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ABSTRACT to the observed data but they are not directly the quantfies

Assessing the global situation of a person from physiokgic interest which are the situations at a more global level.

data is a well-known difficult problem. In previous work, we The system operates by navigating between plausible hy-

propose a system that does not produce a diagnosis but ipotheses for states and for micro-scenarios. To do so it re-

stead follows a set of hypotheses and decides of an alarmirﬁt\})}"retshto gvaluat?_(tjhew plalusmt;hty .dWe thbus ass(;g; ?Ebl thi
situation with this information. In this paper we focus onala pothesis a confidence value based on observed data. In this

processing part of the system taking into account the comPapPer we focus on the data processing part of th? system that
plexity and the ambiguity of the data. We propose a statis@ims at (1) learning the unknown model as an off-line pracess

tical approach with a global model based on Hidden MarkO\fmdI the2n 52) cotr;:putlngl_the confldelncg \{[aluesaor-lmerz]. .
Model and we present data models that rely on classical phys- nl [ ’I' ], au o:js Ire :es_ (;n stlrr]np € da a, m(?t € t_suc :/T in-
iological parameters and expert's knowledge. We then IearHarVa or inéar models to infer the person's situations.rlo
a model that depends on the person and its environment, a ently [4] proposes to extract some features from physio-

we define and compute confidence values to assess the pl %glcal data gnd to classify them using a risk cntenqn. Nu-
sibility of hypotheses. merous studies propose very complex signal processing tech

nigues for physiological data modeling such as heart rdte va
Index Terms— Graphical model, HMM, Physiological ues [5, 6] without considering context-dependencies. i th

data, Context representation. paper we propose a model for the data that is adaptive to the

subject and takes into account the environmental condition

Micro-scenario

1. INTRODUCTION

The work presented in this paper is a contribution to the prob
lem of identifying a person situation based on the monitprin
of activity and physiological sensors. Previous works [L, 2
clearly establish that it is a difficult task due to the amitigu
of the data and the impossibility to directly interpret thera
solve this problem, they propose to take into account some
contextual knowledge based on the idea that a person phys-
iology is usually influenced by the environmental condigion
and its activities. In [3], we propose a multi-agent system 2. OBSERVED AND MISSING VARIABLES
that takes into account the context and draw a set of plaus
ble hypotheses about the person’s situation. The spedificat

of such a situation, also referred in [3] as micro-scena&e, Model (HMM) [7], widely used in speech recognition.

quires the definition of a person state. A person state is d%bserved variables. At each timet, we observe datd; (1)

termined via a co_uple .Of variables: an activity state de.!mOtethat are measurements of two different types of sensors: the
by E‘* gnd a phyglolog|cal Stf"‘te denoted by. In [3] ?SIt_ activity data notedy, (¢), and the physiological data noted
uation is then defined as a given set of values for this coupl(i./ (#), such thatY' () — (Ya(t), Ya(t)). Ya(t) is a tridi-
For instance a typical situation could correspond to a “Cof- ¥\"”" e e e

fee break” which would be characterized by different pdssib ?e(r;)S'iZn;Lgiribﬁ grzz\f:j(ji?nder?:isng:-\?;isaglce ?lﬁzgrﬁzzﬁ ;':e
values of( E,, E,,) such asZ,, = “seating” andE,, = “diges- ® p ’

tion” if the coffee break is just after lunch @, = “walking” and the breath frequency noted respectl\l@Jyt)l andF, (¢):
p - S . Y, (t) = (Fe(t), Fy(t)). We denoteY' (1 : T') * the whole
andE, = “pbasal” it the person is in its basal state but walking . :
. o . . sequence of observations from time- 1tot = T.
while drinking. Physiology or activity states correspoadi-
cal views of the situation, they are easier to model and to lin = Yw(1: ¢) = (w(1) u(2) - - - u(t)).

Observed Data

Fig. 1. Different abstraction levels.

I'h this section, we propose a model for dependencies between
unknown states and observed data based on Hidden Markov




Context variables. We introduce contextual information in Yo (t—1) Yo (t) Yo (t+1)
our model in the form of two variable< = (P, £) where 1 1 1
‘P denotes the subject arft] the environmental conditions.

Y, (t),t € {1---T}, are physical variables and are assumed P Bl ) e Bel) e Ealit]) —
to be independent @ that act only on the physiology of the B — (Eat) —f Bt ..
person. For instance, altitude affects breathing and dgetaf

cardiac function. l l l

Missing variables. The system relies on two levels: micro- Yo(t—1) Yo(t) Yo(t+1)

scenario and state, and we divide the state level into two dif
ferent types: one for activity and one for physiology (seg Fi
ure 1). They are unobserved variables and we denote them
E,(t) andE,(t) respectively for the activity state and physi- 3. A CONTEXT CONDITIONAL JOINT MODEL
ology state at time. They reflect the true activity and physi-
ology states of a subject.

We choose a discrete description Bf,(¢): for all ¢t €
{1---T}, En(t) € {1,2,--- ,M,}. For exampleE,(t)=1
corresponds to the “inactive” state white, (t) = M,, corre- P(Ya (1:T), Yo (1:T) | Ba (1:T), Ep (1:T),C) p(Ea(1:T),Ey (1:T)|C).

sponds to th? aCt'Y'ty state _ Intense movement” Missing data model. The model takes into account the tem-
_The physiological state is more complex because we corlsora| dependencies and both states are time-dependerg. Mor
s!der that multiple physmloglcal elem_entary state mayuocc specifically we defing(E,(1:T), E,(1:T)|C) as an homo-
simultaneously, a typical example being the “digestiortth geneous Markov chain whose state space is discrete and with
may occur together with “basal” or “sleep”. We thus con-tne following transition matrix. We assume that activitydan

sider E,(t) to be a set of elementary states note), i € physjology states transitions are independent such that:
{1---M,} andE,(t) is a binary vector of siz8/,: E,(t)=

[el(t) 62(t) e, (t)], Whereei(t) c {(]7 1} (0 Correspond- P ((Ea(t),Eq,(t)):(i,u)KEa(tfl),Ew(tfl)):(j,v);C) =

ing to inactive state antl to active state). For instance, with P(Ea(t)=i|Ea(t—1)=5;C) P(E,(t)=u|B,(t—1)=viC) =
three_elementary states “basal”, “sleep“‘,“digestioﬁ;’a(t) = To(Ba(t-1)=i,Ea(t)=5) X Tp(Ep(t-1)=u,By(t)=0v) ,

[100] is a “basal” state and,(t) = [011] is a “sleep and di-

gest” state. Theoreticallf,,(¢) can take2™+ values. In fact whereT,, andT,, denote the transition matrices. The tran-
some configurations are impossible because many elementasifion matrices can be part of the unknown parameter of the
states are incompatible: for example, “exercise” and fslee model that must be estimated on data sets. However, they in-
can not be simultaneously active. We represent these incortroduce a large number of unknown parameters in the model
patibilities with a graph as shown in figure 2. The physiolog-and we want to add some expert’'s knowledge about these tran-
ical state space is reducedq, states whereV,, is establish  sitions. For example, “recovery” will always follow “exer-

Fig. 3. Physiological and activity data graphical model.

The joint model of our observed and missing variables is de-
fined conditionally to the context variablés

p(Yo (1:T),Y,(1:T),Eq(1:T),E,(1:T)|C)=

with combinatorial rules. For example in figure/Z, = 10. cise”. So we prefer to treat them as fixed parameters in this
We noteE,, (1:T) andE,,(1:T) respectively the activity preliminary work, knowing that we can relax this assumption
and the physiology states from time= 1to¢ = 7. and learn them from the data.

Observed data model. The physiological and activity data
are assumed to be conditionally independent:
p(Yo (1:T), Y, (1:T)|Eq(1:T),E,(1:T),C)=

p(Yo (1:T)|Eq(1:T),E,(1:T),C) p(Yo(1:T)|Eq (1:T),E,(1:T),C).

For eacht, we modelY,(¢) as a trivariate Gaussian vari-
able whose mean and covariance matrix depend on the activ-

ity stateE,, (¢):

Fig. 2. Graph representation of incompatibilities between el-
ementary physiological states. (Ya(t)[Ea(t) = k;C) ~ N5 (pa(k); Xa (k)

The corresponding unknown parameters to be estimated
We thus propose a graphical model with two chains, on@re denoted by, with:
for each u.nobs.elrved state, and two different Q¢pendermle§f 00 = ({pta(k), Sa(k)} k= 1--- M,)
the data : activity data depend only on activity state while
physiological data depend on both activity and physiology By contrast, the physiological data must take into account
state (see figure 3). This is a variant of Factorial HMM [8] the contextC and, in addition, we assume that they do not
where data are split into two distinct sets. actually depend directly of,, andE,, but via some discrete



quantityh(E,, E,) whereh is a function taking a finite num-  c(e;(t) = 1) £ p(e;(t) = 1|Y (1 : ¢),0)

ber of valuesir{ = {0... H}. The possible values fdércan _ _ _ .

be interpreted as different intensity levels. Typicaliffedtent N Z Z P (Balt) =k, Ep(t) = ulY (1:¢),0) ,
combinations of2,, andE,, can lead to the same leviele H. b=t
For instance, “exercise” at a low level of activity and “re€o  \yith & {1--- M,} andu is a binary vector of siz&Z,, with
ery and digestion” at medium level of activity yield similar glementj notedu(5).

physiological data. The functionis assumed to be defined a

priori by experts. It follows that, 5. PRELIMINARY RESULTS

(Yoo ()| Ea (1) =k, B (1) =u;,C) ~Na (1o (C, k1)), B (Co (i w)))- We illustrate our model with the following simulated data.

The dependence on the context variables can then be further We first describe the adjustment functions wifh= 5:

specified. The heart rate and breath frequency are made of one 10 ifh=5 0 ifh=0
part which is only person specific to which is added a quantity 20 ifh—4 A ifh=1
that depends both on the context variables and person stat]e(c h) = S AC ) = 27 ifh=2
More specifically, we consider two well-known physiolodica * " 50 ifh=1 ’ ’ o ’
quantities the maximal heart ratg"** and the basal breath +P) fh=0 A ifh=5
frequencyF**? to which is added an adjustment function

detailed in section 5. The maximal heart r&g“* and the 60 — ngasal(fp)

basal breath frequendy?***! are person specific but do not Wherey(P) = F"**(P)—F;*"(P) andA = :
depend on the other context variables nor on the person state We note that estimating** requires very specific ex-

me(C, h) Fmaz(P) — f.(C, h) perimental settings not available for us and we use the well-
te(C, h) = [ my(C, h) } ] known deterministic functions:

B [ Epel(P) + fo(C. D)
Similarly we fix a model for the covariance matrix assuming pmaz(py _ 220 — aggP) for men
Zero covariance terms: c(P) = 206 — 88%agdP) for women

o.(C, h) 0
Y,(Coh) = { 0 o3(C, h) ] We simulate a sequence of data for a men aged 32 with
_ _ o Frest = 80bpm and FP*sel = 14 breaths/min: E,(1 :
Finally, for context variabl€, the unknown physiological 200) = “inactive”, E,(1 : 200) = “basal” ; E,(201 :

parameters are: 500) = “medium movement”E,, (201 : 500) = “exercise” ;
0, (C)=(FIae(P),F*** (P), fe(C.h),f»(C,h),0c(C.h) 00 (C,h)s forall ) E, (501 : 600) = “inactive”, E,(501 : 600) = “recovery”;
, E, (601 : 800) = “inactive”, E,(601 : 800) = “basal”. Val-

The whole set of parameters for the modes: ues of corresponding(-,-) are given in the second column

0 = (0a,0,(C)) . in Table 1.
The goal is to (i) learn the parameter with ML criterion
4. PARAMETERS IDENTIFICATION AND and correctly recover the model ; (ii) compute confidence val
CONFIDENCE COMPUTATION ues for all states.

We face two tasks: estimate the parameters to identify the We display the estimated parameters obtained in Table 1.
model, and define and compute states confidence values. We are able to recover the parameters except for the situa-
Parameter identification is an off-line process and withintion whereE,, = “inactive” and £, = “recovery”, because

this graphical framework, we choose a Maximum Likelihooddata could correspond to another situatidn, = “medium

(ML) criterion such that: movement”E,, = “basal”. This is due to the fact thaf-, -)
0 — argmaxp(Y (1:T)|6) . ?s a surje_ction_. In fu_turt_e work we must include this ambiguit
0 in the estimation criterion.

For problems with hidden states, because the likelihood N the following, we use the model described above with
p(Y(L : T)|f) is untractable, we use a numerical approach« = 4 and the set of physiology states of figure 2. With
based on Expectation-Maximization (EM) algorithm [9] to the same simulated data anq with parameters correctly es'tl—
infer the estimaté. The computation is performed using the Mated, we compute the confidence values of states (see fig-

Bayes Net toolbox for Matlab [10]. ures 4 and 5). Figure 4 shows confidence values of activity
We now define for each timethe confidence value for the States exhibiting that between= 200 and¢ = 500 there is
states as their posterior probabilities: no clear choice between “medium movement” and “intense

movement”, explaining that we want to maintain both hy-
c(Eqo(t) =k) £ p(ELt) =k|Y(1:1),0) potheses in our monitoring system. Similarly, for physiglo

_ Zp (Ba(t) = k, E,(t) = u|Y (1 :4),0) |, states, figure 5 shows that if we want to select the real state
- then maximizing the confidence values yields a wrong result.



N Model parameters
situations - - - — —
Me| Me mp | My Ho Ho Oc| Oc ||Ob| Ob Za Ea
basal 5607 | 560.05 500 508 0 0
inactive |0 80| 79.96|| 14 |13.98 {440} {440105} 4| 3.80|| 2 |1.97 [850} { 0 544 0 }
580 | | [ 580.09 005 0 0 4.93
exercise 560 1| 559.99 30 0 0 23.53 0 0 ‘
medium |4/168168.52/50.850.86 {240} [440220} 15/14.63| 8 |18.61 [0 30 0} { 0 22.71 0 }
580 ] | [ 579.86 0 0 30 0 0 23.64
movement
recovery 560 1| 560.05 500 508 0 0 ‘
inactive |2|148163.52|32.444.98 {240] [240105} 8(0.93|| 4|1.08 [5 5 0} {d‘o 5.44 0 }
580 ] | [ 580.09 005 0 0 4.93

Table 1. Model and learned parameters for the simulated sequence.

We thus prefer to select a set of hypothesis to monitor thehysiology and the environmental conditions. This allows u
subject situation: for example, ferc [200, 500], we main-

tain “recovery”,

sleep” and “exercise” states.
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Fig. 4. Confidence values of activity statéss [1---T7:

active” (line), “low movement” (dash), “medium movement”

(dot), “intense movement” (dash and dot).

“y
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Fig. 5. Confidence values of physiology states; [1---T7:
“basal” (dash), “exercise” (dash and dot), “recovery” ifthi
plain), “sleep” (large plain), “digestion” (dot).

We presented a dynamic Bayesian network based on HM
to model the physiological state of a subject allowing thus

6. CONCLUSION

to select a set of “plausible” hypotheses of the real sitwati

Our model takes into account the specificity of the personal

to learn parameters as an off-line process and then to com-
pute posterior probability for each state. The overall geal

to use confidence values in the global multi-agent systein tha
manages the set of hypotheses. We present here some pre-
liminary results. Future work includes the adaption of the
learning algorithm, the validation on real data and the dse o
approximation techniques to handle more complex models.
Thanks. PRETA/TIMC experts participated in elaborating physio-
logical models. This work is funded by DGA project “SuPerCo”.
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