New global stability estimates for monochromatic inverse acoustic scattering
Mikhail Isaev, Roman Novikov

To cite this version:

HAL Id: hal-00741599
https://hal.archives-ouvertes.fr/hal-00741599
Submitted on 14 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
New global stability estimates for monochromatic inverse acoustic scattering

M.I. Isaev and R.G. Novikov

Abstract

1 Introduction

We consider the equation
\[\Delta \psi + \omega^2 n(x) \psi = 0, \quad x \in \mathbb{R}^3, \quad \omega > 0, \]
where
\[(1 - n) \in W^{m,1}(\mathbb{R}^3) \text{ for some } m > 3, \]
\[\text{Im} n(x) \geq 0, \quad x \in \mathbb{R}^3, \]
\[\text{supp} (1 - n) \subset B_{r_1} \text{ for some } r_1 > 0, \]
where \(W^{m,1}(\mathbb{R}^3) \) denotes the standard Sobolev space on \(\mathbb{R}^3 \) (see formula (2.11) of Section 2 for details), \(B_r = \{ x \in \mathbb{R}^3 : |x| < r \} \).

We interpret (1.1) as the stationary acoustic equation at frequency \(\omega \) in an inhomogeneous medium with refractive index \(n \).

In addition, we consider the Green function \(G^+(x,y,\omega) \) for the operator \(\Delta + \omega^2 n(x) \) with the Sommerfeld radiation condition:
\[\lim_{|x| \to \infty} \frac{\partial G^+(x,y,\omega)}{\partial |x|} (x,y,\omega) - i \omega G^+(x,y,\omega) = 0, \]
uniformly for all directions \(\hat{x} = x/|x|, \quad x, y \in \mathbb{R}^3, \quad \omega > 0. \)

It is known that, under assumptions (1.2), the function \(G^+ \) is uniquely specified by (1.3), see, for example, [9], [6].

We consider, in particular, the following near-field inverse scattering problem for equation (1.1):

Problem 1.1. Given \(G^+ \) on \(\partial B_r \times \partial B_r \) for some fixed \(\omega > 0 \) and \(r > r_1 \), find \(n \) on \(B_{r_1} \).
We consider also the solutions $\psi^+(x, k)$, $x \in \mathbb{R}^3$, $k \in \mathbb{R}^3$, $k^2 = \omega^2$, of equation (1.1) specified by the following asymptotic condition:

$$\psi^+(x, k) = e^{ikx} - 2\pi^2 e^{i|k||x|/|x|} f \left(k, |k| |x| \right) + o \left(\left| \frac{1}{|x|} \right| \right)$$ \hspace{1cm} (1.4)

with some a priori unknown f.

The function f on $\mathcal{M}_\omega = \{ k \in \mathbb{R}^3, l \in \mathbb{R}^3 : k^2 = l^2 = \omega^2 \}$ arising in (1.4) is the classical scattering amplitude for equation (1.1).

In addition to Problem 1.1, we consider also the following far-field inverse scattering problem for equation (1.1):

Problem 1.2. Given f on \mathcal{M}_ω for some fixed $\omega > 0$, find n on B_{r_1}.

In [4] it was shown that the near-field data of Problem 1.1 are uniquely determined by the far-field data of Problem 1.2 and vice versa.

Global uniqueness for Problems 1.1 and 1.2 was proved for the first time in [17]; in addition, this proof is constructive. For more information on reconstruction methods for Problems 1.1 and 1.2 see [2], [9], [16], [17], [19], [23] and references therein.

Problems 1.1 and 1.2 can be also considered as examples of ill-posed problems: see [15], [5] for an introduction to this theory.

The main results of the present article consist of the following two theorems:

Theorem 1.1. Let $C_n > 0$, $r > r_1$ be fixed constants. Then there exists a positive constant C (depending only on m, ω, r_1, C_n) such that for all refractive indices n_1, n_2 satisfying $\|1 - n_1\|_{W^{m,1}(\mathbb{R}^3)}$, $\|1 - n_2\|_{W^{m,1}(\mathbb{R}^3)} < C_n$, sup$_{1 - n_1}$, sup$_{1 - n_2}$, B_{r_1}, the following estimate holds:

$$\|n_1 - n_2\|_{L^\infty(\mathbb{R}^3)} \leq C \left(\ln \left(3 + \delta^{-1} \right) \right)^{-s}, \hspace{0.5cm} s = \frac{m - 3}{3} ,$$ \hspace{1cm} (1.5)

where $\delta = \|G_1 - G_2\|_{L^2(\partial B_r \times \partial B_s)}$ and G_1^+, G_2^+ are the near-field scattering data for the refractive indices n_1, n_2, respectively, at fixed frequency ω.

Remark 1.1. We recall that if n_1, n_2 are refractive indices satisfying (1.2), then $G_1^+ - G_2^+$ is bounded in $L^2(\partial B_r \times \partial B_s)$ for any $r > r_1$, where G_1^+ and G_2^+ are the near-field scattering data for the refractive indices n_1 and n_2, respectively, at fixed frequency ω, see, for example, Lemma 2.1 of [9].

Theorem 1.2. Let $C_n > 0$ and $0 < \epsilon < \frac{m-3}{2}$ be fixed constants. Then there exists a positive constant C (depending only on m, ϵ, ω, r_1 and C_n) such that for all refractive indices n_1, n_2 satisfying $\|1 - n_1\|_{W^{m,1}(\mathbb{R}^3)}$, $\|1 - n_2\|_{W^{m,1}(\mathbb{R}^3)} < C_n$, sup$_{1 - n_1}$, sup$_{1 - n_2}$, B_{r_1}, the following estimate holds:

$$\|n_1 - n_2\|_{L^\infty(\mathbb{R}^3)} \leq C \left(\ln \left(3 + \delta^{-1} \right) \right)^{-s+\epsilon}, \hspace{0.5cm} s = \frac{m - 3}{3} ,$$ \hspace{1cm} (1.6)

where $\delta = \|f_1 - f_2\|_{L^2(\mathcal{M}_\omega)}$ and f_1, f_2 denote the scattering amplitudes for the refractive indices n_1, n_2, respectively, at fixed frequency ω.

2
For some regularity dependent s but always smaller than 1 the stability estimates of Theorems 1.1 and 1.2 were proved in [9]. Possibility of estimates (1.5), (1.6) with $s > 1$ was formulated in [9] as an open problem, see page 685 of [9]. Our estimates (1.5), (1.6) with $s = m - 3$ give a solution of this problem. Apparently, using the methods of [21], [22] estimates (1.5), (1.6) can be proved for $s = m - 3$. For more information on stability estimates for Problems 1.1 and 1.2 see [9], [11], [24] and references therein. In particular, as a corollary of [11] estimates (1.5), (1.6) can not be fulfilled, in general, for $s > \frac{5m}{3}$. The proofs of Theorem 1.1 and 1.2 are given in Section 3. These proofs use, in particular:

1. Properties of the Faddeev functions for equation (1.1) considered as the Schrödinger equation at fixed energy $E = \omega^2$, see Section 2.

2. The results of [9] consisting in Lemma 3.1 and in reducing (via Lemma 3.2) estimates of the form (1.6) for Problem 1.2 to estimates of the form (1.5) for Problem 1.1.

In addition in the proofs of Theorem 1.1 and 1.2 we combine some of the aforementioned ingredients in a similar way with the proof of stability estimates of [13].

2 Faddeev functions

We consider (1.1) as the Schrödinger equation at fixed energy $E = \omega^2$:

$$-\Delta \psi + v(x)\psi = E\psi, \quad x \in \mathbb{R}^3,$$

where $v = \omega^2(1 - n), E = \omega^2$.

For equation (2.1) we consider the Faddeev functions G, ψ, h (see [7], [8], [10], [17]):

$$G(x, k) = e^{ikx}g(x, k), \quad g(x, k) = -(2\pi)^{-3} \int_{\mathbb{R}^3} \frac{e^{i\xi x}d\xi}{\xi^2 + 2k\xi},$$

$$\psi(x, k) = e^{ikx} + \int_{\mathbb{R}^3} G(x - y, k)v(y)\psi(y, k)dy,$$

where $x \in \mathbb{R}^3, k \in \mathbb{C}^3, k^2 = E, \text{Im} \, k \neq 0$,

$$h(k, l) = (2\pi)^{-3} \int_{\mathbb{R}^3} e^{-ilx}v(x)\psi(x, k)dx,$$

where $k, l \in \mathbb{C}^3, k^2 = l^2 = E, \text{Im} \, k = \text{Im} \, l \neq 0.$

One can consider (2.3), (2.4) assuming that v is a sufficiently regular function on \mathbb{R}^3 with sufficient decay at infinity.
For example, in connection with Problems 1.1 and 1.2, one can consider (2.3), (2.4) assuming that

\[v \in L^\infty(B_{r_1}), \quad v \equiv 0 \text{ on } \mathbb{R}^3 \setminus B_{r_1}. \]

(2.7)

We recall that (see [7], [8], [10], [17]):

- The function \(G \) satisfies the equation
 \[(\Delta + E)G(x, k) = \delta(x), \quad x \in \mathbb{R}^3, \quad k \in C^3 \setminus \mathbb{R}^3, \quad E = k^2; \]
 (2.8)

- Formula (2.3) at fixed \(k \) is considered as an equation for \(\psi = e^{ikx} \mu(x, k) \),
 (2.9)

where \(\mu \) is sought in \(L^\infty(\mathbb{R}^3) \);

- As a corollary of (2.3), (2.2), (2.8), \(\psi \) satisfies (2.1) for \(E = k^2 \);

- The Faddeev functions \(G, \psi, h \) are (non-analytic) continuation to the complex domain of functions of the classical scattering theory for the Schrödinger equation (in particular, \(h \) is a generalized ”scattering” amplitude).

In addition, \(G, \psi, h \) in their zero energy restriction, that is for \(E = k^2 = 0 \), were considered for the first time in [3]. The Faddeev functions \(G, \psi, h \) were, actually, rediscovered in [3].

Let
\[\Sigma_E = \{ k \in C^3 : k^2 = k_1^2 + k_2^2 + k_3^2 = E \}, \]
\[\Theta_E = \{ k \in \Sigma_E, l \in \Sigma_E : \text{Im } k = \text{Im } l \}, \]
\[|k| = \left(|\text{Re } k|^2 + |\text{Im } k|^2 \right)^{1/2}. \]

(2.10)

Let
\[\mathcal{W}^{m,q}(\mathbb{R}^3) = \{ w : \partial^J w \in L^q(\mathbb{R}^3), \quad |J| \leq m, \quad m \in \mathbb{N} \cup \{0\}, \quad q \geq 1, \}
\]
\[J \in (\mathbb{N} \cup 0)^3, \quad |J| = \sum_{i=1}^3 J_i, \quad \partial^J v(x) = \frac{\partial^{|J|}v(x)}{\partial x_1^{J_1} \partial x_2^{J_2} \partial x_3^{J_3}}, \]
\[||w||_{m,q} = \max_{|J| \leq m} ||\partial^J w||_{L^q(\mathbb{R}^3)}. \]

(2.11)

Let the assumptions of Theorems 1.1 and 1.2 be fulfilled:

\[(1 - n) \in \mathcal{W}^{m,1}(\mathbb{R}^3) \text{ for some } m > 3, \]
\[\text{Im } n(x) \geq 0, \quad x \in \mathbb{R}^3, \]
\[\text{supp } (1 - n) \subset B_{r_1}, \]
\[||1 - n||_{m,1} \leq C_n. \]

(2.12)

Let
\[v = \omega^2(1 - n), \quad N = \omega^2 C_n, \quad E = \omega^2. \]

(2.13)

Then we have that:
\[\mu(x, k) \to 1 \quad \text{as} \quad |k| \to \infty \]

(2.14)
and, for any $\sigma > 1$,
\[
|\mu(x, k)| \leq \sigma \quad \text{for} \quad |k| \geq \lambda_1(N, m, \sigma, r_1),
\]
(2.15)
where $x \in \mathbb{R}^3$, $k \in \Sigma_E$;
\[
\hat{v}(p) = \lim_{{(k, l) \in \Theta_E, k - l = p, |\text{Im } k| = |\text{Im } l| \to \infty}} h(k, l) \quad \text{for any } p \in \mathbb{R}^3,
\]
(2.16)
\[
|h(k, l)| \leq \frac{c_1(m, r_1)N^2}{(E + \rho^2)^{1/2}} \quad \text{for } (k, l) \in \Theta_E, \quad p = k - l, \quad |\text{Im } k| = |\text{Im } l| = \rho, \quad E + \rho^2 \geq \lambda_2(N, m, r_1),
\]
(2.17)
\[
|\hat{v}(p) - h(k, l)| \leq \frac{c_2(m, r_1)N}{(E + \rho^2)^{1/2}} ||v_1 - v_2||_{L^\infty(B_{r_1})} \quad \text{as } |k| \to \infty, \quad k \in \mathbb{C}^3 \setminus \mathbb{R}^3,
\]
(2.20)
where $h_2(k, l) - h_1(k, l) = (2\pi)^{-3} \int_{\mathbb{R}^3} \psi_1(x, -l)(v_2(x) - v_1(x))\psi_2(x, k)dx$
\[
\quad \text{for } (k, l) \in \Theta_E, \quad |\text{Im } k| = |\text{Im } l| \neq 0,
\]
(2.19)
\[
\quad \text{and } v_1, v_2 \text{ satisfying (2.6)},
\]
for $s > 1/2$, where $g(k)$ denotes the integral operator with the Schwartz kernel $g(x - y, k)$ and Λ denotes the multiplication operator by the function $(1 + |x|^2)^{1/2}$. Estimate (2.19) was formulated, first, in [14]. This estimate generalizes, in particular, some related estimate of [25] for $k^2 = E = 0$. Concerning proof of (2.19), see [26].

In addition, we have that:
\[
|\hat{v}_1(p) - \hat{v}_2(p) - h_1(k, l) + h_2(k, l)| \leq \frac{c_2(m, r_1)N ||v_1 - v_2||_{L^\infty(B_{r_1})}}{(E + \rho^2)^{1/2}}
\]
(2.21)
\[
\quad \text{for } (k, l) \in \Theta_E, \quad p = k - l, \quad |\text{Im } k| = |\text{Im } l| = \rho, \quad E + \rho^2 \geq \lambda_2(N, m, r_1), \quad p^2 \leq 4(E + \rho^2),
\]
where h_j, ψ_j denote h and ψ of (2.4) and (2.3) for $v_j = \omega^2(1 - n_j)$, $j = 1, 2$, $N = \omega^2C_{n_1}, E = \omega^2$.

Formula (2.20) was given in [18], [20]. Estimate (2.21) was given e.g. in [13].
3 Proofs of Theorem 1.1 and Theorem 1.2

3.1 Preliminaries. In this section we always assume for simplicity that \(r_1 = 1 \).

We consider the operators \(\hat{S}_j, j = 1, 2 \), defined as follows

\[
(\hat{S}_j \phi)(x) = \int_{\partial B_r} G_j^+(x, y, \omega) \phi(y) dy, \quad x \in \partial B_r, \quad j = 1, 2.
\]

(3.1)

Note that

\[
\|\hat{S}_1 - \hat{S}_2\|_{L^2(\partial B_r)} \leq \|G_1^+ - 2 \|_{L^2(\partial B_r)}.
\]

(3.2)

To prove Theorems 1.1 and 1.2 we use, in particular, the following lemmas (see Lemma 3.2 and proof of Theorem 1.2 of [9]):

Lemma 3.1. Assume \(r_1 = 1 < r < r_2 \). Moreover, \(n_1, n_2 \) are refractive indices such that \(1 < n_1, n_2 \) and all solutions \(\psi \in C^2(\partial B_{r_2}) \cap L^2(\partial B_{r_2}) \) to \(\Delta \psi + \omega^2 n_1 \psi = 0 \) in \(B_{r_2} \) and all solutions \(\psi \in C^2(\partial B_{r_2}) \cap L^2(\partial B_{r_2}) \) to \(\Delta \psi + \omega^2 n_2 \psi = 0 \) in \(B_{r_2} \) the following estimate holds:

\[
\left| \int_{B_1}(n_1 - n_2)\psi_1 \psi_2 dx \right| \leq c_3 \|
\hat{S}_1 - \hat{S}_2\|_{L^2(\partial B_r)} \|\psi_1\|_{L^2(\partial B_{r_2})} \|\psi_2\|_{L^2(\partial B_{r_2})}.
\]

(3.3)

Note that estimate (3.3) is derived in [9] using an Alessandrini type identity, where instead of the Dirichlet-to-Neumann maps the operators \(\hat{S}_1, \hat{S}_2 \) are used, see [1], [9].

Lemma 3.2. Let \(r > r_1 = 1, \omega > 0, C_n > 0, \mu > 3/2 \) and \(0 < \theta < 1 \). Let \(n_1, n_2 \) be refractive indices such that \(\|1 - n_j\|_{L^\infty(\mathbb{R}^3)} \leq C_n, \supp(1 - n_j) \subset B_1, \quad j = 1, 2 \), where \(\mathbb{H}^\mu = \mathbb{W}^{\mu, 2} \). Then there exist positive constants \(T \) and \(\eta \) such that

\[
\|G_1^+ - G_2^+\|_{L^2(\partial B_{r_2}, \partial B_{r_2})} \leq \eta^2 \exp \left(- \frac{\|f_1 - f_2\|_{L^2(\mathbb{H}^\mu)}}{2T} \right)
\]

(3.4)

for sufficiently small \(\|f_1 - f_2\|_{L^2(\mathbb{H}^\mu)} \), where \(G_1^+, f_j \) are near and far field scattering data for \(n_j \), \(j = 1, 2 \), at fixed frequency \(\omega \).

3.2 Proof of Theorem 1.1. Let

\[
L^{\infty}_\mu(\mathbb{R}^3) = \{ u \in L^\infty(\mathbb{R}^3) : \|u\|_\mu < +\infty \},\n\]

\[
\|u\|_\mu = \text{ess sup}_{p \in \mathbb{R}^3} (1 + |p|)^\mu |u(p)|, \quad \mu > 0.
\]

(3.5)

Note that

\[
w \in \mathbb{W}^{m, 1}(\mathbb{R}^3) \implies \hat{w} \in L^\infty_{\mu}(\mathbb{R}^3) \cap C(\mathbb{R}^3),
\]

\[
\|\hat{w}\|_{\mu} \leq c_4(m) \|w\|_{m, 1} \quad \text{for} \quad \mu = m,
\]

(3.6)

where \(\mathbb{W}^{m, 1}, L^\infty_{\mu} \) are the spaces of (2.11), (3.5),

\[
\hat{w}(p) = (2\pi)^{-3} \int_{\mathbb{R}^3} e^{ipx} w(x) dx, \quad p \in \mathbb{R}^3.
\]

(3.7)
Let
\[N = \omega^2 C_n, \quad E = \omega^2, \quad v_j = \omega^2 (1 - n_j), \quad j = 1, 2. \quad (3.8) \]

Using the inverse Fourier transform formula
\[w(x) = \int_{\mathbb{R}^3} e^{-ipx} \hat{w}(p) dp, \quad x \in \mathbb{R}^3, \quad (3.9) \]
we have that
\[\| v_1 - v_2 \|_{L^\infty(D)} \leq \sup_{x \in B_1} \left| \int_{\mathbb{R}^3} e^{-ipx} (\hat{v}_2(p) - \hat{v}_1(p)) dp \right| \leq I_1(\kappa) + I_2(\kappa) \quad \text{for any } \kappa > 0, \quad (3.10) \]
where
\[I_1(\kappa) = \int_{|p| \leq \kappa} |\hat{v}_2(p) - \hat{v}_1(p)| dp, \]
\[I_2(\kappa) = \int_{|p| \geq \kappa} |\hat{v}_2(p) - \hat{v}_1(p)| dp. \quad (3.11) \]

Using (3.6), we obtain that
\[|\hat{v}_2(p) - \hat{v}_1(p)| \leq 2c_4(m)N(1 + |p|)^{-m}, \quad p \in \mathbb{R}^3. \quad (3.12) \]

Using (3.11), (3.12), we find that, for any \(\kappa > 0, \)
\[I_2(\kappa) \leq 8\pi c_4(m)N \int_{\kappa}^{+\infty} dt \frac{dt}{t^{m-2}} \leq \frac{8\pi c_4(m)N}{m-3} \frac{1}{\kappa^{m-3}}. \quad (3.13) \]

Due to (2.21), we have that
\[|\hat{v}_2(p) - \hat{v}_1(p)| \leq |h_2(k, l) - h_1(k, l)| + \frac{c_2(m)N \|v_1 - v_2\|_{L^\infty(B_1)}}{(E + \rho^2)^{1/2}}, \quad \text{for } (k, l) \in \Theta_E, \quad p = k - l, \quad |\text{Im } k| = |\text{Im } l| = \rho, \quad E + \rho^2 \geq \lambda_3(N, m), \quad p^2 \leq 4(E + \rho^2). \quad (3.14) \]

Let \(r_2 \) be some fixed constant such that \(r_2 > r, \)
\[\delta = \|G_1^+ - G_2^+\|_{L^\infty(\partial B_r \times \partial B_r)}, \]
\[c_5 = (2\pi)^{-3} \int_{B_{r_2}} dx. \quad (3.15) \]

Combining (2.20), (3.2), (3.3) and (3.8), we get that
\[|h_2(k, l) - h_1(k, l)| \leq c_3\delta \omega^2 \|\psi_1(\cdot, -l)\|_{L^\infty(B_{r_2})} \|\psi_2(\cdot, k)\|_{L^\infty(B_{r_2})}, \quad (k, l) \in \Theta_E, \quad |\text{Im } k| = |\text{Im } l| \neq 0. \quad (3.16) \]
Using (2.15), we find that
\[\| \psi_j(\cdot, k) \|_{L^\infty(B_{r^2})} \leq \sigma \exp \left(|\text{Im} k| r^2 \right), \quad j = 1, 2, \]
\[k \in \Sigma_E, \ |k| \geq \lambda_1(N, m, \sigma). \]
(3.17)

Here and below in this section the constant σ is the same that in (2.15).

Combining (3.16) and (3.17), we obtain that
\[|h_2(k, l) - h_1(k, l)| \leq c_3 c_5 \omega^2 \sigma^2 e^{2\rho r^2 \delta}, \]
for \((k, l) \in \Theta_E, \ \rho = |\text{Im} k| = |\text{Im} l|, \ E + \rho^2 \geq \lambda_2^2(N, m, \sigma). \]
(3.18)

Using (3.14), (3.18), we get that
\[|\hat{v}_2(p) - \hat{v}_1(p)| \leq c_3 c_5 \omega^2 \sigma^2 e^{2\rho r^2 \delta} + c_2(m) N \| v_1 - v_2 \|_{L^\infty(B_1)}, \]
\[p \in \mathbb{R}^3, \ \rho^2 \leq 4(E + \rho^2), \ E + \rho^2 \geq \max \{ \lambda_2^2, \lambda_3 \}. \]
(3.19)

Let
\[\varepsilon = \left(\frac{3}{8 \pi c_2(m) N} \right)^{1/3} \]
(3.20)

and $\lambda_4(N, m, \sigma) > 0$ be such that
\[E + \rho^2 \geq \lambda_4(N, m, \sigma) \implies \begin{cases} E + \rho^2 \geq \lambda_1^2(N, m, \sigma), \\ E + \rho^2 \geq \lambda_3(N, m), \\ \left(\varepsilon(E + \rho^2)^{1/2} \right)^2 \leq 4(E + \rho^2). \end{cases} \]
(3.21)

Using (3.11), (3.19), we get that
\[I_1(\kappa) \leq \frac{4}{3} \pi \varepsilon^3 \left(c_3 c_5 \omega^2 \sigma^2 e^{2\rho r^2 \delta} + \frac{c_2(m) N \| v_1 - v_2 \|_{L^\infty(B_1)}}{(E + \rho^2)^{1/2}} \right), \]
\[\kappa > 0, \ \kappa^2 \leq 4(E + \rho^2), \ E + \rho^2 \geq \lambda_4(N, m, \sigma). \]
(3.22)

Combining (3.10), (3.13), (3.22) for $\kappa = \varepsilon(E + \rho^2)^{1/2}$ and (3.21), we get that
\[\| v_1 - v_2 \|_{L^\infty(B_1)} \leq c_0(N, m, \omega, \sigma) \sqrt{E + \rho^2} e^{2\rho r^2 \delta} + \\
c_7(N, m)(E + \rho^2)^{-\frac{m-1}{2}} + \frac{1}{2} \| v_1 - v_2 \|_{L^\infty(B_1)}, \]
\[E + \rho^2 \geq \lambda_4(N, m, \sigma). \]
(3.23)

Let $\tau \in (0, 1)$ and
\[\beta = \frac{1 - \tau}{2r_2}, \quad \rho = \beta \ln \left(3 + \delta^{-1} \right), \]
(3.24)
where δ is so small that $E + \rho^2 \geq \lambda_4(N, m, \sigma)$. Then due to (3.23), we have that
\[
\frac{1}{2} \|v_1 - v_2\|_{L^\infty(D)} \leq c_6(N, m, \omega, \sigma) \left(E + \beta \ln(3 + \delta^{-1}) \right)^{1/2} (3 + \delta^{-1})^{2\beta r_2} \delta + c_7(N, m) \left(E + \beta \ln(3 + \delta^{-1}) \right)^{1/2} (3 + \delta^{-1})^{1-\tau} \delta + c_8(N, m, \omega, \sigma, \tau) \left(\ln(3 + \delta^{-1}) \right)^{-m/3},
\]
where τ, β, and δ are the same as in (3.24).

Using (3.25), we obtain that
\[
\|v_1 - v_2\|_{L^\infty(B_1)} \leq c_8(N, m, \omega, \sigma, \tau) \left(\ln(3 + \delta^{-1}) \right)^{-m/3} \tag{3.26}
\]
for $\delta = \|G_1^T - G_2^T\|_{L^2(\partial B_1 \times \partial B_1)} \leq \delta_1(N, m, \omega, \sigma, \tau)$, where δ_1 is a sufficiently small positive constant. Estimate (3.26) in the general case (with modified c_8) follows from (3.26) for $\delta \leq \delta_1(N, m, \omega, \sigma, \tau)$ and the property that
\[
\|v_j\|_{L^\infty(B_1)} \leq c_9(m)N, \quad j = 1, 2. \tag{3.27}
\]
Taking into account (3.8), we obtain (1.5).

3.2. Proof of Theorem 1.2. According to the Sobolev embedding theorem, we have that
\[
W^{m,1}(\mathbb{R}^3) \subset H^{m-3/2}(\mathbb{R}^3), \tag{3.28}
\]
where $H^{\mu} = W^{\mu,2}$.

Combining (1.2), (1.5), (3.4) with θ satisfying $\theta \frac{m-3}{3} = \frac{m-3}{3} - \epsilon$, and (3.28), we obtain (1.6) for sufficiently small $\|f_1 - f_2\|_{L^2(M_\omega)}$ (analogously with the proof of Theorem 1.2 of [9]). Using also (3.27) and (3.8), we get estimate (1.6) in the general case.

Acknowledgements

This work was partially supported by FCP Kadry No. 14.A18.21.0866, Moscow Institute of Physics and Technology.

References

M.I. Isaev
Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France
Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
e-mail: isaev.m.i@gmail.com

R.G. Novikov
Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France
Institute of Earthquake Prediction Theory and Math. Geophysics RAS, 117997 Moscow, Russia
e-mail: novikov@cmap.polytechnique.fr