v(0)))$, the optimal extremal does not stay in $\mathcal{O}_4 \cup \mathcal{O}_5$ along an open interval of time; such a statement is however meaningless since the pair $(p_x(0), p_v(0))$ of initial adjoint vectors is not arbitrary and is determined through the shooting method by the final conditions $p_x(T) = p_v(T) = 0$.

²In the sense of Whitney, see e.g. [31].
Acknowledgement

Marco Caponigro acknowledges the support and the hospitality of the Department of Mathematics and the Center for Computational and Integrative Biology (CCIB) of Rutgers University during the preparation of this work. Massimo Fornasier acknowledges the support of the ERC-Starting Grant “High-Dimensional Sparse Optimal Control” (HDSPCONTR - 306274).

6 Appendix

6.1 Proof of Lemma 1

For every $t \geq 0$, one has

$$\frac{d}{dt} \frac{1}{N} \sum_{i=1}^{N} \|v_{\perp_i}\|^2 = \frac{2}{N} \sum_{i=1}^{N} \langle \dot{v}_{\perp_i}, v_{\perp_i} \rangle = \frac{2}{N} \sum_{i=1}^{N} \langle \dot{v}_i, v_{\perp_i} \rangle = \frac{2}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} a(\|x_i - x_j\|) \langle v_j - v_i, v_{\perp_i} \rangle$$

$$= \frac{1}{N^2} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} a(\|x_i - x_j\|) \langle v_j - v_i, v_{\perp_i} \rangle + \sum_{j=1}^{N} \sum_{i=1}^{N} a(\|x_j - x_i\|) \langle v_i - v_j, v_{\perp_j} \rangle \right)$$

$$= -\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} a(\|x_i - x_j\|) \langle v_i - v_j, v_{\perp_i} - v_{\perp_j} \rangle$$

$$= -\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} a(\|x_i - x_j\|) \|v_i - v_j\|^2.$$

Now

$$\|x_i - x_j\| = \|x_{\perp_i} - x_{\perp_j}\| \leq \|x_{\perp_i}\| + \|x_{\perp_j}\| \leq \sqrt{2} \left(\sum_{i=1}^{N} \|x_{\perp_i}\|^2 \right)^{\frac{1}{2}} = \sqrt{2N} X$$

and since a is nonincreasing we have the statement.

6.2 Proof of Proposition 1

We split the proof of Proposition 1 in several steps.

Lemma 2. Assume that $V(0) \neq 0$, then for every $t \geq 0$

$$\frac{d}{dt} \sqrt{V(t)} \leq -a \left(\sqrt{2NX(t)} \right) \sqrt{V(t)}.$$

Proof. It is sufficient to remark that

$$\frac{d}{dt} \sqrt{V(t)} = \frac{1}{2 \sqrt{V(t)}} \frac{d}{dt} V(t)$$

and apply Lemma 1. \qed

Lemma 3. For every $t \geq 0$

$$\frac{d}{dt} \sqrt{X(t)} \leq \sqrt{V(t)}$$

27
Proof. Note that for the conservation of the mean consensus parameter $\dot{x}_{\perp} = v_{\perp}$. So

$$\frac{1}{N} \frac{d}{dt} \sum_{i=1}^{N} \|x_{\perp i}\|^2 = 2 \frac{1}{N} \sum_{i=1}^{N} (x_{\perp i}, v_{\perp i}) \leq 2 \frac{1}{N} \sum_{i=1}^{N} \|x_{\perp i}\| \|v_{\perp i}\|.$$

The sum in the last term is the scalar product on \mathbb{R}^N between the two vectors with components $\|x_{\perp i}\|$ and $\|v_{\perp i}\|$ respectively. Applying once more the Cauchy-Schwarz inequality, on the one hand we have

$$\frac{d}{dt} X(t) \leq 2 \frac{1}{N} \left(\sum_{i=1}^{N} \|x_{\perp i}\|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{N} \|v_{\perp i}\|^2 \right)^{\frac{1}{2}} = 2 \sqrt{X(t)} \sqrt{V(t)}.$$

On the other hand

$$\frac{d}{dt} X(t) = \frac{d}{dt} \left(\sqrt{X(t)} \sqrt{X(t)} \right) = 2 \sqrt{X(t)} \frac{d}{dt} \sqrt{X(t)}.$$

\hspace{1cm} \square

Lemma 4. For every $t \geq 0$

$$\sqrt{V(t)} + \int_{\sqrt{X(0)}}^{\sqrt{X(t)}} a(\sqrt{2N} r) dr \leq \sqrt{V(0)}.$$

Proof. By Lemma 2 we have that

$$\sqrt{V(t)} - \sqrt{V(0)} \leq - \int_{0}^{t} a \left(\sqrt{2NX(s)} \right) \sqrt{V(s)} ds.$$

Now set $r = \sqrt{X(s)}$. By Lemma 3 $- \sqrt{V(s)} ds \leq - dr$ and, therefore,

$$\sqrt{V(t)} - \sqrt{V(0)} \leq - \int_{\sqrt{X(0)}}^{\sqrt{X(t)}} a \left(\sqrt{2N} r \right) dr.$$

\hspace{1cm} \square

Let us now end the proof of Proposition 1. If $V(0) = 0$ then the system would be already in a consensus situation. Let us assume then that $V(0) > 0$. Since

$$0 < \sqrt{V(0)} \leq \int_{\sqrt{X(0)}}^{\infty} a \left(\sqrt{2N} r \right) dr,$$

then there exists $\bar{X} \geq X(0)$ such that

$$\sqrt{V(0)} = \int_{\sqrt{X(0)}}^{\sqrt{\bar{X}}} a \left(\sqrt{2N} r \right) dr.$$

(34)

Note that \bar{X} may be not unique. So let \bar{X} be the smallest number verifying (34). We claim that $X(t) \leq \bar{X}$ for every $t \geq 0$ and we prove it by contradiction. Indeed if there exists \tilde{t} such that $X(\tilde{t}) > \bar{X}$ then by Lemma 4

$$\sqrt{V(0)} \geq \sqrt{V(\tilde{t})} + \int_{\sqrt{X(0)}}^{\sqrt{X(\tilde{t})}} a(\sqrt{2N} r) dr > \int_{\sqrt{X(0)}}^{\sqrt{\bar{X}}} a(\sqrt{2N} r) dr = \sqrt{V(0)},$$

that is a contradiction.
6.3 A technical Lemma

We state the following useful technical lemma, used in the proof of Theorem 1.

Lemma 5. Let \((x(\cdot), v(\cdot))\) be a solution of (14). If there exist \(\alpha > 0\) and \(T > 0\) such that

\[
\frac{d}{dt} V(t) \leq -\alpha \sqrt{V(t)},
\]

for almost every \(t \in [0, T]\), then

\[
V(t) \leq \left(\sqrt{V(0)} - \frac{\alpha t}{2} \right)^2,
\]

and

\[
X(t) \leq 2X(0) + \frac{2N^2}{\alpha^2} V(0)^2.
\]

Proof. Let us remind that

\[
X(t) = \frac{1}{2N^2} \sum_{i,j=1}^N \|x_i(t) - x_j(t)\|^2 \quad \text{and} \quad V(t) = \frac{1}{2N^2} \sum_{i,j=1}^N \|v_i(t) - v_j(t)\|^2.
\]

Integrating (35) one has

\[
\int_0^t \frac{\dot{V}(s)}{\sqrt{V(s)}} ds \leq -\alpha t,
\]

and

\[
\sqrt{V(t)} - \sqrt{V(0)} = \frac{1}{2} \int_0^t \frac{\dot{V}(s)}{\sqrt{V(s)}} ds \leq -\frac{\alpha t}{2},
\]

hence (36) follows. For every \(i, j \in \{1, \ldots, N\}\) we have

\[
\|x_i(t) - x_j(t)\| \leq \|x_i(0) - x_j(0)\| + \int_0^t \|v_i(s) - v_j(s)\| ds
\]

\[
\leq \|x_i(0) - x_j(0)\| + \sqrt{2N} \int_0^t \sqrt{V(s)} ds.
\]

Notice that here we used the estimate \(\|v_i(s) - v_j(s)\|^2 \leq 2N^2 \left(\frac{1}{2N^2} \sum_{\ell,m=1}^N \|v_\ell(s) - v_m(s)\|^2 \right) = 2N^2 V(t)\). Equation (35) implies also

\[
\int_0^t \sqrt{V(s)} ds \leq \frac{1}{\alpha} (V(t) - V(0)) < \frac{1}{\alpha} V(0).
\]

Therefore, using the estimates as before, we have

\[
X(t) = \frac{1}{2N^2} \sum_{i,j=1}^N \|x_i(t) - x_j(t)\|^2 \leq \frac{1}{2N^2} \sum_{i,j=1}^N 2 \left(\|x_i(0) - x_j(0)\|^2 + \left(\int_0^t \|v_i(s) - v_j(s)\| ds \right)^2 \right)
\]

\[
\leq \frac{1}{2N^2} \sum_{i,j=1}^N \left(2 \|x_i(0) - x_j(0)\|^2 + 4N^2 \left(\int_0^t \sqrt{V(s)} ds \right)^2 \right)
\]

\[
\leq 2 \left(\frac{1}{2N^2} \sum_{i,j=1}^N \|x_i(0) - x_j(0)\|^2 \right) + 2 \left(\sum_{i,j=1}^N \frac{V(0)^2}{\alpha^2} \right)
\]

\[
= 2X(0) + \frac{2N^2}{\alpha^2} V(0)^2.
\]
References

32

