Large Time Behavior of Periodic Viscosity Solutions for Uniformly Parabolic Integro-Differential Equations

Abstract : In this paper, we study the large time behavior of solutions of a class of parabolic fully nonlinear integro-differential equations in a periodic setting. In order to do so, we first solve the ergodic problem}(or cell problem), i.e. we construct solutions of the form $\lambda t + v(x)$. We then prove that solutions of the Cauchy problem look like those specific solutions as time goes to infinity. We face two key difficulties to carry out this classical program: (i) the fact that we handle the case of ''mixed operators'' for which the required ellipticity comes from a combination of the properties of the local and nonlocal terms and (ii) the treatment of the superlinear case (in the gradient variable). Lipschitz estimates previously proved by the authors (2012) and Strong Maximum principles proved by the third author (2012) play a crucial role in the analysis.
Type de document :
Article dans une revue
Calc. Var. Partial Differential Equations, 2014, 50 (1-2), pp.283-304. 〈10.1007/s00526-013-0636-2〉
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00743751
Contributeur : Adina Ciomaga <>
Soumis le : vendredi 19 octobre 2012 - 22:24:51
Dernière modification le : vendredi 22 mars 2019 - 01:27:59
Document(s) archivé(s) le : dimanche 20 janvier 2013 - 03:40:30

Fichiers

bcci-ltb-submitted.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guy Barles, Emmanuel Chasseigne, Adina Ciomaga, Cyril Imbert. Large Time Behavior of Periodic Viscosity Solutions for Uniformly Parabolic Integro-Differential Equations. Calc. Var. Partial Differential Equations, 2014, 50 (1-2), pp.283-304. 〈10.1007/s00526-013-0636-2〉. 〈hal-00743751〉

Partager

Métriques

Consultations de la notice

603

Téléchargements de fichiers

263