
HAL Id: hal-00743240
https://hal.science/hal-00743240v3

Submitted on 11 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fresh Approach to Learning Register Automata
Benedikt Bollig, Peter Habermehl, Martin Leucker, Benjamin Monmege

To cite this version:
Benedikt Bollig, Peter Habermehl, Martin Leucker, Benjamin Monmege. A Fresh Approach to Learn-
ing Register Automata. 2012. �hal-00743240v3�

https://hal.science/hal-00743240v3
https://hal.archives-ouvertes.fr

A Fresh Approach to Learning Register
Automata?

Benedikt Bollig1, Peter Habermehl2, Martin Leucker3, and Benjamin
Monmege1

1 LSV, ENS Cachan, CNRS & Inria, France
2 Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, CNRS, France

3 ISP, University of Lübeck, Germany

Abstract. This paper provides an Angluin-style learning algorithm for
a class of register automata supporting the notion of fresh data values.
More specifically, we introduce session automata which are well suited for
modeling protocols in which sessions using fresh values are of major inter-
est, like in security protocols or ad-hoc networks. We show that session
automata (i) have an expressiveness partly extending, partly reducing
that of register automata, (ii) admit a symbolic regular representation,
and (iii) have a decidable equivalence and model-checking problem (un-
like register automata). Using these results, we establish a learning al-
gorithm to infer session automata through membership and equivalence
queries. Finally, we strengthen the robustness of our automaton by its
characterization in monadic second-order logic.

1 Introduction

Learning automata deals with the inference of automata based on some partial
information, for example samples, which are words that either belong to their
accepted language or not. A popular framework is that of active learning defined
by Angluin [2] in which a learner may consult a teacher for so-called membership
and equivalence queries to eventually infer the automaton in question. Learning
automata has a lot of applications in computer science. Notable examples are
the use in model checking [12] and testing [3]. See [18] for an overview.

While active learning of regular languages is meanwhile well understood and
is supported by freely available libraries such as learnlib [19] and libalf [8], exten-
sions beyond plain regular languages are still an area of active research. Recently,
automata dealing with potentially infinite data as first class citizens have been
studied. Seminal works in this area are that of [1, 15] and [14]. While the first
two use abstraction and refinement techniques to cope with infinite data, the
second approach learns a sub-class of register automata.

In this paper, we follow the work on learning register automata. However,
we study a different model than [14], having the ability to require that input
data is fresh in the sense that it has not been seen so far. This feature has been
proposed in [24] in the context of semantics of programming languages, as, for

? This work is partially supported by EGIDE/DAAD-Procope (LeMon).

example, fresh names are needed to model object creation in object-oriented
languages. Moreover, fresh data values are important ingredients in modeling
security protocols which often make use of so-called fresh nonces to achieve their
security assertions [17]. Finally, fresh names are also important in the field of
network protocols and are one of the key ingredients of the π-calculus [20].

In general, the equivalence problem of register automata is undecidable (even
without freshness). This limits their applicability in active learning, as equiva-
lence queries cannot be implemented (correctly and completely). Therefore, we
restrict the studied automaton model to either store fresh data values or read
data values from registers. In the terminology of [24], we retain global freshness,
while local freshness is discarded. We call our model session automata. They
are well-suited whenever fresh values are important for a finite period, for which
they will be stored in one of the registers. Session automata correspond to the
model from [7] without stacks. They are incomparable with the model from [14].

Session automata accept data words, i.e., words over an alphabet Σ × D,
where Σ is a finite set of labels and D an infinite set of data values. A data word
can be mapped to a so-called symbolic word where we record for each different
data value the register in which it was stored (when appearing for the first time)
or from which it was read later. To each symbolic word we define a symbolic
word in unique normal form representing the same data words by fixing a canon-
ical way of storing data values in registers. Then, we show how to transform a
session automaton into a unique canonical automaton that accepts the same
data language. This canonical automaton can be seen as a classical finite-state
automaton and, therefore, we can define an active learning algorithm for session
automata in a natural way. In terms of the size of the canonical automaton, the
number of membership and equivalence queries needed is polynomial (both in
the number of states and in the number of registers). When the reference model
are arbitrary (data) deterministic automata, the complexity is polynomial in the
number of states and exponential in the number of registers.

Applicability of our framework in verification (e.g., compositional verification
[10] and infinite state regular model checking [13]) is underpinned by the fact that
session automata form a robust language class: While inclusion is undecidable
for register automata [21], we show that it is decidable for session automata.
In [7], model checking session automata was shown decidable wrt. a powerful
monadic second-order logic with data-equality predicate (dMSO). Here, we also
provide a natural fragment of dMSO that precisely captures session automata.

To summarize, we show that session automata (i) have a unique canonical
form, (ii) have a decidable inclusion problem, (iii) enjoy a logical characteriza-
tion, and (iv) can be learned via an active learning algorithm. Altogether, this
provides a versatile learning framework for languages over infinite alphabets.

Outline. The paper is structured as follows. In Section 2 we introduce session
automata. In Section 3 we present an active learning algorithm for them and in
Section 4 we give some language-theoretic properties of our model and a logical
characterization. Missing proofs can be found in the appendix.

2

2 Data Words and Session Automata

We let N (respectively, N>0) be the set of natural numbers (respectively, non-
zero natural numbers). For n ∈ N, we let [n] denote the set {1, . . . , n}. In the
following, we fix a non-empty finite alphabet Σ of labels and an infinite set D
of data values. In examples, we usually use D = N. A data word is a sequence of
elements of Σ ×D, i.e., an element from (Σ ×D)∗. An example data word over
Σ = {a, b} and D = N is (a, 4)(b, 2)(b, 4).

Our automata will not be able to distinguish between data words that are
equivalent up to permutation of data values. Intuitively, this corresponds to say-
ing that data values can only be compared wrt. equality. When two data words
w1 and w2 are equivalent in that sense, we write w1 ≈ w2, e.g. (a, 4)(b, 2)(b, 4) ≈
(a, 2)(b, 5)(b, 2). The equivalence class of a data word w wrt. ≈ is written [w]≈.

We can view a data word as being composed of (not necessarily disjoint)
sessions, each session determining the scope in which a given data value is used.
Let w = (a1, d1) · · · (an, dn) ∈ (Σ×D)∗ be a data word. We let Fresh(w)

def
= {i ∈

[n] | di 6= dj for all j ∈ {1, . . . , i− 1}} be the set of positions of w where a data
value occurs for the first time. Accordingly, we let Last(w)

def
= {i ∈ [n] | di 6= dj

for all j ∈ {i+1, . . . , n}}. A set S ⊆ [n] is a session of w if there are i ∈ Fresh(w)
and j ∈ Last(w) such that S = {i, . . . , j} and di = dj . For i ∈ [n], let Session(i)
denote the unique session S with dmin(S) = di. Thus Session(i) is the scope
in which di is used. Note that Fresh(w) = {min(Session(i)) | i ∈ [n]}. For
k ≥ 1, we say that w is k-bounded if every position of w belongs to at most k
sessions. A language L is k-bounded if every word in L is so. The set of all data
words is not k-bounded, for any k. Fig. 1 illustrates a data word w with four
sessions. It is 2-bounded, as no position shares more than 2 sessions. We have
Session(7) = {4, . . . , 9} and Fresh(w) = {1, 2, 4, 6}.

Intuitively, k is the number of resources that will be needed to execute a
k-bounded word. Speaking in terms of automata, a resource is a register that
can store a data value. Our automata will be able to write a fresh data value
into some register r, denoted f(r), or reuse a data value that has already been
stored in r, denoted r(r). In other words, automata will work over (a finite subset
of) the alphabet Σ × Γ where Γ

def
= { f(r), r(r) | r ∈ N>0}. A word over Σ × Γ

is called a symbolic word. Given a symbolic word u = (a1, t1) · · · (an, tn) and a
position i ∈ [n], we let reg(i) denote the register r that is used at i, i.e., such
that ti ∈ {f(r), r(r)}. Similarly, we define the type type(i) ∈ {f, r} of i.

Naturally, a register has to be initialized before it can be used. So, we call
u well formed if, for all j ∈ [n] with type(j) = r, there is i ≤ j such that

1 2 3 4 5 6 7 8 9

a b a a c c b c c
4 2 4 3 2 1 3 1 3

Fig. 1: A data word and its sessions

1 2 3 4 5 6 7 8 9

a b a a c c b c c
f(1) f(2) r(1) f(1) r(2) f(2) r(1) r(2) r(1)

Fig. 2: A symbolic word

3

ti = f(reg(j)). Let WF denote the set of well formed words. A well formed
symbolic word is illustrated in Fig. 2. We have type(5) = r and reg(5) = 2.

A symbolic word u = (a1, t1) · · · (an, tn) ∈WF generates a set of data words.
Intuitively, a position i with ti = f(r) opens a new session, writing a fresh data
value in register r. The same data value is reused at positions j > i with tj = r(r),
unless r is reinitialized at some position i′ with i < i′ < j. Formally, w ∈ (Σ×D)∗

is a concretization of u if it is of the form (a1, d1) · · · (an, dn) such that, for all
i, j ∈ [n] with i ≤ j, (i) i ∈ Fresh(w) iff type(i) = f, and (ii) di = dj iff both
reg(i) = reg(j) and there is no position i′ with i < i′ ≤ j such that ti′ = f(reg(i)).
For example, the data word from Fig. 1 is a concretization of the symbolic word
from Fig. 2. By γ(u), we denote the set of concretizations of a well formed word
u. We extend γ to sets L ⊆ (Σ × Γ)∗ and let γ(L)

def
= {γ(u) | u ∈ L ∩WF}.

Remark 1. Let us state some simple properties of γ. It is easily seen that w ∈
γ(u) implies γ(u) = [w]≈. Let k ≥ 1. If u ∈ WF ∩ (Σ × Γk)∗ where Γk

def
=

{ f(r), r(r) | r ∈ [k]}, then all data words in γ(u) are k-bounded. Moreover,
γ((Σ × Γk)∗) is the set of all k-bounded data words.

Session Automata. As suggested, we consider automata over the alphabet
Σ × Γ to process data words. Actually, they are equipped with a finite number
k ≥ 1 of registers so that we rather deal with finite automata over Σ × Γk.

Definition 1. Let k ≥ 1. A k-register session automaton (or just session au-
tomaton) over Σ and D is a finite automaton over Σ × Γk, i.e., a tuple A =
(Q, q0, F, δ) where Q is the finite set of states, q0 ∈ Q the initial state, F ⊆ Q
the set of accepting states, and δ : Q× (Σ × Γk)→ 2Q the transition function.

The symbolic language Lsymb(A) ⊆ (Σ × Γk)∗ of A is defined in the usual
way, considering A as a finite automaton. Its (data) language is Ldata(A)

def
=

γ(Lsymb(A)). By Remark 1, Ldata(A) is closed under ≈. Moreover, it is k-
bounded, which motivates the naming of our automata.

Example 1. Consider the 2-register session automaton A from Fig. 3(a). It rec-
ognizes the set of all 2-bounded data words over Σ = {a}.

Example 2. The 2-register session automaton B over Σ = {a, b} from Fig. 3(b)
represents a client-server system. A server can receive requests on two channels
of capacity 1, represented by the two registers. Requests are acknowledged in the
order in which they are received. When the automaton performs (a, f(r)), a client
gets a unique transaction key, which is stored in r. Later, the request is acknowl-
edged performing (b, r(r)). E.g., (a, 8)(a, 4)(b, 8)(a, 3)(b, 4)(b, 3) ∈ Ldata(B).

Example 3. Next, we present a 2-register session automaton that models a P2P
protocol. A user can join a host with address x, denoted by action (join, x). The
request is either forwarded by x to another host y, executing (forw1, x)(forw2, y),
or acknowledged by (ack , x). In the latter case, a connection between the user
and x is established so that they can communicate, indicated by action (com, x).

4

a, f(1)
a, r(1)
a, f(2)
a, r(2)

(a) A

ε1 2

12

21

a, f(1)

b, r(1)

a, f(2)

a, f(1)b, r(2)

b, r(1)

a, f(2)

b, r(2)

(b) B and B′

0 1 2

3 4

join, f(1)
forw , r(1), f(2)

forw , r(2), f(1)
ack , r(1) ack , r(2)

com, r(1) com, r(2)

(c)

Fig. 3: (a) Session automaton, (b) Client-server system, (c) P2P protocol

Note that the sequence of actions (forw1, x)(forw2, y) should be considered as an
encoding of a single action (forw , x, y) and is a way of dealing with actions that
actually take two or more data values. An example execution of our protocol is
(join, 145)(forw , 145, 978)(forw , 978, 14)(ack , 14)(com, 14)(com, 14)(com, 14). In
Fig. 3(c), we show the 2-register session automaton for the P2P protocol.

Session automata come with two natural notions of determinism. We call
A = (Q, q0, F, δ) symbolically deterministic if |δ(q, (a, t))| ≤ 1 for all q ∈ Q and
(a, t) ∈ Σ×Γk. Then, δ can be seen as a partial function Q× (Σ×Γk)→ Q. We
call A data deterministic if it is symbolically deterministic and, for all q ∈ Q,
a ∈ Σ, and r1, r2 ∈ [k] with r1 6= r2, we have that δ(q, (a, f(r1))) 6= ∅ implies
δ(q, (a, f(r2))) = ∅. Intuitively, given a data word as input, the automaton is
data deterministic if, in each state, given a pair letter/data value, there is at
most one fireable transition. While “data deterministic” implies “symbolically
deterministic”, the converse is not true. E.g., the session automata from Fig. 3(a)
and 3(b) are symbolically deterministic but not data deterministic. However, the
automaton of Fig. 3(b) with the dashed transition from state ε to state 2 removed
is data deterministic.

Theorem 1. Session automata are strictly more expressive than data determin-
istic session automata.

Session automata are expressively incomparable with the various register au-
tomata models considered in [16, 21, 23, 9, 14]. In particular, due to freshness, the
languages from Ex. 1, 2, and 3 are not recognizable by the models for which a
learning algorithm exists [9, 14]. On the other hand, our model cannot recognize
“the set of all data words” or “every two consecutive data values are distinct”.
Our automata are subsumed by fresh-register automata [24], class memory au-
tomata [5], and data automata [6]. However, no algorithm for the inference of the
latter is known. Note that, for ease of presentation, we consider one-dimensional
data words, unlike [14] where labels have an arity and can carry several data
values. Following [7], our automata can be easily extended to multi-dimensional
data words (cf. Ex. 3). This also holds for the learning algorithm.

Canonical Session Automata. Our goal will be to infer the data language
of a session automaton A in terms of a canonical session automaton AC , which
we develop in the following.

5

As a first step, we associate with a data word w = (a1, d1) · · · (an, dn) ∈
(Σ×D)∗ a symbolic normal form snf (w) ∈WF such that w ∈ γ(snf (w)), based
on the idea that data values are always stored in the first register whose data
value is not needed anymore. To do so, we will determine t1, . . . , tn ∈ Γ and
set snf (w) = (a1, t1) · · · (an, tn). We define τ : Fresh(w) → N>0 inductively by
τ(i) = min(FreeReg(i)) where FreeReg(i)

def
= N>0 \ {τ(i′) | i′ ∈ Fresh(w) such

that i′ < i and i ∈ Session(i′)}. With this, we set, for all i ∈ [n], ti = f(τ(i))
if i ∈ Fresh(w), and ti = r(τ(min(Session(i)))) otherwise. One readily verifies
that snf (w) = (a1, t1) · · · (an, tn) is well formed and that properties (i) and (ii)
in the definition of a concretization hold. This proves w ∈ γ(snf (w)). E.g., Fig. 2
shows the symbolic normal form of the data word from Fig. 1. The mapping snf
carries over to languages in the expected manner.

We consider again B of Fig. 3(b). Let B′ be the automaton that we obtain
from B when we remove the dashed transition. We have Ldata(B) = Ldata(B′),
but snf (Ldata(B)) = Lsymb(B′) $ Lsymb(B).

Lemma 1. Let L be a regular language over Σ × Γk. Then, snf (γ(L)) is a
regular language over Σ × Γk.

In other words, for every k-register session automaton A, there is a k-register
session automaton A′ such that Lsymb(A′) = snf (Ldata(A)) and, therefore,
Ldata(A′) = Ldata(A). We denote by AC the minimal symbolically deterministic
automaton A′ satisfying Lsymb(A′) = snf (Ldata(A)). Note that the number k′ of
registers effectively used in AC may be smaller than k, and we actually consider
AC to be a k′-register session automaton.

Theorem 2. Let A = (Q, q0, F, δ) be a k-register session automaton. Then, AC

has at most 2O(|Q| × (k+1)!× 2k) states. If A is data deterministic, then AC has
at most O(|Q| × (k + 1)!× 2k) states. Finally, AC uses at most k registers.

3 Learning Session Automata

In this section, we introduce an active learning algorithm for session automata.
In the usual active learning setting (as introduced by Angluin [2]), a learner
interacts with a so-called minimally adequate teacher (MAT), an oracle which
can answer membership and equivalence queries. In our case, the learner is given
the task to infer the data language Ldata(A) defined by a given session automaton
A. We suppose here that the teacher knows the session automaton or any other
device accepting Ldata(A). In practice, this might not be the case — A could
be a black box — and equivalence queries could be (approximately) answered,
for example, by extensive testing. The learner can ask if a data word is accepted
by A or not. Furthermore it can ask equivalence queries which consist in giving
an hypothesis session automaton to the teacher who either answers yes, if the
hypothesis is equivalent to A (i.e., both data languages are the same), or gives
a data word which is a counterexample, i.e., a data word that is either accepted
by the hypothesis automaton but should not, or vice versa.

6

Given the data language Ldata(A) accepted by a session automaton A over
Σ and D, our algorithm will learn the canonical k-register session automaton
AC , i.e., the minimal symbolically deterministic automaton recognizing the data
language Ldata(A) and the regular language Lsymb(AC) over Σ × Γk. There-
fore one can consider that the learning target is Lsymb(AC) and use any active
learning algorithm for regular languages. However, as the teacher answers only
questions over data words, queries have to be adapted. Since AC only accepts
symbolic words which are in normal form, a membership query for a given sym-
bolic word u not in normal form will be answered negatively (without consulting
the teacher); otherwise, the teacher will be given one data word included in γ(u)
(all the answers on words of γ(u) are the same). Likewise, before submitting an
equivalence query to the teacher, the learning algorithm checks if the current
hypothesis automaton accepts symbolic words not in normal form4. If yes, one
of those is taken as a counterexample, else an equivalence query is submitted to
the teacher. Since the number of registers needed to accept a data language is
a priori not known, the learning algorithm starts by trying to learn a 1-register
session automaton and increases the number of registers as necessary.

Any active learning algorithm for regular languages may be adapted to our
setting. Here we describe a variant of Rivest and Schapire’s [22] algorithm which
is itself a variant of Angluin’s L∗ algorithm [2]. An overview of learning algo-
rithms for deterministic finite state automata can be found, for example, in [4].

The algorithm is based on the notion of observation table which contains
the information accumulated by the learner during the learning process. An
observation table over a given alphabet Σ × Γk is a triple O = (T,U, V) with
U, V two sets of words over Σ × Γk such that ε ∈ U ∩ V and T is a mapping
(U ∪ U ·(Σ×Γk))×V → {+,−}. A table is partitioned into an upper part U and
a lower part U · (Σ × Γk). We define for each u ∈ U ∪ U · (Σ × Γk) a mapping
row(u) : V → {+,−} where row(u)(v) = T (u, v). An observation table must
satisfy the following property: for all u, u′ ∈ U such that u 6= u′ we have row(u) 6=
row(u′), i.e., there exists v ∈ V such that T (u, v) 6= T (u′, v). This means that
the rows of the upper part of the table are pairwise distinct. A table is closed if,
for all u′ in U · (Σ × Γk), there exists u ∈ U such that row(u) = row(u′). From
a closed table we can construct a symbolically deterministic session automaton
whose states correspond to the rows of the upper part of the table:

Definition 2. For a closed table O = (T,U, V) over a finite alphabet Σ ×
Γk, we define a symbolically deterministic k-register session automaton AO =
(Q, q0, F, δ) over Σ × Γk by Q = U , q0 = ε, F = {u ∈ Q | T (u, ε) = +}, and for
all u ∈ Q and (a, t) ∈ Σ × Γk, δ(u, (a, t)) = u′ if row(u(a, t)) = row(u′). This is
well defined as the table is closed.

We now describe in detail our active learning algorithm for a given session
automaton A given in Table 1. It is based on a loop which repeatedly constructs

4 This can be checked in polynomial time over the trimmed hypothesis automaton
with a fixed point computation labelling the states with the registers that should be
used again before overwriting them.

7

initialize k := 1 and
O := (T, U, V) by U = V = {ε} and T (u, ε) for all u ∈ U ∪ U · (Σ × Γk) with membership queries
repeat

while O is not closed
do

find u ∈ U and (a, t) ∈ Σ × Γk such that for all u ∈ U : row(u(a, t)) 6= row(u)
extend table to O := (T ′, U ∪ {u(a, t)}, V) by membership queries

from O construct the hypothesized automaton AO (cf. Definition 2)
if AO accepts symbolic words not in normal form

then let z be one of those
else if Ldata(A) = Ldata(AO)

then equivalence test succeeds
else get counterexample w ∈ (Ldata(A) \ Ldata(AO)) ∪ (Ldata(AO) \ Ldata(A))

set z := snf (w); find minimal k′ such that z ∈ Σ × Γk′
if k′ > k

then set k := k′

extend table to O := (T ′, U, V) over Σ × Γk by membership queries
if O is closed /∗ is true if k′ ≤ k ∗/

then find a breakpoint for z where v is the distinguishing word
extend table to O := (T ′, U, V ∪ {v}) by membership queries

until equivalence test succeeds
return AO

Table 1: The learning algorithm for a session automaton A

a closed table using membership queries, builds the corresponding automaton
and then asks an equivalence query. This is repeated until A is learned. An
important part of any active learning algorithm is the treatment of counterex-
amples provided by the teacher as an answer to an equivalence query. Suppose
that for a given AO constructed from a closed table O = (T,U, V) the teacher
answers by a counterexample data word w. Let z = snf (w). If z uses more reg-
isters than available in the current alphabet, we extend the alphabet and then
the table. If the obtained table is not closed, we restart from the beginning of
the loop. Otherwise – and also if z does not use more registers – we use Rivest
and Schapire’s [22] technique to extend the table by adding a suitable v to V
making it non-closed. The technique is based on the notion of breakpoint. As z
is a counterexample, (1) z ∈ Lsymb(AO) ⇐⇒ z 6∈ Lsymb(AC). Let z = z1 · · · zm.
Then, for any i with 1 ≤ i ≤ m + 1, let z be decomposed as z = uivi, where
u1 = vm+1 = ε, v1 = um+1 = z and the length of ui is equal to i − 1 (we have
also z = uizivi+1 for all i such that 1 ≤ i ≤ m). Let si be the state visited by
z just before reading the ith letter, along the computation of z on AO: i is a
breakpoint if sizivi+1 ∈ Lsymb(AO) ⇐⇒ si+1vi+1 /∈ Lsymb(AC). Because of
(1) such a break-point must exist and can be obtained with O(log(m)) member-
ship queries by a dichotomous search. The word vi+1 is called the distinguishing
word. If V is extended by vi+1 the table is not closed anymore (row(si) and
row(sizi) are different). Now, the algorithm closes the table again, then asks an-
other equivalence query and so forth until termination. At each iteration of the
loop the number of rows (each of those correspond to a state in the automaton
AC) is increased by at least one. Notice that the same counterexample might be
given several times. The treatment of the counterexample only guarantees that
the table will contain one more row in its upper part. We obtain the following:

8

Theorem 3. Let A be a k′-register session automaton over Σ and D. Let AC be
the corresponding canonical k-register session automaton. Let N be its number
of states, K be the size of Σ×Γk and M the length of the longest counterexample
returned by an equivalence query. Then, the learning algorithm for A terminates
with at most O(KN2 +N log(M)) membership and O(N) equivalence queries.

Proof: This follows directly from the proof of correctness and complexity of
Rivest and Schapire’s algorithm [4, 22]. Notice that the equivalence query cannot
return a counterexample whose normal form uses more than k registers, as such
a word is rejected by both AC (by definition) and by AO, (by construction). �

Let us discuss the complexity of our algorithm. In terms of the canonical
session automaton, the number of required membership and equivalence queries
is polynomial. When we consider data deterministic session automata, the com-
plexity is still polynomial in the number of states, but exponential in k (with con-
stant base). As usual, we have to add one exponent wrt. (data) non-deterministic
automata. In [14], the number of equivalence queries is polynomial in the size of
the underlying automaton. In contrast, the number of membership queries con-
tains a factor nk where n is the number of states and k the number of registers.
This may be seen as a drawback, as n is typically large. Note that [14] restrict to
deterministic automata, since classical register automata are not determinizable.

O1 ε

ε +
(b, r(1)) −
(a, f(1)) +

(b, r(1)) −

⇒
O2 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(b, r(1)) − −
(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +

⇒
O3 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(a, f(2)) − −
(b, r(2)) − −

(b, r(1)) − −
(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +
(a, f(1))(a, f(2)) − +
(a, f(1))(b, r(2)) − −

⇒

O4 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(a, f(1))(a, f(2)) − +

(a, f(2)) − −
(b, r(2)) − −

(b, r(1)) − −
(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +
(a, f(1))(b, r(2)) − −

(a, f(1))(a, f(2))(a, f(1)) − −
(a, f(1))(a, f(2))(b, r(1)) + +
(a, f(1))(a, f(2))(a, f(2)) − +
(a, f(1))(a, f(2))(b, r(2)) − +

⇒
O5 ε (b, r(1)) (b, r(2))

ε + − −
(b, r(1)) − − −
(a, f(1)) + + −

(a, f(1))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(1)) + + +

(a, f(2)) − − −
(b, r(2)) − − −

(b, r(1)) − − −
(a, f(1))(a, f(1)) + + −
(a, f(1))(b, r(1)) + + −
(a, f(1))(b, r(2)) − − −

(a, f(1))(a, f(2))(a, f(1)) − − −
(a, f(1))(a, f(2))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(2)) − + −

(a, f(1))(a, f(2))(b, r(1))(a, f(1)) + + +
(a, f(1))(a, f(2))(b, r(1))(b, r(1)) + + +
(a, f(1))(a, f(2))(b, r(1))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(1))(b, r(2)) + + +

Fig. 4: The successive observation tables

9

a, f(1)
b, r(1)
a, f(2)
b, r(2)

Fig. 5: The 2-register automaton to learn

A1:

a, f(1)

A2:
a, f(1)

a, f(1)
b, r(1)

A4:
a, f(1)

a, f(1)
b, r(1)

a, f(2)

a, f(2)
b, r(2)

b, r(1)

AC :
a, f(1)

a, f(1)
b, r(1)

a, f(2)

a, f(2)
b, r(2)

b, r(1)

a, f(2)

a, f(1)
b, r(1)
b, r(2)

Fig. 6: The successive hypothesis automata

Example 4. We apply our learning algorithm on the data language given by the
automaton A of Fig. 5. In Fig. 4 the successive observation tables constructed
by the algorithm are given. To save space some letters whose rows contain only
−’s are omitted. In Fig. 6 the successive automata constructed from the closed
observation tables are given. For sake of clarity we omit the sink states. We
start with the alphabet Σ × Γ1 = {(a, f(1)), (a, r(1)), (b, f(1)), (b, r(1))}. We omit
letters (a, r(1)) and (b, f(1)). Table O1 is obtained after initialization and closing
by adding (b, r(1)) to the top. We use to indicate that all letters will lead to
the same row. From O1 the first hypothesis automaton A1 is constructed. We
suppose that the equivalence query gives back as counterexample the data word
(a, 3)(b, 3) whose normal form is (a, f(1))(b, r(1)). Here the breakpoint yields
the distinguishing word (b, r(1)). We add it to V . The obtained table is not
closed anymore. We close it by adding (a, f(1)) to the top and get table O2

yielding hypothesis automaton A2. Notice that Lsymb(A2) = Lsymb(AC)∩ (Σ ×
Γ1)∗. This means that the equivalence query must give back a data word whose
normal form is using at least 2 registers (here (a, 7)(a, 4)(b, 7) with normal form
(a, f(1))(a, f(2))(b, r(1))). As the word uses 2 registers, we extend the alphabet
to Σ × Γ2 and obtain table O3. We close the table and get O4. From there
we obtain the hypothesis automaton A4. After the equivalence query we get
(a, f(1))(a, f(2))(b, r(1))(b, r(2)) as normal form of the data word counterexample
(a, 9)(a, 3)(b, 9)(b, 3). After adding (b, r(2)) to V and closing the table by moving
(a, f(1))(a, f(2))(b, r(1)) to the top we get finally the table O5 from which the
canonical automaton AC is obtained and the equivalence query succeeds.

10

4 Language Theoretical Results

In this section, we establish some language theoretical properties of session au-
tomata, which they inherit from classical regular languages. These results demon-
strate a certain robustness as required in verification tasks such as compositional
verification [10] and infinite-state regular model checking [13].

Theorem 4. Data languages recognized by session automata are closed under
intersection and union. They are also closed under complementation in the fol-
lowing sense: given a k-register session automaton A, the language γ((Σ×Γk)∗)\
Ldata(A) is recognized by a k-register session automaton.

Theorem 5. The inclusion problem for session automata is decidable.

We now provide a logical characterization of session automata. We con-
sider data MSO logic (dMSO), which is an extension of classical MSO logic
by the binary predicate x ∼ y to compare data values: a data word w =
(a1, d1) · · · (an, dn) ∈ (Σ×D)∗ with variable interpretation x 7→ i and y 7→ j sat-
isfies x ∼ y if di = dj . For more background on dMSO, we refer the reader to the
appendix and [21, 23, 6]. Note that dMSO is a very expressive logic and goes be-
yond virtually all automata models defined for data words [21, 6, 11]. We identify
a fragment of dMSO, called session MSO logic, that is expressively equivalent to
session automata. While register automata also enjoy a logical characterization
[11], we are not aware of logics capturing the automata model considered in [14].

Definition 3. A session MSO (sMSO) formula is a dMSO sentence of the form
ϕ = ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β)) such that α and β are classical MSO
formulas (not containing the predicate ∼).

Example 5. For instance, ϕ1 = ∀x∀y (x ∼ y ↔ x = y) is an sMSO formula. Its
semantics Ldata(ϕ1) is the set of data words in which every data value occurs
at most once. Moreover, ϕ2 = ∀x∀y (x ∼ y ↔ true) is an sMSO formula, and
Ldata(ϕ2) is the set of data words where all data values coincide. As a last
example, let ϕ3 = ∃X ∀x∀y (x ∼ y ↔ (¬∃z ∈ X (x < z ≤ y ∨ y < z ≤ x))).
Then, Ldata(ϕ3) is the set of 1-bounded data words. Intuitively, the second-order
variable X represents the set of positions where a fresh data value is introduced.

Theorem 6. A data language is recognized by a session automaton iff it is
definable by an sMSO formula.

In [7], it was already shown (for a more powerful model with pushdown
stacks) that model checking for the full dMSO logic is decidable:

Theorem 7 ([7]). Given a session automaton A and a dMSO sentence ϕ, one
can decide whether Ldata(A) ⊆ Ldata(ϕ).

11

5 Conclusion

In this paper, we provided a complete framework for algorithmic learning of
session automata, a special class of register automata to process data words.
As a key ingredient, we associated with every session automaton a canonical
one, which revealed close connections with classical regular languages. This also
allowed us to show that session automata form a robust language class with good
closure and decidability properties as well as a characterization in MSO logic.
As a next step, we plan to employ our setting for various verification tasks.

Acknowledgment. We are grateful to Thomas Schwentick for suggesting the
symbolic normal form of data words.

References

1. F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. W. Vaandrager. Automata
learning through counterexample guided abstraction refinement. In FM, LNCS
7436, pp. 10–27. Springer, 2012.

2. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

3. T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On
the correspondence between conformance testing and regular inference. In FASE,
LNCS 3442, pp. 175–189. Springer, 2005.

4. T. Berg and H. Raffelt. Model checking. In Model-based Testing of Reactive Sys-
tems, LNCS 3472 of LNCS. Springer, 2005.

5. H. Björklund and Th. Schwentick. On notions of regularity for data languages.
Theoretical Computer Science, 411(4-5):702–715, 2010.

6. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

7. B. Bollig, A. Cyriac, P. Gastin, and K. Narayan Kumar. Model checking languages
of data words. In FoSSaCS, LNCS 7213, pp. 391–405. Springer, 2012.

8. B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. Piegdon. libalf: the
automata learning framework. In CAV, LNCS 6174, pp. 360–364. Springer, 2010.

9. S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A succinct canonical
register automaton model. In ATVA, LNCS 6996, pp. 366–380. Springer, 2011.

10. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions
for compositional verification. In TACAS, LNCS 2619, pp. 331–346. Springer, 2003.

11. T. Colcombet, C. Ley, and G. Puppis. On the use of guards for logics with data.
In Proceedings of MFCS, LNCS 6907, pp. 243–255. Springer, 2011.

12. D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems.
In ESEC / SIGSOFT FSE, pp. 257–266. ACM, 2003.

13. P. Habermehl and T. Vojnar. Regular Model Checking Using Inference of Regular
Languages. In INFINITY’04, ENTCS 138, pp. 21–36. Elsevier, 2005.

14. F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register au-
tomata. In VMCAI, LNCS 7148, pp. 251–266. Springer, 2012.

15. B. Jonsson. Learning of automata models extended with data. In SFM, LNCS
6659, pp. 327–349. Springer, 2011.

16. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

12

17. K. O. Kürtz, R. Küsters, and T. Wilke. Selecting theories and nonce generation
for recursive protocols. In FMSE, pp. 61–70. ACM, 2007.

18. M. Leucker. Learning meets verification. LNCS 4709, pp. 127–151. Springer, 2007.
19. T. Margaria, H. Raffelt, B. Steffen, and M. Leucker. The LearnLib in FMICS-jETI.

In ICECCS, pp. 340–352. IEEE Computer Society Press, 2007.
20. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and

II. Information and Computation, 100:1–77, Sept. 1992.
21. F. Neven, Th. Schwentick, and V. Vianu. Finite state machines for strings over

infinite alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.
22. R. Rivest and R. Schapire. Inference of finite automata using homing sequences.

Information and Computation, 103:299–347, 1993.
23. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In

Z. Ésik, editor, CSL, LNCS 4207, pp. 41–57. Springer, 2006.
24. N. Tzevelekos. Fresh-register automata. In POPL, pp. 295–306. ACM, 2011.

13

Appendix

A Proofs for Section 2

This section is devoted to the construction of the canonical session automata as
shortly described in Section 2.

We first start with some global remarks about the definition of the symbolic
normal forms. Let w ∈ (Σ ×D)∗. Then, w is k-bounded iff snf (w) ∈ (Σ × Γk)∗.
Moreover, for all data languages L, we have L = γ(snf (L)). Note that w ≈ w′

implies snf (w) = snf (w′), which validates our choice of denomination for snf .
Indeed, two equivalent data words w and w′ have the same set of sessions (in
particular, Fresh(w) = Fresh(w′)) and the same Σ-labels. Thus, the mappings
τ used to define snf (w) and snf (w′) are the same and snf (w) = snf (w′).

As an illustration of the definition, let us consider the language NFk
def
=

snf (γ((Σ × Γk)∗)) consisting of the symbolic normal forms of all k-bounded
data words. We explain how to construct a symbolically deterministic k-register
session automaton A such that Lsymb(A) = NFk. Its state space is Q = ({0} ∪
[k])× ⊂ [k], consisting of (i) the greatest register already initialized (indeed we
will only use a register r if every register r′ < r has already been used), (ii) a
subset P of registers that we promise to reuse again before resetting their value.
The initial state of A is (0, ∅), the set of accepting states is ({0}∪ [k])×{∅}. We
now describe the set of transitions. For every a ∈ Σ, i ∈ {0} ∪ [k], P ⊆ [k], and
r ∈ [k]:

δ
(
(i, P), (a, r(r))

)
=

{
{(i, P \ {r})} if r ≤ i
∅ otherwise

δ
(
(i, P), (a, f(r))

)
=

{
{(max(i, r), P ∪ [r − 1])} if r − 1 ≤ i ∧ r /∈ P
∅ otherwise

Fig. 7 depicts the 2-register session automaton for NF2 (omitting Σ).

0, ∅ 1, ∅ 2, {1} 2, ∅
f(1)

f(1)
r(1)

f(2)

f(2)
r(2)

r(1)

f(2)

f(1)
r(1)
r(2)

Fig. 7: A 2-register session automaton recognizing NF2

This example permits to prove Theorem 1:

Theorem 1. Session automata are strictly more expressive than data determin-
istic session automata.

14

Proof: We show that the data language L = γ(NF2) cannot be recognized by a
data deterministic session automaton. Indeed, suppose that such an automaton
exists, with k registers. Then, consider the word w = (a, 1)(a, 2)(a, 3) · · · (a, k +
1) ∈ L, where every data value is fresh. By data determinism, there is a unique
run accepting w. Along this run, let i < j be two positions such that their two
fresh data values have been stored in the same register r (such a pair must exist
since the automaton has only k registers). Without loss of generality, we can
consider the greatest position j verifying this condition, and then the greatest
position i associated with j. This means that register r is used for the last time
when reading j, and has not been used in-between positions i and j. Now, the
word (a, 1)(a, 2)(a, 3) · · · (a, k+1)(a, i) ∈ Lmust be recognized by the automaton,
but cannot since data value i appearing on the last position is not fresh anymore,
and yet not stored in one of the registers (since register r was reused at j). �

The example NFk also shows that regularity of the symbolic language (Σ ×
Γk)∗ is preserved under snf (γ(.)). We now prove that this is the case for every
regular language over Σ × Γk. The proof will actually use the special case of
NFk.

Lemma 1. Let L be a regular language over Σ × Γk. Then, snf (γ(L)) is a
regular language over Σ × Γk.

Proof: Let L ⊆ (Σ×Γk)∗ be regular. Consider the language L̃ = {u ∈WF∩(Σ×
Γk)∗ | there is u′ ∈ L such that γ(u) = γ(u′)}, i.e., the set of well formed symbolic
words having the same concretizations as some word from L. We can easily show
that snf (γ(L)) = NFk ∩ L̃. Indeed, if u ∈ snf (γ(L)), then there are u′ ∈ L and
w ∈ γ(u′) such that u = snf (w). Necessarily, w is k-bounded. Hence, u ∈ NFk.
Moreover, we have [w]≈ = γ(u′) (by Remark 1) and w ∈ γ(snf (w)) = γ(u)
implying also [w]≈ = γ(u). Finally, we obtain γ(u) = γ(u′). Reciprocally, if
u ∈ NFk ∩ L̃, then there is u′ ∈ L such that γ(u) = γ(u′). Hence, starting from
any word w in γ(u), we have u = snf (w) (by uniqueness of the symbolic normal
form) and w ∈ γ(u′) ⊆ γ(L), so that u ∈ snf (γ(L)).

We know from previous discussions that NFk is regular. It remains to be
shown that L̃ is regular. To do so, let A = (Q, q0, F, δ) be a k-register session
automaton such that Lsymb(A) = L. We construct a k-register session automaton

Ã = (Q × Inj(k), (q0, ∅), F × Inj(k), δ̃) recognizing the symbolic language L̃.
Hereby, Inj(k) is the set of partial injective mappings from [k] to [k], and ∅ ∈
Inj(k) denotes the mapping with empty domain. These partial mappings are
used to remember the correspondence between old register indices and new ones,
so they may be understood as a set of constraints. For example, the mapping
(2 7→ 1, 1 7→ 3) stands for “old register 2 henceforth refers to 1, and old register
1 henceforth refers to 3”. Any subset of these constraints forms always a valid
partial injective mapping. In the following, such a subset is called a sub-mapping.
For example, π = (1 7→ 3) is a sub-mapping of the previous one; it can then be
extended with the new constraint 2 7→ 2, which we denote π[2 7→ 2]. We describe

15

a, f(1)
b, r(1)
a, f(2)
b, r(2)

∅

1 7→ 12 7→ 1 1 7→ 22 7→ 2

1 7→ 1

2 7→ 2

1 7→ 2

2 7→ 1

a, f(1)

a, f(1)

a, f(2)a, f(2)

a, f(1)
b, r(1)

a, f(1)
b, r(1)

a, f(2)
b, r(2)

a, f(2)
b, r(2)

a, f(1)

a, f(2)

a, f(1)a, f(2)

a, f(1)

a, f(2)

a, f(2)a, f(2)

a, f(1)a, f(1)

a, f(1)
a, f(2)
b, r(1)
b, r(2)

a, f(1)
a, f(2)
b, r(1)
b, r(2)

a, f(1)a, f(1)

a, f(2)a, f(2)

a, f(1)

a, f(1)
b, r(1)

a, f(2)

a, f(2)
b, r(2)

b, r(1)a, f(2)
a, f(1)
b, r(1)
b, r(2)

A Ã AC

Fig. 8: A 2-register automaton, automaton Ã, and the canonical automaton AC

now the transition relation of Ã:

δ̃
(
(q, π), (a, r(π(r)))

)
= {(q′, π) | q′ ∈ δ

(
q, (a, r(r))

)
}

δ̃
(
(q, π), (a, f(r′))

)
= {(q′, π′) | q′ ∈ δ

(
q, (a, f(r))

)
∧ π′ = π′′[r 7→ r′]

with π′′ maximal sub-mapping of π s.t. π′′[r 7→ r′] injective}

We simulate r-transitions simply using the current mapping π. For f-transitions,
we update π, recording the new permutation of the registers. One can indeed
show that Lsymb(Ã) = L̃.

Building the product of the automaton recognizing NFk and the automaton
Ã, we obtain a k-register session automaton recognizing snf (γ(L)). Its number
of states is bounded above by O(|Q|×k!× (k+1)×2k) (as the number of partial
injective mappings in Inj(k) is bounded above by O(k!)). �

From the constructions of the automata for NFk and L̃ (proof of Lemma 1),
we can infer upper bounds on the size of the canonical session automaton.

Theorem 2. Let A = (Q, q0, F, δ) be a k-register session automaton. Then, AC

has at most 2O(|Q| × (k+1)!× 2k) states. If A is data deterministic, then AC has
at most O(|Q| × (k + 1)!× 2k) states. Finally, AC uses at most k registers.

Example 6. Examples of A and Ã, as defined in the previous proof, are given
in Fig. 8. The figure also depicts the canonical automaton AC associated with
A, obtained by determinizing and minimizing the product of both Ã and the
deterministic automaton recognizing NF2 (as given in Fig. 7). Note that AC is
symbolically deterministic and minimal.

16

B Proofs for Section 4

B.1 Closure Properties and Decision Problems

Theorem 4. Data languages recognized by session automata are closed under
intersection and union. They are also closed under complementation in the fol-
lowing sense: given a k-register session automaton A, the language γ((Σ×Γk)∗)\
Ldata(A) is recognized by a k-register session automaton.

Proof: Let A be a k-register session automaton, and B a k′-register session
automaton. Using a classical product construction for AC and BC , we obtain a
min(k, k′)-register session automaton recognizing the data language Ldata(A) ∩
Ldata(B). The language Ldata(A) ∪ Ldata(B) is recognized by the max(k, k′)-
register session automaton that we obtain as the “disjoint union” of A and B,
branching on the first transition in one of these two automata.

Finally, let us consider a symbolically deterministic k-register session automa-
ton A. Without loss of generality, by adding a sink state, we can suppose that A
is complete. Then, every well formed symbolic word over Σ×Γk has exactly one
run in A. The automaton A′ constructed from A by taking as accepting states
the non-accepting states of A verifies that Lsymb(A′) = (Σ×Γk)∗ \Lsymb(A) so
that Ldata(A′) = γ((Σ × Γk)∗) \ Ldata(A). �

Theorem 5. The inclusion problem for session automata is decidable.

Proof: Considering two session automata A and B, we can decide inclusion
Ldata(A) ⊆ Ldata(B) by considering the canonical automata AC and BC . Indeed,
Ldata(A) ⊆ Ldata(B) ⇐⇒ snf (Ldata(A)) ⊆ snf (Ldata(B)) ⇐⇒ Lsymb(AC) ⊆
Lsymb(BC). Thus, it is sufficient to check inclusion for AC and BC . �

B.2 Logical Characterization

We fix infinite supplies of first-order variables x, y, . . ., which are interpreted as
word positions, and second-order variables X,Y, . . ., which are taken as sets of
positions. Atomic dMSO formulas are x = y, label(x) = a (with a ∈ Σ), y =
x+ 1, and x ∈ X. They allow us to reason about word positions in the expected
manner: given a data word w = (a1, d1) · · · (an, dn) ∈ (Σ ×D)∗, positions i, j ∈
[n], and a set I ⊆ [n], we have w, i, j |= x = y (to be read as “w satisfies x = y
when x is interpreted as i and y as j”) if i = j; w, i |= label(x) = a if ai = a;
w, i, j |= y = x+1 if j = i+1; and w, i, I |= x ∈ X if i ∈ I. To reason about data,
there is another atomic formula, x ∼ y, which compares data values at x and y.
More precisely, w, i, j |= x ∼ y if di = dj . Finally, dMSO logic provides negation
and disjunction, as well as existential quantifiers ∃x ϕ and ∃X ϕ (with ϕ a dMSO
formula), interpreted as usual. In addition, we use abbreviations such as true,
x ≤ y, ∀x ϕ, ϕ ∧ ψ, ϕ→ ψ, etc. A sentence is a formula without free variables.
For a dMSO sentence ϕ, we set Ldata(ϕ)

def
= {w ∈ (Σ×D)∗ | w |= ϕ}. We denote

by MSO the fragment of dMSO not making use of ∼. An MSO formula can also
be interpreted over words from Σ∗, without data. For an MSO sentence ϕ, we
let Lsymb(ϕ) ⊆ Σ∗ denote the set of words w ∈ Σ∗ such that w |= ϕ.

17

Theorem 6. A data language is recognized by a session automaton iff it is
definable by an sMSO formula.

The construction of an sMSO formula ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β))
from a session automaton A was implicitly shown in [7] (with a different goal,
though). The idea is that the existential second-order variables X1, . . . , Xm are
used to guess an assignment of transitions to positions. In α, it is verified that
the assignment corresponds to a run of A. Moreover, β checks if data equality
corresponds to the data flow as enforced by the transition labels from Γk.

Let us turn to the converse direction, from logic to automata. Fix an sMSO
formula ϕ = ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β)). Then, β is a formula
whose free variables are among x, y,X1, . . . , Xm. As, moreover, β is an MSO
formula, which does not contain ∼, we can consider words over the finite al-
phabet Σ × {0, 1}m+2 as models of β. The idea is to interpret a position car-
rying letter (a, 1, b, b1, . . . , bm) as x, and a position labeled (a, b, 1, b1, . . . , bm)
as y, while membership in Xi is indicated by bi. Words where x and y are not
uniquely determined, are disregarded. We can represent such models as tuples
(w, i, j, I1, . . . , Im) where w ∈ Σ∗, i denotes the position of the 1-entry in the
unique first component, and j denotes the position of the 1-entry in the second
component. As Lsymb(β) ⊆ (Σ ×{0, 1}m+2)∗ is MSO definable, it is, by Büchi’s
theorem, recognized by some minimal deterministic finite automaton Aβ . Sup-
pose that Aβ has kβ ≥ 1 states. We fix this kβ for the remainder of the section.

Proposition 1. The data language Ldata(ϕ) is kβ-bounded.

Proof: Let w = (a1, d1) · · · (an, dn) ∈ Ldata(ϕ). There exists a tuple I =
(I1, . . . , Im) of subsets of [n] such that, for all i, j ∈ [n],

di = dj ⇐⇒ (a1 · · · an, i, j, I) ∈ Lsymb(β) . (∗)

Suppose, towards a contradiction, that w is not kβ-bounded. Then, there
are k > kβ and a position i ∈ [n] such that i is contained in distinct sessions
S1, . . . , Sk. For l ∈ {1, . . . , k}, let il = min(Sl) and jl = max(Sl). Note that
the il are pairwise distinct, and so are the jl. For every l ∈ {1, . . . , k}, we have
wl = (a1 · · · an, il, jl, I) ∈ Lsymb(β). Thus, for every such word wl, there is a
unique accepting run ofAβ , say, being in state ql after executing position i. AsAβ
has only kβ states, there are l 6= l′ such that ql = ql′ . Thus, there is an accepting
run of Aβ either on a word where one of the first-order components is not
unique, which is a contradiction, or on (a1 · · · an, il, jl′ , I). The latter contradicts
(∗), since Sl and Sl′ are distinct sessions. �

Next, we construct a (data-free) MSO sentence ϕ′ over the alphabet Σ ×
Γkβ (recall that Γkβ = {f, r} × [kβ]) such that γ(Lsymb(ϕ′)) = Ldata(ϕ). We
will need some additional macro MSO formulas over Σ × Γkβ × {0, 1}m+2.
For a first-order variable x and r ∈ {1, . . . , kβ}, we let freshr(x) stand for∨
a,b label(x) = (a, f(r), b). Moreover, we let reg(x) = r be an abbreviation for

freshr(x) ∨
∨
a,b label(x) = (a, r(r), b). Now, we define

ϕ′ = ∃X1 · · · ∃Xm (α′ ∧ ∀x∀y (equal(x, y)↔ β′))

18

where

equal(x, y) =
∨

r∈[kβ]

(
reg(x) = r ∧ reg(y) = r
∧ ¬∃z

(
freshr(z) ∧min(x, y) < z ≤ max(x, y)

))

and α′ and β′ are obtained from α and β, respectively, by replacing label(x) = a
with

∨
t,b label(x) = (a, t, b), with b ranging over {0, 1}m in α′ and over {0, 1}m+2

in β′.

Proposition 2. We have γ(Lsymb(ϕ′)) = Ldata(ϕ).

Proof: Let u = (a1, t1) · · · (an, tn) ∈ Lsymb(ϕ′) be a well formed word, and
let w = (a1, d1) · · · (an, dn) ∈ γ(u). We will show w |= ϕ. There is a tuple
I = (I1, . . . , Im) of subsets of [n] such that u, I |= α′ ∧ ∀x∀y (equal(x, y)↔ β′).
This already implies w, I |= α. Now take two positions i, j ∈ [n]. By the definition
of equal(x, y) and γ, we have di = dj iff u, i, j, I |= equal(x, y) iff u, i, j, I |= β′

iff w, i, j, I |= β. We conclude w |= ϕ = ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β)).
For the converse direction, suppose w = (a1, d1) · · · (an, dn) ∈ Ldata(ϕ).

There is a tuple I = (I1, . . . , Im) of subsets of [n] such that w, I |= α ∧
∀x∀y (x ∼ y ↔ β). Therefore, it already holds u, I |= α′. By Proposition 1, w is
kβ-bounded. Let u = snf (w) = (a1, t1) · · · (an, tn). We have w ∈ γ(u) which im-
plies u ∈ (Σ×Γkβ)∗. It remains to be shown that u, I |= ∀x∀y (equal(x, y)↔ β′).

Take any two positions i, j ∈ [n]. We have u, i, j, I |= equal(x, y) iff di = dj . The
latter is the case iff w, i, j, I |= β (since w, I |= ∀x∀y (x ∼ y ↔ β)), which holds
iff u, i, j, I |= β′. Thus, u |= ϕ′. �

By Büchi’s theorem, we can translate ϕ′ into a finite automaton A recogniz-
ing the models of ϕ′, which form a language over Σ × Γkβ . By Proposition 2,
interpreting A as a session automaton, we obtain Ldata(A) = Ldata(ϕ).

19

