Spectral multipliers for wave operators

Abstract : A classical theorem of Mihlin yields Lp estimates for spectral multipliers Lp(R^d) -> Lp(R^d); g -> F^{-1}[f(| |^2) Fg] in terms of L^\infty bounds of the multiplier function f and its weighted derivatives up to an order > d/2. This theorem, which is a functional calculus for the standard Laplace operator, has generalisations in several contexts such as elliptic operators on domains and manifolds, Schrödinger operators and sublaplacians on Lie groups. However, for the wave equation functions f (s) = (1 + s )^{-\alpha} e^{its} a better estimate is available, in the standard case (works of Miyachi and Peral) and on Heisenberg Lie groups (Müller and Stein). By a transference method for polynomially bounded regularized groups, we obtain a new class of spectral multipliers for operators that have these better wave spectral multipliers and that admit a spectral decomposition of Paley-Littlewood type.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00742036
Contributeur : Christoph Kriegler <>
Soumis le : lundi 15 octobre 2012 - 16:38:21
Dernière modification le : mardi 16 octobre 2012 - 08:34:27
Document(s) archivé(s) le : mercredi 16 janvier 2013 - 03:55:08

Fichiers

Wave.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00742036, version 1
  • ARXIV : 1210.4261

Collections

Citation

Christoph Kriegler. Spectral multipliers for wave operators. 2012. 〈hal-00742036〉

Partager

Métriques

Consultations de la notice

158

Téléchargements de fichiers

156