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Abstract We first present in this paper an analytical view of heuristic retrieval con-

straints which yields simple tests to determine whether a retrieval function satisfies the

constraints or not. We then review empirical findings on word frequency distributions

and the central role played by burstiness in this context. This leads us to propose a for-

mal definition of burstiness which can be used to characterize probability distributions

with respect to this phenomenon. We then introduce the family of information-based

IR models which naturally captures heuristic retrieval constraints when the underlying

probability distribution is bursty and propose a new IR model within this family, based

on the log-logistic distribution. The experiments we conduct on several collections il-

lustrate the good behavior of the log-logistic IR model: It significantly outperforms

the Jelinek-Mercer and Dirichlet prior language models on most collections we have

used, with both short and long queries and for both the MAP and the precision at

10 documents. It also compares favorably to BM25 and has similar performance to

classical DFR models such as InL2 and PL2.

1 Introduction

If Information Retrieval (IR) on the web is dominated by systems learning ranking

functions from log data, standard ad hoc IR is largely dominated by probabilistic

systems with few parameters to set, as Okapi, the language models or the Divergence

from Randomness (DFR) models. These latter models are based on several probabilistic

distributions and assumptions which help their deployment in pratical situations. If

these models are well founded from an information retrieval point of view (they satisfy

the heuristic retrieval constraints given in [9] for example), the probability distributions

they rely on yield in general a poor fit to empirical data. Thus, in the “model word

frequency distributions to retrieve documents” approach, the first part (model word

frequency distributions) is somehow neglected with respect to the second part (retrieve

documents) in most models.
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We present in this paper a new IR model, based on probability distributions fitting

well empirical data, and satisfying heuristic retrieval constraints. To do so, we first ex-

plore the links between heuristic retrieval constraints and word frequency distributions.

After proposing an analytical view of heuristic retrieval constraints which extends the

work presented in [9] and yields simple tests to determine whether a retrieval function

satisfies the constraints or not, we review empirical findings on word frequency distri-

butions and the central role played by burstiness in this context. This is the subject of

Section 2. In Section 3, we analyze DFR models thanks to the retrieval constraints we

reformulated. In Section 4, we introduce the family of information-based IR models and

develop, within this family, a new IR model based on the log-logistic distribution. In

Section 5, we illustrate the good behavior of our model through a series of experiments

which validate the good fit it provides to empirical data and the good performance

it yields in IR when compared to language models and Divergence from Randomness

models. We then discuss several aspects of our approach in Section 6, prior to conclude.

The notations we use throughout the paper are summarized in table 1.

Table 1 Notations

Notation Description
x

q
w Number of occurrences of term w in query q

xd
w Number of occurrences of term w in document d

tdw Normalized version of xd
w

N Number of documents in the collection
M Number of terms in the collection
Fw Number of occurrences of w in the collection: Fw =

P

d xd
w

Nw Document frequency of w :
Nw =

P

d I(xd
w > 0)

yd Length of document d, in tokens
m Average document length, in tokens
L Length of collection d, in tokens

h(xd
w, yd, zw) Base retrieval function with

zw zw = Fw or zw = Nw

2 IR models and word frequency distributions

We first present in this section an analytical version of heuristic retrieval constraints

which underlie most IR models. We then review several studies of word frequency

distributions, and emphasize the role played by burstiness in these studies. This section

thus introduces a few facts concerning IR models deployed over text collections, facts

that will help in building a new IR model.

2.1 Heuristic retrieval constraints

Following Fang et al. [9], who proposed formal definitions of heuristic retrieval con-

straints which can be used to assess the validity of an IR model, we introduce here

analytical conditions a retrieval function should satisfy to be valid. We consider here
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retrieval functions, denoted RSV , of the form:

RSV (q, d) =
X

w∈q

a(xq
w)h(xd

w, yd, zw, ω)

where ω is a set of parameters and where h, the form of which depends on the IR model

considered, is assumed to be of class C2 and defined over R
+∗×R

+∗×R
+∗×Ω, where

Ω represents the domain of the parameters in ω and a is often the identity function1.

Language models [19], Okapi [15] and Divergence from Randomness [2] models as well

as vector space models [16] all fit within the above form. For example, for the pivoted

normalization retrieval formula [17], ω = (s, m, N) and:

h(x, y, z, ω) = I(x > 0)
1 + ln(1 + ln(x)I(x>0))

1 − s + s
y
m

ln(
N + 1

z
)

where I is an indicator function which equals 1 when it argument is true and 0 other-

wise. A certain number of hypotheses, experimentally validated, sustain the develop-

ment of IR models. In particular, it is important that documents with more occurrences

of query terms get higher scores than documents with less occurrences. However, the

increase in the retrieval score should be smaller for larger term frequencies, inasmuch

as the difference between say 110 and 111 is not as important as the one between 1 and

2 (the number of occurrences has doubled in the second case, whereas the increase is

relatively marginal in the first case). In addition, longer documents, when compared to

shorter ones with exactly the same number of occurrences of query terms, should be pe-

nalized as they are likely to cover additional topics than the ones present in the query.

Lastly, it is important, when evaluating the retrieval score of a document, to weigh

down terms occurring in many documents, i.e. which have a high document/collection

frequency, as these terms have a lower discrimination power. Fang et al. [9] proposed

formal criteria to account for these phenomena. We recall here these criteria and pro-

vide an analytical version of them which leads to conditions on h which can be easily

tested (the names of the different criteria are directly borrowed from Fang et al. [9]).

Criterion 1 - TFC1: Let q = w a query with only word w. Suppose that yd1 = yd2.

if xd1
w > xd2

w , then RSV (d1, q) > RSV (d2, q) (Fang et al.).

Proposition 1: TFC1 ⇐⇒ ∀(y, z, ω), n ∈ N
∗, h(n, y, z, ω) is increasing. A sufficient

condition is:

∀(y, z, ω),
∂h(x, y, z, ω)

∂x
> 0 (condition 1)

Criterion 2 - TFC2: Let q = w a query with only word w. Suppose that yd1 = yd2 =

yd3 et xd1
w > 0. If xd2

w − xd1
w = 1 et xd3

w − xd2
w = 1, then RSV (d2, q) − RSV (d1, q) >

RSV (d3, q) − RSV (d2, q) (Fang et al.).

Proposition 2: TFC2 ⇐⇒ ∀(y, z, ω), n ∈ N
∗, h(n + 1, y, z, ω) − h(n, y, z, ω) is de-

creasing. A sufficient condition is:

∀(y, z, ω),
∂2h(x, y, z, ω)

∂x2
< 0 (condition 2)

1 A function of class C2 is a function for which second derivatives exist and are continuous.
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Criterion 3 - LNC1: Let q = w a query and d1, d2 two documents. If, for a word

w′ 6∈ q, xd2
w′ = xd1

w′ + 1 but for another query word w, xd2
w = xd1

w , then RSV (d1, q) ≥

RSV (d2, q) (Fang et al.).

∀(x, z, ω), n ∈ N
∗, Let bn = h(x, n, z, ω).

Proposition 3: LNC1 ⇐⇒ ∀(x, z, ω), n ∈ N
∗, h(x, n, z, ω) is decreasing. A sufficient

condition is:

∀(x, z, ω),
∂h(x, y, z, ω)

∂y
< 0 (condition 3)

Criterion 4 - TDC: Let q a query et w1, w2 two words. Suppose that yd1 = yd2,

xd1
w1 + xd1

w2 = xd1
w2 + xd2

w2. If idf(w1) ≥ idf(w2) et xd1
w1 ≥ xd2

w1, then RSV (d1, q) ≥

RSV (d2, q) (Fang et al.).

A special case of TDC corresponds to the case where w1 occurs only in document d1

and w2 only in d2. In such a case, the constraints can be written as:

speTDC: Let q a query and w1, w2 two words. Suppose that yd1 = yd2, xd1
w1 = xd2

w2,

xd2
w1 = xd1

w2 = 0. If idf(w1) ≥ idf(w2), then RSV (d1, q) ≥ RSV (d2, q).

Proposition 4:

speTDC ⇐⇒ ∀(x, y, ω),
∂h(x, y, z, ω)

∂z
< 0 (condition 4)

Criterion 5 - LNC2: Let q a query. ∀k > 1, if d1 and d2 are two documents such

that yd1 = k × yd2 and for all words w, xd1
w = k × xd2

w , then RSV (d1, q) ≥ RSV (d2, q)

(Fang et al.).

Proposition 5: LNC2 ⇐⇒

∀(z, ω), (m, n) ∈ N
∗
, k > 1, h(km, kn, z, ω) ≥ h(m, n, z, ω) (condition 5)

Criterion 6 - TF-LNC: Let q = w a query with only word w. if xd1
w > xd2

w et

yd1 = yd2 + xd1
w − xd2

w , then RSV (d1, q) > RSV (d2, q) (Fang et al.).

Proposition 6: TF − LNC ⇐⇒

∀(z, ω), (m, n, p) ∈ N
∗
, h(m + p, n + p, z, ω) > h(m, n, z, ω) (condition 6)

Conditions 1, 3 and 4 directly state that h should be increasing with the term frequency,

and decreasing with the document length and the document/collection frequency. Con-

ditions 1 and 2 (mentioned by Fang et al. [9]) state that h should be an increasing,

concave function of the term frequency, the concavity ensuring that the increase in

the retrieval score will be smaller for larger term frequencies. Lastly, conditions 5 and

6 regulate the interaction between frequency and document length, i.e. between the

derivatives wrt to x and y. They allow to adjust the functions h satisfying conditions

1, 2, 3 and 4. In the remainder, we will refer to conditions 1, 2, 3 and 4 as the form

conditions and conditions 5 and 6 as the adjustment conditions.



5

Fig. 1 Typical fit of Two Poisson, Negative Binomial (NB) and Katz mixture (K) for fre-
quencies of a given word

2.2 Word frequency distributions

If IR models have to fulfill the above conditions, the most recent and widely used mod-

els also rely on word probability distributions with their own specificities. In Okapi, for

example, it is assumed that word frequencies follow a mixture of two Poisson distribu-

tions (2P), in both the relevant and irrelevant sets. The Divergence from Randomness

(DFR) framework proposed by Amati and van Rijsbergen [2] makes use of several

distributions, among which the geometric distribution, the binomial distribution and

Laplace law of succession play the major role. Language models are, for themselves,

built upon the multinomial distribution, which amounts to consider binomial distribu-

tions for individual words.

Empirical findings on how words behave in text collections however suggest that

none of the above distributions is appropriate for accurately describing word frequen-

cies. Church and Gale ([6]) compared the binomial and Poisson distributions with

mixtures of Poisson to model word frequency distributions. Their results indicate that

the negative binomial distribution, which is an infinite mixture of Poisson distributions,

fits the data better than the other distributions. Figure 1 (from [6]) plots the number

of documents (y-axis) with exactly x occurrences (x-axis) of a given word. As one can

observe, the 2-Poisson model yields a poor fit to the data. In a later work, Church also

showed experimentally that words tends to reappear in documents [5], a phenomenon

referred to as positive adaptation or burstiness.

The term “burstiness” describes the behavior of words which tend to appear in

bursts, i.e., once they appear in a document, they are more likely to appear again. The

notion of burstiness is similar to the one of aftereffect of future sampling ([10]), which

describes the fact that the more we find a word in a document, the higher the expec-

tation to find new occurrences. Burstiness has recently received a lot of attention from

different communities. Madsen [13], for example, proposed to use the Dirichlet Com-

pound Multinomial (DCM) distribution in order to model burstiness in the context of

text categorization and clustering. Elkan [8] then approximated the DCM distribution
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by the EDCM distribution, for which learning time is faster, and showed the good be-

havior of the model obtained on different text clustering experiments. A related notion

is the one of preferential attachment ([3] and [4]) often used in large networks, such

as the web or social networks. It conveys the same idea: the more we have, the more

we will get. In the context of IR, Xu and Akella [18] studied the use of a DCM model

within the Probability Ranking Principle, and argue that multinomial distributions

alone are not appropriate for IR within this principle (quoting):

Because the multinomial distribution assumes the independence of the word

repetitive occurrences, it results in a score function which incorporates unde-

sired linearity in term frequency. To capture the concave property and penalize

document length in the score function, a more appropriate distribution should

be able to model the dependency of word repetitive occurrences.

The dependency of word repetitive occurrences is directly linked to burstiness. More

formally, for a word probability distribution P (Xw), [6] measures its burstiness through

the quantity:

BP =
EP [Xw]

P (Xw ≥ 1)

where EP denotes the expectation with respect to P . The drawback of this measure is

that it does not give a clear understanding on whether a given distribution accounts

for burstiness or not. Clinchant and Gaussier [7] introduced the following definitions

(slightly simplified here for clarity’s sake) in order to characterize discrete distributions

which can account for burstiness:

Definition 1 [Discrete case] A discrete distribution P is bursty iff for all integers

(n′, n), n′ ≥ n:

P (X ≥ n
′ + 1|X ≥ n

′) > P (X ≥ n + 1|X ≥ n)

We generalize this definition to the continuous case as follows:

Definition 2 [General case] A distribution P is bursty iff the function gǫ defined by:

gǫ(x) = P (X ≥ x + ǫ|X ≥ x), ǫ > 0

is a strictly increasing function of x for all ǫ > 0. A distribution which verifies this

condition is said to be bursty.

This definition directly translates the fact that, with a bursty distribution, it is easier

to generate higher values of X once lower values have been observed. Armed with these

definitions, one can characterize standard distributions wrt burstiness:

– The binomial and Poisson distributions are not bursty,

– The geometric and exponential distributions are neutral wrt burstiness, i.e. the

function is neither increasing nor decreasing,

– The Pareto distribution is bursty.

2.3 Summary

We can sum up the different points developed in this section as follows:

1. IR models have to fulfill heuristic retrieval constraints stated in conditions 1 to 6,



7

2. Word frequency distributions should be bursty according to the above definitions,

3. Word frequency distributions used in standard IR models are usually not bursty.

The question which naturally follows from these findings is whether one can build

an IR model based on bursty distributions and compliant with the heuristic retrieval

constraints. The next section is devoted to the presentation of such a model. Before

that, we analyze the Divergence from Randomness framework with respect to the

retrieval constraints.

3 The DFR Framework

The Divergence from Randomness (DFR) framework proposed by Amati and van Ri-

jsbergen [2] is currently one of the most successful IR models. It is based on the

informative content provided by the occurrences of terms in documents, denoted Inf1,

a quantity which is then corrected by the risk of accepting a term as a descriptor in a

document, denoted Inf2, and associated to the first normalization principle. Lastly, raw

occurrences are normalized by the length of the document, a normalization which cor-

responds to the second normalization principle. In the remainder, t(xd
w, yd) will denote

the normalized form of xd
w. The informative content Inf1(t(x

d
w, yd)) is based on a first

probability distribution and is defined as: Inf1(t(x
d
w, yd)) = − log Prob1(t(x

d
w, yd)). The

risk of accepting a term (first normalization principle) is based on a second probability

distribution and is defined as: Inf2(t(x
d
w, yd)) = 1 − Prob2(t(x

d
w, yd)). For example,

using the Laplace law of succession for the first normalization principle, one obtains

the following retrieval function:

RSV (q, d) =
X

w∈q∩d

x
q
w

Inf2(t(xd
w,yd))

z }| {

„

1

t(xd
w, yd) + 1

«

Inf1(t(x
d
w, yd)) (1)

We now review the two normalization principles behind DFR models.

3.1 The Second Normalization Principle

The second normalization principle aims at normalizing the number of occurrences of

words in documents by the document length, as a word is more likely to have more

occurrences in a long document than in a short one. The different normalizations

considered in the literature transform raw number of occurrences into positive real

numbers. Language models for example use the relative frequency of words in the

document and the collection. Other classical term normalization schemes include the

well know Okapi normalization, as well as the pivoted length normalization [17]. More

recently, [14] propose another formulation for the language model using the notion of

verbosity.

DFR models usually adopt one of the two following term frequency normalizations

(c is a multiplying factor):

t
d
w = t(xd

w, yd) = x
d
wc

m

yd
(2)

t
d
w = t(xd

w, yd) = x
d
w log(1 + c

m

yd
) (3)



8

The important point about the second normalization principle is that, to be fully

compliant with these definitions, the probability distribution functions at the basis

of DFR models should be continuous distributions as the variables considered are

continuous2. This is not the case for DFR models proposed so far which rely on discrete

distributions.

3.2 The First Normalization Principle

The intuition behind Inf1 is simple. Let P (t(xd
w, yd)|θw) represent the probability of

t(xd
w, yd) (normalized) occurrences of term w in document d according to parameters θw

which are estimated or set on the basis of a random distribution of w in the collection.

If P (t(xd
w, yd)|θw) is low, then the distribution of w in d deviates from its distribution

in the collection, and w is important to describe the content of d. In this case, Inf1 will

be high. On the contrary, if P (xd
w|θw) is high, then w behaves in d as expected from

the whole collection and, thus, does not provide much information on d (Inf1 is low).

Inf1 thus captures the importance of a term in a document through its deviation from

an average behavior estimated on the whole collection. The question which thus arises

is why one should need to normalize it. In other words, what is the role of the first

normalization principle?

Amati and van Rijsbergen [2] consider five basic IR models for Prob1: the bi-

nomial model, the Bose-Einstein model, which can be approximated by a geometric

distribution, the tf-idf model (denoted I(n)), the tf-itf model (denoted I(F)) and the

tf-expected-idf model (denoted I(ne)). For the last four models, Inf1 takes the form:

Inf1(t(x
d
w, yd)) =

(

t(xd
w, yd) log(1 + N

zw
) + log(1 + zw

N )

t(xd
w, yd) log( N+1

zw+0.5 )

where the first line corresponds to the geometric distribution, and the second one

to I(n), I(F) and I(ne) (zw being respectively equal to nw, Fw and nw,e, the latter

representing the expected number of documents containing term w). We assume in the

remainder that t(xd
w, yd) is given either by equation 2 or 3. The conclusions we present

below are the same in both cases.

Were we to base a retrieval function on the above formulation of Inf1 only, our

model would be defined by:

ω = (xq
w, m, N)

h(x, y, z, ω) =

8

<

:

“

t(x, y) log(1 + N
z ) + log(1 + z

N )
”

“

t(x, y) log( N+1
z+0.5 )

”

where the first line still corresponds to the geometric distribution, and the second one

to I(n), I(F) and I(ne). It is straightforward to see that models I(n), I(F) and I(ne)

meet conditions 1, 3 and 4 and that the model for the geometric distribution verifies

conditions 1 and 3, but only partly condition 4, as the derivative can be positive

for some values of z, N and t. All models however fail condition 2 as, in all cases,
∂2h(x,y,z,ω)

∂x2 = 0. Hence, Inf1 alone, for the geometric distribution and the models I(n),

2 Furthermore, as these variables are positive, the support of the distributions to be consid-
ered should be ( or included in) [0;∞).
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I(F) and I(ne), is not sufficient to define a valid IR model3. One can thus wonder

whether Inf2 serves to make the model compliant with condition 2. We are going to

see that this is indeed the case.

Two quantities are usually used for Inf2 in DFR models: the normalization L or

the normalization B. They both lead to the following form:

Inf2 =
a

t(xd
w, yd) + 1

where a is independent of t(xd
w, yd). Thus integrating Inf2 in the previous models gives:

h(x, y, z, ω) =

8

<

:

“

at(x,y)
t(x,y)+1

log(1 + N
z ) + log(1 + z

N )
”

“

at(x,y)
t(x,y)+1

log( N+1
z+0.5 )

”

As
∂2h(x,y,z,ω)

∂x2 =
∂2h(x,y,z,ω)

∂t2

“

∂t
∂x

”2
, for the normalizations considered (equations 2

and 3), and as
“

∂t
∂x

”2
> 0, we have:

sgn

„

∂2h(x, y, z, ω)

∂x2

«

= sgn

„

∂2h(x, y, z, ω)

∂t2

«

But:
∂2h(x, y, z, ω)

∂t2
= −

b

(t(xd
w, yd) + 1)3

with b > 0, which shows that the models are now compatible with condition 2. The

above development thus explains why the Inf1 models considered previously need be

resized with an Inf2 model which can take into account burstiness (or, equivalently,

the aftereffect of sampling). However, the question remains as whether Inf1 alone can

be used to design an interesting IR model.

4 Information-based IR Models

Several models for IR and textual collections rely on the information brought by a term

in a document. In particular, several researchers, Harter [11] being one of the first ones,

have observed that the distribution of significant, ”specialty” words in a document

deviates from the distribution of ”functional” words . The more the distribution of a

word in a document deviates from its average distribution in the collection, the more

likely is this word significant for the document considered. We make use of this notion,

underlying DFR models, to define information-based IR models. Indeed, we consider

here the family of IR models satisfying the following equation:

RSV (q, d) =
X

w∈q∩d

−x
q
w log Prob(X ≥ t

d
w|θw) (4)

where θw is a set of parameters of the probability distribution considered. This rank-

ing function corresponds to the mean information a document brings to a query (or,

equivalently, to the average of the document information brought by each query term)

3 The same applies to the binomial model, for which
∂2h(x,y,z,ω)

∂x2
> 0. For the sake of clarity,

we do not present here this derivation which is purely technical.
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and is similar to the Inf1 part of DFR models. We will refer to models in this family

as information-based IR models.

Prob(X ≥ tdw|θw) is a decreasing function of tdw. So, as long as tdw is an increasing

function of xd
w and a decreasing function of yd (which, in practice, is the case for all

the normalisation functions used in IR), conditions 1 and 3 are satisfied for this family

of models. Furthermore, condition 2 can be re-expressed, in the family of information-

based IR models, as:

∂2h(x, y, z, ω)

∂x2
< 0 ⇔ −

∂2 log(Prob(X ≥ tdw))

∂(xd
w)2

< 0

⇔ −
∂2 log(Prob(X ≥ tdw))

∂(tdw)2
< 0

(as
∂tdw

∂xd
w

> 0)

The following theorem (the proof of which is given in the appendix) states that, pro-

vided one chooses a bursty distribution, condition 2 is satisfied for information-based

IR models , so that IR models defined by equation 4 and based on bursty distributions

satisfy conditions 1, 2 and 3 of the previous section.

Theorem 1 Let P be a probability distribution of class C2. A necessary condition for

P to be bursty is:

∂2 log(P (X ≥ x))

∂x2
> 0

Thus, IR models defined by equation 4 and based on bursty distributions satisfy con-

ditions 1, 2 and 3 of the previous section, the concavity property (condition 2) being

directly related to the burstiness property of the word frequency distribution used. We

now turn to bursty distributions that can be used in such IR models and which will

satisfy the last form condition as well as the adjustment conditions (i.e. conditions 4,

5 and 6).

4.1 Log-logistic distribution

Having presented the connection between burstiness and heuristic retrieval constraints

for information-based IR models, we now turn to the log-logistic distribution. Following

Church and Gale [6] and Airoldi [1], Clinchant and Gaussier [7] studied the negative bi-

nomial distribution in the context of text modeling. They showed that this distribution

was not appropriate for IR as it relies on two parameters. They then assumed a uniform

Beta prior distribution over one of the parameters, leading to a distribution they refer

to as the Beta negative binomial distribution, or BNB for short. One problem with the

BNB distribution is that it is a discrete distribution and cannot be used for modeling

tdw. However, there exists a continuous counterpart of the BNB distribution, which is

the log-logistic distribution with its β parameter set to 1. The log-logistic distribution

is defined by:
(

X ∈ [0;∞)

PLL(X < x; θ, β) = xβ

xβ+θβ
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Figure 2 shows the density function of the log-logistic distribution for β = 1 and

different values of θ. Setting β to 1, one obtains: ∀x ∈ R
+

PLL(x ≤ X < x + 1; θ, β = 1) =
x + 1

θ + x + 1
−

x

θ + x
(5)

=
θ

(θ + x + 1)(θ + x)

which is exactly the form of the BNB distribution. Furthermore, the following equation

shows that the log-logistic is bursty:

∀ǫ > 0, gǫ(x) = PLL(X > x + ǫ|X > x; θ, β = 1) =
θ + x

θ + x + ǫ

Finally, using this distribution in the information-based family of IR models leads to

the following retrieval function:

RSV (q, d) =
X

w∈q

−x
q
w log(PLL(X ≥ t

d
w; θw, β = 1))

=
X

w∈q∩d

−x
q
w log(PLL(X ≥ t

d
w; θw, β = 1))

=
X

w∈q∩d

−x
q
w log(

θw

tdw + θw

) (6)

Following the general idea sustaining the Divergence from Randomness paradigm, θw

can be defined from the whole collection and can be set to either Fw

N or nw

N . In this

way, θw represents the probability of observing w in a document, assuming that w is

uniformly distributed in the collection. With these settings, it can be shown that the

above retrieval function verifies conditions 1, 2, 3 and 4, for all the admissible values
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of x, y and z. It can also be shown that it verifies the other conditions associated with

IR heuristic constraints.

We are thus now armed with a simplified DFR model, relying solely on Inf1, which

is compatible with the theoretical framework we have developed: our model is based on

a continuous distribution that verifies the conditions of retrieval heuristic constraints.

We now need to experimentally validate the fact that this model behaves as more

complex DFR models on IR collections. We will do that in section 5. Prior to that, we

want to show a connection with the language modeling approach to IR.

4.2 Relation to Language Models

Let L be the number of tokens in the collection. Following [19], the scoring formula for

a language model using Jelinek-Mercer smoothing can be written as:

RSV (q, d) =
X

w∈q∩d

x
q
w log(1 + s

xd
w

yd

Fw

L

) (7)

where λ is the Jelinek-Mercer smoothing parameter and s = λ
1−λ . Using the retrieval

formula introduced previously with θw = Fw

N and the length normalization given by

equation 2, we have:

RSV (q, d) =
X

w∈q∩d

x
q
w log(1 + c

xd
w×m
yd

Fw

N

) (8)

Given that Fw

N = m× Fw

L , equation 7 is equivalent to equation 8. The LM model with

Jelinek-Mercer smoothing can thus be seen as an information-based model making use

of a log-logistic distribution, with a particular length normalization, namely the one

given by equation 2, and a particular setting of θw.

In the language modeling approach to IR, one starts from term distributions esti-

mated at the document level, and smoothed by the distribution at the collection level.

In contrast, the DFR approach uses a distribution the parameters of which are esti-

mated on the whole collection to get a local document weight for each term. Despite

the different views sustaining these two approaches, the above development shows that

they can be reconciled through appropriate word distributions, in particular the log-

logistic one. Lastly, the above connection also indicates that term frequency or length

normalizations are related to smoothing. A theory for relating these two elements re-

mains however to be established.

4.3 The LGD model

A choice has to be made for the log-logistic distribution used within the information-

based family of IR models, concerning the document length normalization and the

value for the parameter θw. The previous section provides a possible choice for these

elements. We will however not rely on this choice but will rather consider, in the

remainder of the paper, the model defined by the following elements:

1. Document length normalization: tdw = xd
w log(1 + c m

yd
)
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2. tdw are distributed according to a log-logistic distribution with β = 1 and θw = Nw

N

3. The retrieval function corresponds to equation 6, which takes the form:

RSV (q, d) =
X

w∈q∩d

x
q
w

»

log(
Nw

N
+ t

d
w) − log(

Nw

N
)

–

In other words, we choose the second term frequency normalization of DFR models

and the document frequency as the parameter of the word frequency probability dis-

tributions. We will refer to this model as LGD.

5 Experimental validation

Experiments presented here serve two purposes. The first one is to show the quality

of the log-logistic distribution as a word frequency distribution and the second to

demonstrate the performance of the IR model. We use the following collections to assess

the validity of our model: ROBUST (TREC), CLEF03 AdHoc Task, GIRT (CLEF

Domain Specific 2004-2006). Table 2 gives the number of documents (N), number

of unique terms (M), average document length and number of test queries for these

collections. For the ROBUST collection, we used standard Porter stemming. For the

CLEF03, GIRT, we used lemmatization, and an additional decoumpounding step for

the GIRT collection which is written in German. In all the following tables, ROB-

t represents the robust collection with query titles only, ROB-d the robust collection

with query titles and description fields, CLEF-t represent titles for the CLEF collection,

CLEF-d queries with title and descriptions. The GIRT queries are just made up of a

single sentence.

5.1 Empirical Fit to Observed Data

We illustrate here the fact that the log-logistic distribution, unlike others like the

Poisson distribution, provides a good fit to the data. To do so, we computed the Chi-

square statistics for each term under both a Poisson hypothesis and a log-logistic one

(figure 3). Our goal here is to see what is the fit between experimental observations and

the ones predicted by these distributions: the Chi-square statistics provides us with a

measure of this fit.

We restricted our study to terms appearing at least in 100 documents of the ’ro-

bust’ TREC collection. For each selected term, we want to compare two candidate

distributions modeling the term frequencies in the documents, namely the Poisson

and Log-Logistic distributions. Furthermore, we assume that the parameters of these

distributions are set according to:

– Poisson: θ̂w = Fw

N

– Log-Logistic: θ̂w = Fw

N

We then used a standard Chi-Square test. For each selected word w and document d, xd
w

is binned into one of the following intervals: [0, 3), [3, 10) and [10, 100). These intervals

corresponds roughly to low, medium and high frequency. The number of observations

falling into each interval constitutes statistics that the Chi-Square compares to an

expected number predicted by the assumed distribution. For each selected term, we
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Fig. 3 Distribution of the Chi-square statistics for the Poisson and the BNB/log-logistic
distributions on the ROBUST collection

then computed the Chi-square statistics under a Poisson hypothesis and a Log-Logistic

hypothesis4. To display the results, we first ranked the selected terms by their frequency

in the collection in order to get their term rank, as is done in Zipf’s Law. We then

plotted the term rank against the log of the Chi-Square statistics for both the Poisson

and Log-Logistic distributions. Figure 3 shows the log of the Chi-square statistics

against the term rank for the ’robust’ TREC collection. One dot with coordinate (x, y)

on the graph corresponds to a given word in the collection, where x is the term rank and

y is the log of the Chi-square statistics for the distribution considered. The horizontal

line is the upper critical value for Chi-square test at the 0.05 confidence level.

Concerning the Poisson plot, there are 2 main clouds of points. The upper left area

can be explained by words from the interval [10, 100): this is an extremely unlikely

event under a Poisson distribution with a very small mean (ex: 0.05). The second area,

4 Due to relation 5, the Chi-square statistics is the same for the BNB and the log-logistic
distributions on the given intervals.
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Table 2 Characteristics of the different collections

N M m # Queries
ROBUST 490 779 992 462 289 250
CLEF03 166 754 80 000 247 60
GIRT 151 319 179 283 109 75

which looks like a thick band, corresponds to words from the first two intervals only. As

one can note, the fit provided by the BNB/log-logistic distribution is good inasmuch

as the values obtained by the Chi-square statistics are small. These distributions can

thus well explain the behavior of words in all the frequency ranges. The same does not

hold for the Poisson, for which large values are observed over all the frequency ranges,

many words getting a value above the upper critical value.

5.2 Comparison with Language Models

We evaluated the LGD model against the LM model, with both Jelinek-Mercer and

Dirichlet Prior smoothing. For each dataset, we randomly split queries in train and

test (half of the queries are used for training, the other half for testing). We performed

10 such splits on each collection. The results we provide for the Mean Average Preci-

sion (MAP) and the precision at 10 documents are averaged over the 10 splits. The

parameters of the different models are optimized (respectively for the MAP and the

precision at 10) on the training set. The performance is then measured on the test set.

To compare the different methods, a two-sided t-test (at the 0.05 level) is performed

to assess the significance of the difference measured between the methods.

For the LGD model, as the parameter c in equation 3 is not bounded, we have to

define a set of possible values from which to select the best value on the training set.

We make use of the typical range proposed in works on DFR models, which also rely

on equation 3 for document length normalization. The set of values we retained is:

c ∈ {0.25, 0.5, 0.8, 1, 2, 3, 5, 8, 10}

As the smoothing parameter of the Jelinek-Mercer language model is comprised

between 0 and 1, we use a regular grid on [0, 1] with a step size of 0.05 in order to

select, on the training set, the best value for this parameter. Table 3 shows the compar-

ison of the LGD model (LGD) with the Jelinek-Mercer language model (LM). On all

collections, on both short and long queries, the LGD model significantly outperforms

the Jelinek-Mercer language model. This is an interesting finding as the complexity

of the two models is the same (in a way, they are both conceptually simple). As the

results displayed are averaged over 10 different splits, this shows that the LGD model

consistently outperforms the Jelinek-Mercer language model and thus yields a more

robust approach to IR.

In order to assess the relative behaviors of the log-logistic and Jelinek-Mercer mod-

els wrt to their parameter (λ for the Jelinek-Mercer model and c for the log-logistic

one), we display in Figure 4 the MAP scores obtained with different values of these

parameters, c being set to c = λ
1−λ , which allows one to compare the two models for

any λ in [0, 1]. As one can note, with the exception of small values of λ, the log-logistic

model dominates the Jelinek-Mercer model, which again shows that the log-logistic

model is consistently better than the Jelinek-Mercer one.
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Table 3 LM-Jelinek-Mercer versus Log-Logistic after 10 splits; bold indicates best perfor-
mance, ∗ significant difference

MAP ROB-d ROB-t GIRT CLEF-d CLEF-t
LM-JM 26.0 20.7 40.7 49.2 36.5
LGD 27.2∗ 22.5∗ 43.1∗ 50.0∗ 37.5∗

P10 ROB-d ROB-t GIRT CLEF-d CLEF-t
LM-JM 43.8 35.5 67.5 33.0 26.2
LGD 46.0∗ 38.9∗ 69.4∗ 33.6∗ 26.6∗
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Fig. 4 MAP against lambda. ROB-t are plot on the left side and ROB-d on the right side

For the Dirichlet prior language model, we optimized the smoothing parameter

from a set of typical values, defined by:

{10, 50, 100, 200, 500, 800, 1000, 1500, 2000, 5000, 10000}

Table 4 shows the results of the comparison between LGD and the Dirichlet prior

language model (LM). These results parallel the ones obtained with the Jelinek-Mercer

language model, except for the ROB collection with short queries where the Dirichlet

prior language model outperforms the LGD model (the difference being significant for

the precision at 10 only). On the other collections, with both short and long queries and

on both the MAP and the precision at 10, the LGD model outperforms the Dirichlet

prior language model, the difference being significant in most cases. Again, this shows

that the LGD model consistently outperforms the Dirichlet prior language model.

Table 4 LM-Dirichlet versus Log-Logistic after 10 splits; bold indicates best performance, ∗

significant difference

MAP ROB-d ROB-t GIRT CLEF-d CLEF-t
LM-DIR 27.1 25.1 41.1 48.5 36.2

LGD 27.4∗ 25.0 42.1∗ 49.7∗ 36.8∗

P10 ROB-d ROB-t GIRT CLEF-d CLEF-t
LM-DIR 45.6 44.7∗ 68.6 33.8 28.4

LGD 46.2∗ 44.4 69.0 34.5∗ 28.6
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5.3 Comparison with BM25

We adopt the same methodology to compare information models with BM25. We choose

only to optimize the k1 parameter of BM25 among the following values: {0.3, 0.5, 0.8,

1.0, 1.2, 1.5, 1.8, 2, 2.2, 2.5}. The others parameters b and k3 take their default values

implemented in Lemur (0.75 and 7). Table 5 shows the comparison of the LGD model

with Okapi BM25. The LGD model is either better (3 collections out of 5 for MAP,

2 collections out of 5 for P10) or on par with Okapi BM25. Overall, the LGD model

outperforms Okapi BM25.

Table 5 LGD versus BM25 after 10 splits; bold indicates best performance, ∗ significant
difference

MAP ROB-d ROB-t GIRT CLEF-t CLEF-d
BM25 26.8 22.4 39.8 34.9 46.8
LGD 28.2∗ 23.5∗ 41.4∗ 34.8 48.0

P10 ROB-d ROB-t GIRT CLEF-t CLEF-d
BM25 45.9 42.6 62.6 28.5 33.7
LGD 46.5 44.3∗ 66.6∗ 28.7 34.4

5.4 Comparison with DFR Models

To compare the LGD model with DFR ones, we chose, in this latter family, the InL2

model, based on the geometric distribution and Laplace law of succession. This model

has been used with success in different works ([2,7] for example). As it also relies on

equation 3 for document length normalization, we make use here of the same set of

possible values for c as the one used for the LGD model, namely:

c ∈ {0.25, 0.5, 0.8, 1, 2, 3, 5, 8, 10}

It is however interesting to note that InL2 makes use of discrete distributions (geometric

and Laplace) over continuous variables (tdw) and is thus theoretically flawed. This is

not the case of the LGD model which makes use of a continuous distribution, the

log-logistic one.

Table 6 provides the results of the comparison between the LGD and the InL2

models. This time, the results are more contrasted than with the language model. In

particular, for the precision at 10, both models perform similarly (LGD being signifi-

cantly better on GIRT whereas InL2 is significantly better on ROB with long queries,

the models being on a par in the other cases). For the MAP, the LGD model out-

performs the InL2 model as it is significantly better on ROB (for both sort and long

queries) and GIRT, and on a par on CLEF. These results are all the more so interesting

that the log-logistic model is simpler than InL2: it directly relies on an information

measure (see equation 4) without the re-normalization (Inf2 part) used in DFR models.

Lastly, we give in Appendix B a comparison, provided by one reviewer, between the

LGD model and Terrier’s parameter-free model DFRee5. As one can note, the results

5 http://terrier.org/
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obtained with this last model are on par with the models LGD and PL2 (another DFR

model). If DFRee is still more complex than LGD, it does not rely on any parameter,

which is definitely an advantage. Parameter-free versions of LGD need be determined,

maybe along the line used to derive DFRee.

Table 6 INL versus Log-Logistic after 10 splits; bold indicates best performance, ∗ significant
difference

MAP ROB-d ROB-t GIRT CLEF-d CLEF-t
INL 27.7 24.8 42.5 47.7 37.5

LGD 28.5∗ 25.0∗ 43.1∗ 48.0 37.4
P10 ROB-d ROB-t GIRT CLEF-d CLEF-t
INL 47.7∗ 43.3 67.0 33.4 27.3

LGD 47.0 43.5 69.4∗ 33.3 27.2

6 Discussion

The log-logistic model we have introduced is compliant with the heuristic retrieval

constraints reviewed in section 2 and is based on a word frequency distribution which

can account for burstiness. As we have noted before, this model bears strong similar-

ities with DFR ones. The Divergence from Randomness (DFR) framework proposed

by Amati and van Rijsbergen [2] is based on the informative content provided by the

occurrences of terms in documents, a quantity which is then corrected by the risk of

accepting a term as a descriptor in a document (first normalization principle) and by

normalizing the raw occurrences by the length of a document (second normalization

principle). The informative content Inf1(t
d
w) is based on a first probability distribu-

tion and is defined as: Inf1(t
d
w) = − log Prob1(t

d
w). The first normalization principle

is associated with a second information defined from a second probability distribu-

tion through: Inf2(t
d
w) = 1 − Prob2(t

d
w). The overall IR model is then defined as a

combination of Inf1 and Inf2:

RSV (q, d) =
X

w∈q∩d

x
q
wInf2(t

d
w)Inf1(t

d
w)

=
X

w∈q∩d

−x
q
wInf2(t

d
w) log Prob1(t

d
w)

(9)

This latter form shows that DFR models can be seen as information models, as defined

by equation 4, with a correction brought by the Inf2 term, and with the inappropriate

use of discrete distributions for modeling continuous variables. With this in mind,

we can see the log-logistic model as a simplified DFR model, without the correction

through the first normalization principle advocated by Amati and van Rijsbergen (this

principle aims at justifying the use of Inf2). It is thus interesting to see that the

LGD model, while being simpler, performs similarly to the InL2 DFR model in our

experiments. The use of an appropriate distribution, able to model burstiness, is thus

fully justified for this class of models.



19

Moreover, as we showed in section 4.2, the Jelinek-Mercer model can also be derived

from a log-logistic model. However, the Jelinek-Mercer language model and the LGD

model differ on the following points:

1. The term frequency normalization;

2. The parameter θw;

3. The theoretical framework they fit in.

We want to stress an important point: it is because we adopted a new theoretical frame-

work, the information-based family, that we could easily use other term frequency nor-

malizations or settings of θw. In fact, a language model with the same term frequency

normalization as LGD is clearly not straightforward to obtain in the language modeling

approach to IR when using multinomial distributions to model documents. We know

of no way so far to do so

As we mentioned previously, other works have tried to model burstiness to come up

with more accurate probabilistic models of text collections. We have proposed here a

formal definition of burstiness, which allows one to characterize probability distribution

wrt this phenomenon, and hence choose appropriate distributions in a more informed

manner. We have also shown that burstiness implied the satisfaction of the concavity

constraint (condition 2 of section 2) for the family of information models. Indeed,

because of its form, heuristic retrieval constraints are naturally captured by models of

this family relying on bursty distributions. The LGD model we finally arrive at is thus

well founded theoretically. As we have seen, it also outperforms the Jelinek-Mercer

and Dirichlet prior language models on most of the collections we have used in our

experiments.

7 Conclusion

We have in this paper first introduced an analytical characterization of heuristic re-

trieval constraints and reviewed several DFR models wrt this characterization. This

review showed that the first normalization principle of DFR is necessary to make

the model compliant with retrieval constraints. We have then introduced a new model

based on the log-logistic distribution to derive a simplified DFR model, and have shown

that this simplified model contained, as a special case, the standard language model

with Jelinek-Mercer smoothing. This relation is, to our knowledge, the first connection

between the DFR and language modeling approaches to IR.

We have then reviewed empirical findings on word frequency distributions and the

central role played by burstiness in this context. This has led us to propose a formal

definition of burstiness which can be used to characterize probability distributions wrt

this phenomenon. We have then introduced the family of information-based IR models

which naturally captures heuristic retrieval constraints when the underlying probability

distribution is bursty. In particular, theorem 1 guarantees that the concavity constraint

is satisfied for bursty distributions, whereas the form of the family guarantees the other

constraints when the length normalization function is increasing in xd
w and decreasing

in yd, which is the case for all the normalization functions we know of. We have then

proposed a new IR model within this family, based on the log-logistic distribution.

The experiments we have conducted on three different collections illustrate the

good behavior of the LGD model: this model significantly outperforms the Jelinek-

Mercer and Dirichlet prior language models on most collections, with both short and
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long queries and for both the MAP and the precision at 10 documents. The LGD also

yields results similar to DFR ones, while being simple. Future work will investigate

an extension of information models for pseudo-relevance feedback and the use of other

bursty distributions in the framework we have developed.
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A Proof of Theorem 1

We recall here theorem 1:
Let P be a probability distribution of class C2. A necessary condition for P to be bursty is:

∂2 log(P (X ≥ x))

∂x2
> 0

Proof: Let P be a continuous probability distribution of class C2. ∀y > 0, the function gy

defined by:

∀y > 0, gy(x) = P (X ≥ x + y|X ≥ x) =
P (X ≥ x + y)

P (X ≥ x)

is increasing in x (by definition of a bursty distribution).

Let F be the cumulative function of P . Then: gy(x) =
F (x+y)−1

F (x)−1
. For y sufficiently small,

using a Taylor expansion of F (x + y), we have:

gy(x) ≃
F (x) + yF ′(x) − 1

F (x) − 1
= g(x)

where F ′ denotes ∂F
∂x

. Then, taking the derivative of g wrt x and considering only the sign of

g′, we get:

sgn[g′] = sgn[F ′′F − F ′′ − F
′2] = sgn[(

F ′

F − 1
)′]

= sgn[(log(1 − F ))′′] = sgn[(log P (X ≥ x))]

As gy is increasing in x, so is g, and thus
∂2 log(P (X≥x))

∂x2
> 0, which establishes the property.

B Comparison with DFRee and PL2

We display here results provided by one reviewer, whom we gratefully thank, on a comparison
between the LGD model and the Terrier’s parameter-free DFRee and PL2 models. As one can
note, all these models perform similarly.

Model parameter c MAP
DFRee 0.2030
LGD 1 0.1964
LGD 2 0.2001
LGD 3 0.2017
LGD 5 0.2025
LGD 6 0.2030
LGD 8 0.2031
LGD 10 0.2001

Model parameter c MAP
DFRee 0.2030
PL2 1 0.1767
PL2 2 0.1926
PL2 3 0.2017
PL2 5 0.2061
PL2 6 0.2080
PL2 8 0.2090
PL2 10 0.2095


