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Generation and propagation of a Tsunami wave : a new

mesh adaptation technique

Georges Sadaka∗

Abstract : The importance of the study of the propagation of a Tsunami wave came from the complex
phenomenon and its natural disasters which represents a major risk for populations. To model this phenomena,
we will consider a simplified Boussinesq 1 system of BBM 2 type (sBBM) derived by D. Mitsotakis in [9], over a
flat bottom then over a variable bottom in space and in time and apply this system, first, using a mesh
generated using a photo of the Mediterranean sea, second, using a mesh generated using an imported xyz
bathymetry for the sea near Java island and then we will consider a realistic example of the Tsunami wave near
Java island which happened in 2006.
We choose here to use FreeFem++ [8] software which simplifies the construction of the domain, in particular, one
of the advantage of FreeFem++ is that we can build a mesh using a photo and we can easily export bathymetric
data in order to consider more realistic simulations where a special adapt mesh technique applied for these two
methods is detailed in the sequel.
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1 Introduction

We consider here the numerical simulation of the sBBM in 2D over a variable bottom in space D(x, y) and
in time ζ(x, y, t) :

ηt +∇ · ((D + η + ζ)V ) + ζt + Ã∇ ·
(
D2∇ζt

)
+∇ ·

{
AD2 [∇ (∇D · V ) +∇D∇ · V ]− bD2∇ηt

}
= 0,

Vt + g∇η + 1
2∇|V |

2 +BgD [∇ (∇D · ∇η) +∇D∆η]− dD2∆Vt −BD∇ζtt = 0,
(1)

where

â =

(
θ − 1

2

)
, b̂ =

1

2

(
(θ − 1)2 − 1

3

)
, Ã = νâ− (1− ν )̂b, A = −b̂, B = 1− θ,
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b =
1

2

(
θ2 − 1

3

)
(1− ν), d =

1

2

(
1− θ2

)
(1− µ) and g = 9.81 is the gravity.

This system is an approximation to the three-dimensional Euler equations describing the irrotational free surface
flow of an ideal fluid Ω ⊂ R3, which is bounded below by −h(x, y, t) = −D(x, y)− ζ(x, y, t) and above by the
free surface elevation η(x, y, t) (cf. Figure 1).
The variables in (1) : X = (x, y) ∈ Ω and t > 0 are proportional to position along the channel and time, respec-

Figure 1 – The domain Ω.

tively. η = η(X, t) being proportional to the deviation of the free surface departing from its rest position and

V = V (X, t) =

(
u(X, t)
v(X, t)

)
= (u, v)T = (u; v) being proportional to the horizontal velocity of the fluid at some

height. ∇· =

(
∂x·
∂y·

)
is the gradient, ∇·( ? ; · ) = ∂x?+∂y· is the divergence and ∆· = ∂xx ·+∂yy· is the laplacian.

Remark 1. In our study, we suppose that η = O(a), where here the amplitude a is the difference between the
water surface and the zero level. Also we set λ = O(`) be the wave length. In addition, we limit ourselves to the
case where η +D > 0 (there is no dry zone), since we are in a big deep water wave regime.

This paper is organized as follows: in Section 2, we present the space and time discretization of equation (1).
In Section 3, we present a method to build a mesh using a photo and then using an imported xyz bathymetry,
in which, we will also present a special adaptive mesh technique around the initial data used for the generation
of a Tsunami wave. In Section 4, we first check the convergence of our code, which establishes the adequacy of
the chosen finite element discretization, then we simulate the propagation of a wave, that looks like a Tsunami
wave generated by an Earthquake, in the Mediterranean sea over the sBBM system (1) with a flat bottom using
the mesh generated from a photo of the Mediterranean sea, then with a variable bottom in space using the
mesh generated from the xyz bathymetry of the sea near Java island and finally, with a realistic example of the
Tsunami wave near Java island which happened in 2006.

2 Discretization of the sBBM system

In this section, we present the spatial discretization of (1) using finite element method with P1 continuous
piecewise linear functions and for the time marching scheme an explicit second order Runge-Kutta scheme.

2.1 Spatial discretization

We let Ω be a convex, plane domain, and Th be a regular, quasiuniform triangulation of Ω with triangles of
maximum size h < 1. Setting Vh = {vh ∈ C0(Ω̄); vh|T ∈ P1(T ),∀T ∈ Th} be a finite-dimensional subspace of
H1(Ω), where P1 is the set of all polynomials of degree ≤ 1 with real coefficients and denoting by 〈·; ·〉 the L2

inner product on Ω, we consider the weak formulation of system (1) :
Find ηh, uh, vh ∈ Vh such that ∀φηh, φuh, φvh ∈ Vh, we have :
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〈
ηht − b∇ ·

(
D2∇ηht

)
+∇ · ((D + ηh + ζ) (uh; vh)) + ζt;φ

η
h

〉
+
〈
Ã∇ ·

(
D2∇ζt

)
;φηh

〉
+
〈
∇ ·
{
AD2 [∇ (∇D · (uh; vh)) +∇D∇ · (uh; vh)]

}
;φηh
〉

= 0,〈
uht − dD2∆uht + gηxh + uhuhx + vhvhx −BDζxtt;φuh

〉
+Bg

〈
D
[

(∇D · ∇ηh)x +Dx∆ηh

]
;φuh

〉
= 0,〈

vht − dD2∆vht + gηyh + uhuhy + vhvhy −BDζytt;φuh
〉

+Bg
〈
D
[
(∇D · ∇ηh)y +Dy∆ηh

]
;φvh

〉
= 0.

(2)

For simplicity, we set φηh = Φη, φuh = Φu, φvh = Φv, ηh = E , uh = U , vh = V, so that system (2) can be
rewrite in the following way :

〈
∂tE − b∇ ·

(
D2∇∂tE

)
; Φη

〉
= −〈(D + ζ + E)∇ · (U ;V) + (Dx + ζx + Ex)U + (Dy + ζy + Ey)V + ζt

+Ã∇ ·
(
D2∇ζt

)
+A∇ ·

{
D2 [∇ (∇D · (U ;V)) +∇D∇ · (U ;V)]

}
; Φη

〉
= F (E ,U ,V,Φη) ,〈

(Id − dD2∆)∂tU ; Φu
〉

= −
〈
gEx + UUx + VVx +BgD

[
(∇D · ∇E)x +Dx∆E

]
−BDζxtt; Φu

〉
= G (E ,U ,V,Φu) ,〈

(Id − dD2∆)∂tV; Φv
〉

= −
〈
gEy + UUy + VVy +BgD

[
(∇D · ∇E)y +Dy∆E

]
−BDζytt; Φv

〉
= H (E ,U ,V,Φu) .

(3)

Next, we discretize system (3). First, integrating by parts, the left hand side in (3) gives :

−
〈
b∇ ·

(
D2∇∂tE

)
; Φη

〉
= b

〈
D2∇∂tE ;∇(Φη)

〉
−
∫

Γn

bD2Φη
∂(∂tE)

∂n
∂γ,

−
〈
dD2∆∂tU ; Φu

〉
= d

〈
D2∇∂tU ;∇Φu

〉
+ d 〈2D∇D · ∇∂tU ; Φu〉 −

∫
Γn

dD2Φu
∂(∂tU)

∂n
∂γ,

and

−
〈
dD2∆∂tV; Φv

〉
= d

〈
D2∇∂tV;∇Φv

〉
+ d 〈2D∇D · ∇∂tV; Φv〉 −

∫
Γn

dD2Φv
∂(∂tV)

∂n
∂γ.

Now, dealing with the right-hand side of the first equation in system (3), we have :〈
∇ ·
(
D2∇ζt

)
; Φη

〉
=
〈(
D2ζxt

)
x

+
(
D2ζyt

)
y

; Φη
〉

=
〈
2DDxζxt +D2ζxxt + 2DDyζyt +D2ζyyt; Φη

〉
,

and 〈
∇ ·
{
D2 [∇ (∇D · (U ;V)) +∇D∇ · (U ;V)]

}
; Φη

〉
=
〈
∇ ·
{
D2
[(

(DxU +DyV)x ; (DxU +DyV)y

)
+ (Dx∇ · (U ;V);Dy∇ · (U ;V))

]}
; Φη

〉
=
〈
∇ ·
(
D2DxxU +D2DxUx +D2DxyV +D2DyVx +D2Dx∇ · (U ;V);D2DxyU +D2DxUy

+D2DyyV +D2DyVy +D2Dy∇ · (U ;V)
)

; Φη
〉

=
〈
(2DDxDxx + 2DDyDxy +D2Dxyy +D2Dxxx)U + (2DDxDxy + 2DDyDyy +D2Dyyy

+D2Dxxy)V + (4DD2
x + 3D2Dxx + 2DD2

y +D2Dyy)Ux + 2(D2Dxy +DDxDy)Uy + (4DD2
y

+3D2Dyy + 2DD2
x +D2Dxx)Vy + 2(DDxDy +D2Dxy)Vx; Φη

〉
+
(〈

2D2DxUxx; Φη
〉

+
〈
D2DyUxy; Φη

〉
+
〈
D2DxUyy; Φη

〉
+
〈
D2DyVxx; Φη

〉
+
〈
D2DxVxy; Φη

〉
+
〈
2D2DyVyy; Φη

〉)
;

On the other hand, we have :〈
2D2DxUxx; Φη

〉
= −

〈
2D2DxUx; Φηx

〉
−
〈
(4DD2

x + 2D2Dxx)Ux; Φη
〉

+

∫
Γn

2D2DxΦη
∂U
∂n

∂γ,

〈
D2DyUxy; Φη

〉
= −

〈
D2DyUx; Φηy

〉
−
〈
(2DD2

y +D2Dyy)Ux; Φη
〉

+

∫
Γn

D2DyΦη
∂U
∂n

∂γ,

〈
D2DxUyy; Φη

〉
= −

〈
D2DxUy; Φηy

〉
−
〈
(2DDxDy +D2Dxy)Uy; Φη

〉
+

∫
Γn

D2DxΦη
∂U
∂n

∂γ,

〈
D2DyVxx; Φη

〉
= −

〈
D2DyVx; Φηx

〉
−
〈
(2DDxDy +D2Dxy)Vx; Φη

〉
+

∫
Γn

D2DyΦη
∂V
∂n

∂γ,

〈
D2DxVxy; Φη

〉
= −

〈
D2DxVx; Φηy

〉
−
〈
(2DDxDy +D2Dxy)Vx; Φη

〉
+

∫
Γn

D2DxΦη
∂V
∂n

∂γ,
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〈
2D2DyVyy; Φη

〉
= −

〈
2D2DyVy; Φηy

〉
−
〈
(4DD2

y + 2D2Dyy)Vy; Φη
〉

+

∫
Γn

2D2DyΦη
∂V
∂n

∂γ,

and, consequently,

F (E ,U ,V,Φη) = −〈(D + ζ + E)∇ · (U ;V) + (Dx + ζx + Ex)U + (Dy + ζy + Ey)V + ζt; Φη〉

−Ã
〈
2DDxζxt +D2ζxxt + 2DDyζyt +D2ζyyt; Φη

〉
−A

〈
(2DDxDxx + 2DDyDxy +D2Dxyy

+D2Dxxx)U + (2DDxDxy + 2DDyDyy +D2Dyyy +D2Dxxy)V +D2DxxUx +D2DxyUy − 2DDxDyVx
+(D2Dyy + 2DD2

x +D2Dxx)Vy; Φη
〉

+A
(〈

2D2DxUx +D2DyVx; Φηx
〉

+
〈
D2DyUx +D2DxUy

+D2DxVx + 2D2DyVy; Φηy
〉)
−A

∫
Γn

(
(3D2Dx +D2Dy)Φη

∂U
∂n

+ (D2Dx + 3D2Dy)Φη
∂V
∂n

)
∂γ.

For the right-hand side of second equation in system (3), we have :

G (E ,U ,V,Φu) = −
〈
gEx + UUx + VVx +BgD

[
(DxEx +DyEy)x +Dx(Exx + Eyy)

]
−BDζxtt; Φu

〉
= −〈gEx + UUx + VVx +Bg (DDxxEx +DDxyEy)−BDζxtt; Φu〉 −Bg 〈2DDxExx +DDyExy +DDxEyy; Φu〉

= −〈gEx + UUx + VVx +Bg (DDxxEx +DDxyEy)−BDζxtt; Φu〉+Bg 〈2DDxEx; Φux〉+Bg
〈
(2D2

x + 2DDxx)Ex; Φu
〉

+Bg
〈
DDyEx +DDxEy; Φuy

〉
+Bg

〈
(D2

y +DDyy)Ex + (DxDy +DDxy)Ey; Φu
〉
−
∫

Γn

Bg(3DDx+DDy)Φu
∂E
∂n

∂γ

= −
〈
g
(
Id −B

(
DDxx + 2D2

x +DDyy +D2
y

))
Ex + UUx + VVx −BgDxDyEy −BDζxtt; Φu

〉
+Bg 〈2DDxEx; Φux〉

+Bg
〈
DDyEx +DDxEy; Φuy

〉
−
∫

Γn

Bg(3DDx +DDy)Φu
∂E
∂n

∂γ.

Finally, for the right-hand side of the third equation in system (3), we have :

H (E ,U ,V,Φv) = −
〈
gEy + UUy + VVy +BgD

[
(DxEx +DyEy)y +Dy(Exx + Eyy)

]
−BDζytt; Φv

〉
= −〈gEy + UUy + VVy +Bg (DDxyEx +DDyyEy)−BDζytt; Φv〉 −Bg 〈DDyExx +DDxExy + 2DDyEyy); Φv〉

= −〈gEy + UUy + VVy +Bg (DDxyEx +DDyyEy)−BDζytt; Φv〉+Bg 〈DDyEx; Φvx〉+Bg 〈(DxDy +DDxy)Ex; Φv〉

+Bg
〈
DDxEx + 2DDyEy; Φvy

〉
+Bg

〈
(DxDy +DDxy)Ex + (2D2

y + 2DDyy)Ey; Φv
〉
−
∫

Γn

Bg(DDx+3DDy)Φv
∂E
∂n

∂γ

= −
〈
−Bg(2DxDy +DDxy)Ex + UUy + VVy + g

(
Id −B

(
DDyy − 2D2

y

))
Ey −BDζytt; Φv

〉
+Bg 〈DDyEx; Φvx〉

+Bg
〈
DDxEx + 2DDyEy; Φvy

〉
−
∫

Γn

Bg(DDx + 3DDy)Φv
∂E
∂n

∂γ.

Remark 2. We note that, during the simulation, when there is a steep gradient, we obtain a blow-ups. In order
to avoid this problem, we need to change the bottom (make it smoother) or/and to get rid of the high order
derivatives for the bottom as in [9]. That’s why, we take into account in the sequel, the smoothness of the
bottom and the fact that the derivatives of the bottom of order greater then one are neglected.

Thus, we will now deal with the following system:

〈
∂tE ; Φη

〉
+ b

〈
D2∇∂tE ;∇(Φη)

〉
−
∫

Γn

bD2Φη
∂(∂tE)

∂n
∂γ = F (E ,U ,V,Φη)〈

∂tU ; Φu
〉

+ d
〈
D2∇∂tU ;∇Φu

〉
+ d 〈2D∇D · ∇∂tU ; Φu〉 −

∫
Γn

dD2Φu
∂(∂tU)

∂n
∂γ = G (E ,U ,V,Φu)〈

∂tV; Φv
〉

+ d
〈
D2∇∂tV;∇Φv

〉
+ d 〈2D∇D · ∇∂tV; Φv〉 −

∫
Γn

dD2Φv
∂(∂tV)

∂n
∂γ = H (E ,U ,V,Φv)

(4)

with
F (E ,U ,V,Φη) = −〈(D + ζ + E)∇ · (U ;V) + (Dx + ζx + Ex)U + (Dy + ζy + Ey)V + ζt; Φη〉

−Ã 〈2DDxζxt + 2DDyζyt; Φη〉−A
〈
−2DDxDyVx + 2DD2

xVy; Φη
〉

+A
(〈

2D2DxUx +D2DyVx; Φηx
〉

+
〈
D2DyUx

+D2DxUy +D2DxVx + 2D2DyVy; Φηy
〉)
−A

∫
Γn

(
(3D2Dx +D2Dy)Φη

∂U
∂n

+ (D2Dx + 3D2Dy)Φη
∂V
∂n

)
∂γ,

G (E ,U ,V,Φu) = −
〈
g
(
Id −B

(
2D2

x +D2
y

))
Ex + UUx + VVx −BgDxDyEy −BDζxtt; Φu

〉
+Bg 〈2DDxEx; Φux〉

+Bg
〈
DDyEx +DDxEy; Φuy

〉
−
∫

Γn

Bg(3DDx +DDy)Φu
∂E
∂n

∂γ,

and

H (E ,U ,V,Φv) = −
〈
−2BgDxDyEx + UUy + VVy + g

(
Id − 2BD2

y

)
Ey −BDζytt; Φv

〉
+Bg 〈DDyEx; Φvx〉

+Bg
〈
DDxEx + 2DDyEy; Φvy

〉
−
∫

Γn

Bg(DDx + 3DDy)Φv
∂E
∂n

∂γ.
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2.2 Time marching scheme

Our method is based on an explicit second order Runge-Kutta scheme. For that, let us denote by
(En+1,Un+1,Vn+1) and (En,Un,Vn) the approximate values at time t = tn+1 and t = tn, respectively and by δt
the time step size. Then, owing to (4), the unknown fields at time t = tn+1 are defined as the solution of the
following system: 

〈En+1; Φη〉 = 〈En +
Ek1 + Ek2

2
; Φη〉,

〈Un+1; Φu〉 = 〈Un +
Uk1 + Uk2

2
; Φu〉,

〈Vn+1; Φv〉 = 〈Vn +
Vk1 + Vk2

2
; Φv〉,

(5)

where 〈
Ek1; Φη

〉
+ b

〈
D2∇Ek1;∇(Φη)

〉
−
∫

Γn

bD2Φη
∂(Ek1)

∂n
∂γ = δt · F (En,Un,Vn,Φη) ,〈

Uk1 + 2dD∇D · ∇Uk1; Φu
〉

+ d
〈
D2∇Uk1;∇Φu

〉
−
∫

Γn

dD2Φu
∂(Uk1)

∂n
∂γ = δt · G (En,Un,Vn,Φu) ,〈

Vk1 + 2dD∇D · ∇Vk1; Φv
〉

+ d
〈
D2∇Vk1;∇Φv

〉
−
∫

Γn

dD2Φv
∂(Vk1)

∂n
∂γ = δt · H (En,Un,Vn,Φv)

(6)

and 〈
Ek2; Φη

〉
+ b

〈
D2∇Ek2;∇(Φη)

〉
−
∫

Γn

bD2Φη
∂(Ek2)

∂n
∂γ = δt · F

(
En + Ek1,Un + Uk1,Vn + Vk1,Φη

)
,〈

Uk2 + 2dD∇D · ∇Uk2; Φu
〉

+ d
〈
D2∇Uk2;∇Φu

〉
−
∫

Γn

dD2Φu
∂(Uk2)

∂n
∂γ = δt · G

(
En + Ek1,Un + Uk1,Vn + Vk1,Φu

)
,〈

Vk2 + 2dD∇D · ∇Vk2; Φv
〉

+ d
〈
D2∇Vk2;∇Φv

〉
−
∫

Γn

dD2Φv
∂(Vk2)

∂n
∂γ = δt · H

(
En + Ek1,Un + Uk1,Vn + Vk1,Φv

)
.

(7)

3 Mesh generation and initial data

In this section, we present the technique used in order to generate a mesh using a photo of the Mediterranean
sea then using an imported xyz bathymetry. Also, we will present a way in order to obtain the initial data and
explain the special adapt mesh technique that we will use in our numerical simulation.

3.1 Mesh generated using a photo

We present here the method to build a mesh from a photo inspired from a FreeFem++ script made by F.
Hecht [7] and another one made by O. Pantz [12].

Owing to Google Earthr and for better resolution, we take severals parts of the Mediterranean sea (cf.
Figure 2) that are subsequently assembled using Photoshopr to obtain a complete picture of the Mediterranean
sea (cf. Figure 3).

Figure 2 – The pictures of two parts of the Mediterranean sea.
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Figure 3 – The Mediterranean sea after assembly with Photoshopr.

Using Photoshopr, we can also eliminate the land areas that circumvent the Mediterranean sea (cf. Figure
4). We note that we must smoothen the borders in Photoshopr and put the black color inside our domain and
the white color outside.

Figure 4 – The Mediterranean sea.

Then we convert the jpg photo to a pgm photo which can be read by FreeFem++ using in a terminal window :

convert Medit_sea.jpg Medit_sea.pgm

In order to generate the mesh of the Mediterranean sea domain, we read the pgm file using

load "ppm2rnm"

load "isoline"

real[int ,int] f1("Medit_sea.pgm");

int nx = f1.n, ny=f1.m;

mesh Sh=square(nx -1,ny -1,[(nx -1)*(x),(ny -1)*(1-y)]);

fespace Vh(Sh ,P1); Vh fxy;

fxy[]=f1;

fxy=(fxy >=0.5) -(fxy <0.5);// to get value between -1 and 1

real[int ,int] Curves (3,1);

int[int] be(1);
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int nc=isoline(Sh ,fxy ,iso=0., close=0,Curves ,beginend=be ,smoothing =.005 , ratio

å=0.1);

The function obtained from the pgm file has values between 0 and 1, where the value of 0.5 represents the
contour between two different colors. We note that, we can regularize this contour (thanks to O. Pantz [12]),
before using the isoline function which computes the number of closed curves of our image, by solving :∫

Ω

(
2ε∇(δu)∇(φ) +

4

ε
u2δuφ+ αδuφ

)
+

∫
Ω

(
ε∇(u)∇(φ)− 2

ε
(1− u2)uφ

)
=

∫
Ω

α(fxy − u)φ, (8)

where in our example, we take ε = 1, α = 1 and δx = 1.5. We also note that when ε is close to zero, the solution
u takes the values equal to 1 and −1 and α sets the balance between length of the curve and fitting the actual
interface: As α increase, the approximation become better.
After regularizing, we update u = 0 till u = u+ δu, and we adapt the mesh around the contour (cf. Figure 5),
by using

Sh=adaptmesh(Sh ,u,nbvx=1e7);

Figure 5 – The adapted mesh around the contour of the Mediterranean sea.

then, we solve again the regularizing problem, then we update the function u = u+ δu and finally we interpolate
the solution on the initial mesh (cf. Figure 6) before using isoline :

mesh Shinit=Sh; fespace Vhinit(Shinit ,P1);

Vhinit fxyinit;

fxyinit=u;

int nc=isoline(Shinit ,fxyinit ,iso=0., close=0,Curves ,beginend=be ,smoothing

å=.005 , ratio =0.1);

Now, we show in Figure 7, the mesh created around Crete island, where we see in the top left, the mesh after
first regularization and in the top right, the function fxy after interpolation, in the down left, three isoline level
−1, 0 and 1 of the fxy function, where here the mesh generated at the 0 level is shown in the down right. The
complete script is written in [15].
We note that, we take into account the area of the Mediterranean sea, which is almost 2.5 million km2 and we
did a scale for our final mesh :

real Areasea =2.5e6;//area of the Mediterranean sea in Km^2

real scale=sqrt(Areasea/Th.area);

Th=movemesh(Th ,[x*scale ,y*scale]);
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Figure 6 – The function fxy of the contour of Mediterranean sea after interpolation.

Figure 7 – Creation of the mesh around Crete island in the Mediterranean sea (top left: mesh after first
regularization, top right: solution after interpolation, � : wave gauge, ? : epicenter, down left: isoline of the
contour, down right: mesh generated).

3.2 Mesh generated using an imported xyz bathymetry

In order to consider more realistic case, this means that, we now take into account the bathymetry near Java
island which can be downloaded from the NOAA 3 website, (cf. Figure 8), we also use FreeFem++ to generate
the mesh of the area where the amplitude is zero.

We can read the xyz file (cf. Figure 9, left), using this script :

3. https://maps.ngdc.noaa.gov/viewers/wcs-client/
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Figure 8 – Importation of bathymetry datas through the NOAA website.

mesh Sh=triangulate("bathymetry_Java");

fespace Vh(Sh ,P1); Vh fxy;

{ ifstream file(filename);real xx,yy;

for(int i=0;i<fxy.n;i++)

file >> xx >>yy >> fxy [][i];

}

We can smoothen the bathymetric data by solving :∫
Ω

(βuφ+∇(u)∇(φ)) +

∫
Γ

∂u

∂n
∂γ =

∫
Ω

βfxyφ,
∂u

∂n
= 0. (9)

In our code, we take β = 5.e3, in order to build the mesh to get rid of smallest islands, then, in order to
obtain the mesh only around the sea, which is limited by the zero level of the amplitude, we use :

fxy=(fxy >=0.5) -(fxy <0.5);// to get value between -1 and 1

and then proceeding similarly, as above for the mesh generation using a photo, in order to obtain the mesh of
our domain, by taking ε = 1.e− 2 and α = 1.e2 for the regularization phenomena (8).

Remark 3. We note that our method takes into account the different label for each part of the boundary, which
facilitates the use of different types of boundary condition.

Remark 4. For all simulation with bathymetry, we use β = 2.e1 in (9) to smoothen the initial bathymetry after
generation of the mesh (cf. Figure 9, right) in order to ensure the stability of the numerical method, we also
note that in order to be in a big deep water wave regime for sBBM system we change the depth close to the
shoreline to 100 m.

Figure 9 – Left : Bathymetry downloaded from the NOAA website, (min = −7239m and max = 3002m).
Right : smoothed bathymetry with β = 2.e1 in (9), (min = −6207m and max = −100m).
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Remark 5. The bathymetry data downloaded from the NOAA website are in degree coordinate and we need to
convert them to meter. So, on the first hand, we must know the degree of Latitude (south and north) and of
Longitude (west and east) of our domain where we can deduce the Latitude lat0 = .5(latsouth + latnorth) and
the Longitude long0 = .5(longwest + longeast). On the other hand, we must take into account the spherical
shape of the Earth, even if it does not play significant role because of the small spatial scale of the experiments.
So, we know that the radius of the Earth near the equator is Requator = 6378, 137 Km, and near to the pole
Rpole = 6356, 752 Km, thus the radius of our domain equals to:

R =

√√√√(R2
equator cos(lat0 · π/180)

)2
+
(
R2
pole sin(lat0 · π/180)

)2(
Requator cos(lat0 · π/180)

)2
+
(
Rpole sin(lat0 · π/180)

)2 .
So, we move the mesh of our domain using the following translation (coefl0 = πR/180):

[x; y] −→ [(x− lon0) cos(πy/180)coefl0; (y − lat0)coefl0].

Therefore, we need to move the bottom from the original reference downloaded to the new mesh, which is easy
to do in FreeFem++ by writing this script :

Vh D=fxy;

real coefl0=pi*R/180.;

Sh=movemesh(Sh ,[(x-lon0)*cos(y*pi /180.)*coefl0 ,(y-lat0)*coefl0 ]);

Vh tmp; // define a temporary function

tmp=D[]; // save the value

D=0; // to change the FEspace and mesh associated with u

D[]=tmp; // set the value of u without any mesh update

3.3 Mesh adaptation technique

We introduce here a special mesh adaptation technique since some computation domains are huge as in
the case of the Mediterranean sea with 1.7e6 triangles (8.7e5 degree of freedom) and our initial solution is
concentrated in a small domain, a circle C(O,R) or a rectangle [aa, bb]× [cc, dd]. So we build the mesh Th of the
small rectangle or the circle by doing a trunk to the initial full mesh Thinit respecting that the function equals
to 1 inside the rectangle and 0 outside as in :

Th=trunc(Thinit ,(1.*(x <= bb & x >= aa) *(y <= dd & y >= cc)) >.5,label =0);

or

Th=trunc(Thinit ,(1.*((x -xO)^2+(y-yO)^2<=R^2)) >.5,label =0);

then we compute the initial solution uold=uadapt in this domain. Using the keyword boundingbox in FreeFem++,
we obtain the limit min max of Thold=Th on x and y direction, in which we add epsadapt from each side in
order to build the new rectangle Thnew that contains Thold, then using the keyword interpolate in FreeFem++,
the old FEspace in P1 Vhold and the new FEspace in P1 Vhnew, we interpolate uold to unew in the new domain.
We smooth the function obtained from abs(unew)>=erradapt using :∫

Ω

(smoothadapt · usmadapt · φ+∇(usmadapt)∇(φ)) =

∫
Ω

smoothadapt · (|unew| ≥ erradapt) · φ, (10)

with zero Dirichlet boundary condition on the boundary label 0 of Thnew in order to obtain usmadapt. And, at
the end, we trunk Thnew respecting the function usmadapt>=isoadapt. We can put all the previous detail for
the special mesh adaption in a macro such as :

macro AdaptGS(Th ,uadapt ,erradapt ,isoadapt ,smoothadapt ,epsadapt ,Thinit ,output

å,wv)

mesh Thold=Th;

fespace Vhold(Thold ,P1);

Vhold uold=uadapt;

real[int] bbmM (4);

boundingbox(Thold ,bbmM);

mesh Thnew=trunc(Thinit ,(1.*(x <= (bbmM [1]+ epsadapt) & x >= (bbmM[0]-

åepsadapt)) *(y <= (bbmM [3]+ epsadapt) & y >= (bbmM[2]- epsadapt)))>

åerradapt ,label =0);
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fespace Vhnew(Thnew ,P1);

Vhnew usmadapt ,vsmadapt ,unew;

matrix BSinterp=interpolate(Vhnew ,Vhold ,inside=true);

unew []= BSinterp*uold [];

solve smoother(usmadapt ,vsmadapt)=int2d(Thnew)(smoothadapt*usmadapt*

åvsmadapt+grad(usmadapt) ’*grad(vsmadapt))-int2d(Thnew)(smoothadapt *(

åabs(unew)>=erradapt)*vsmadapt)+on(0,usmadapt =0.);

if(output) plot(usmadapt ,fill=true ,dim=2,value=true ,wait=wv ,cmm="

åusmadapt");

if(output) {Vhnew unewp=(usmadapt >= isoadapt); plot(unewp ,fill=true ,dim

å=2,value=true ,wait=wv ,cmm="zone to cut");}

Th=trunc(Thnew ,usmadapt >=isoadapt ,label =0);

//

Remark 6. We trunk always from the initial full mesh, in this case, we keep the original vertices of the mesh
throughout the simulation, and also we keep the original label of the boundary and we put 0 for the label of the
rest of the boundary domain. We also note that we need to interpolate all the variables of any kind of FEspace
from the old mesh to the newest one using the keyword interpolate in FreeFem++. We remark also that we
must choose the parameters for the AdaptGS in order to obtain the value of erradapt on the boundary of Th for
the function uadapt. In addition, we use a reflective boundary condition (BC) on label 0, i.e. zero Neumann BC
for η and zero Dirichlet BC for V , cause our sBBM system gives artificial numerical explosion on the boundary if
we do not use any BC or if we use only Neumann BC for η and V.

3.4 Initial data

Inspiring from [4, 9], Tsunami waves are generated by a deformation of the bottom due to an Earthquake,
which may be approximated by Okada’s formula’s [10, 11] in the case of the so called dip-slip dislocation, where
the vertical component of displacement vector O(x, y), is given by the following formulas in Chinnery’s notation,
cf [2, 10]

f(ξ, η) ||= f (ξ, p)− f (ξ, p−W )− f (ξ − L, p) + f (ξ − L, p−W ) ,

O(x, y) = − U
2π

(
d̃q

R(R+ ξ)
+ sin δ arctan

ξη

qR
− I sin δ cos δ

)∣∣∣∣∣
∣∣∣∣∣ .

where
ξ = (x− x0) cosφ+ (y − y0) sinφ, Y = −(x− x0) sinφ+ (y − y0) cosφ,

p = Y cos δ + d sin δ, q = Y sin δ − d cos δ,

ỹ = η cos δ + q sin δ, d̃ = η sin δ − q cos δ,

R2 = ξ2 + η2 + q2 = ξ2 + ỹ2 + d̃2, X2 = ξ2 + q2

and

I =


µ

λ+ µ

2

cos δ
arctan

η(X + q cos δ) +X(R+X) sin δ

ξ(R+X) cos δ
if cos δ 6= 0,

µ

λ+ µ

ξ sin δ

R+ d̃
if cos δ = 0.

Here, W and L are the width and the length of the rectangular fault, (x, y) are the points where we computes
displacements, (x0, y0) is the epicenter, d = fault depth(x0, y0) + W sin δ, δ is the dip angle, θ is the rake
angle, D is the Burger’s vector, U = |D| sin θ is the slip on the fault, φ is the strike angle which is measured
conventionally in the counter-clockwise direction from the North (cf. Figure 10 (left)), µ, λ are the Lamé
constants derived from elastic-wave velocities : λ = ρc

(
V 2
P − V 2

S

)
and µ = ρcV

2
S , where ρc is the crust density,

VP is the compressional-wave (P-wave) velocity, VS is the shear-wave (S-wave) velocity.

Remark 7. We can download the script which computes co-seismic displacements according to the classical
Okada solution O(x, y) from the following link http://www.denys-dutykh.com/downloads.php.

We will distinguish here the two cases for the mechanisms of the dynamics of Tsunami wave generation as in
[9] : the passive generation and the active generation.
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Passive generation :

In order to compute the initial data for η(x, y, 0) = O(x, y) in meters (cf. Figure 10 (right)), V (x, y, 0) = 0
which is referred to as a passive generation of a Tsunami wave near Java island, using our mesh adaptive technique,
we will use the fact that the solution is concentrated in the small rectangle [x0−3.2W ;x0 +1.2W ]× [y0−L; y0 +L]

where L = 100 Km, W = 50 Km, δ = 10.35◦, φ = 288.94◦, θ = 95◦, U = 2 m, ρc = 2700 Kg/m
3
, VP = 6000

m/s, VS = 3400 m/s, (x0; y0) = (107.345◦,−9.295◦) and the fault depth(x0; y0) = 10 Km. All these geophysical
parameters can be downloaded from this website https://Earthquake.usgs.gov.

Therefore, we build the mesh of the small rectangle by doing a trunc to the initial full mesh respecting that
the function equals to 1 inside the rectangle and 0 outside as in :

real aa=x0 -3.2*W,bb=x0 +1.2*W,cc=y0 -L,dd=y0+L;

Th=trunc(Thinit ,(1.*(x <= bb & x >= aa) *(y <= dd & y >= cc)) >.5,label =0);

Figure 10 – Geometry of the source model (left) and the initial solution for η (right, min= −0.46 m, max= 0.73
m ).

Active generation :

For a more realistic case as in the Java 2006 event, we use the active generation in order to model the
generation of a Tsunami wave as in [4, 5]. In this case we consider zero initial conditions for both the free surface
elevation and the velocity field, and assume that the bottom is moving in time. This case may be described by
considering the bottom motion formula : −h(x, y, t) = −D(x, y)− ζ(x, y, t) with

ζ(x, y, t) =

Nx·Ny∑
i=1

H(t− ti) ·
(

1− e−α(t−ti)
)
· Oi(x, y),

where Nx sub-faults along strike and Ny sub-faults down the dip angle, H(t) is the Heaviside step function

and α = log(3)
tr

, where tr = 8 s is the rise time. We choose here an exponential scenario, but in practice, various
scenarios could be used (instantaneous, linear, trigonometric, etc) and could be found in [4, 5, 6].

Remark 8. Parameters such as sub-fault location (xi, yi), depth di, slip U and rake angle θ for each segment,
given in Table 3 of the paper [4], can be downloaded from this website https://Earthquake.usgs.gov.
In this file, we remark that the fault’s plane is conventionally divided into Nx = 21 sub-faults along strike and
Ny = 7 sub-faults down the dip angle, leading to a total number of Nx×Ny = 147 equal segments.

For our special adapt mesh technique, since the fault plane is considered to be the rectangle with vertices lo-
cated at (109.20508◦ (Lon),−10.37387◦ (Lat)), (106.50434◦ (Lon),−9.45925◦ (Lat)), (106.72382◦ (Lon),−8.82807◦

(Lat)) and (109.42455◦ (Lon),−9.74269◦ (Lat)), we will consider that our bottom displacement is concentrated
on the big rectangle which is equidistant of 1◦ from each side of the initial fault plane as in Figure 11 (left),
then we compute each Okada solution Oi on a circle of center (xi − 10m, yi − 10m) and of radius 6 max(L,W )
and at then end all the Okada solution will be interpolated on the big rectangle before starting to compute the
vertical displacement of the bottom ζ(x, y, t), in Figure 11 (right) we plot O14. For the computation of ζ(x, y, t),
we start the mesh by a circle of center (xc − 5m, yc − 5m) and of radius 4 max(L,W ) and we adapt the mesh
each 3 iterations i.e. each 6 s by using the following value for the adapt mesh uadapt= ζ, isoadapt=5e-2,
erradapt=1e-4, smoothadapt=5e-9, epsadapt=50e3.

We show in the Figure 12, the bottom displacement ζ(x, y, t) at time t = 100s and t = 270s using our adapt
mesh technique.
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Figure 11 – Left : Surface projection of the fault’s plane and the mesh around, � : wave gauge, ? : epicenter.
Right : the 14-th Okada solution (min= −0.09 m, max= 0.17 m ).

Figure 12 – Bottom displacement at t = 100 s (left, min= −0.18 m, max= 0.38 m) and at t = 270 s (right,
min= −0.18 m, max= 0.45 m).

Remark 9. We note that after building the Okada solution O(x, y) in the passive generation or Oi(x, y) in the Ac-
tive generation, we can remark that this solution is non-local and decays slowly to zero, that why in our adapt mesh
technique we put 0 where the absolute value of the solution is less then min(|min (Oi(x, y))| , |max (Oi(x, y))|)/9.2
meter, we make the same thing without adapt mesh in order to compare the solution using the same initial data.

4 Numerical simulations

In this section, we study first the rate of convergence of our codes for the sBBM (4) with non-dimensional
and unscaled variable i.e., with g = 1 over a variable bottom in space, which establishes the adequacy of the
chosen finite element discretization and the used time marching scheme, for the flat bottom case, we refer to
[13], where we use the same technique as in this paper. Then we simulate the propagation of a wave, that looks
like a Tsunami wave generated by an Earthquake, in the Mediterranean sea over the sBBM with a flat bottom,
near Java island over a variable bottom in space and at the end near Java island over a variable bottom in space
and in time.

In all numerical simulations we used P1 continuous piecewise linear functions for η, u, v,D and ζ.

4.1 Rate of convergence

We prove in the figure below, that the RK2 time scheme considered for the sBBM variable bottom in space
system is of order 2, we note that ζ(x, y, t) is only used for the generation of the Tsunami wave and will not be
taken into account in the convergence rate test. In this example, we took Bi-Periodic Boundary Conditions for
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ηh, uh and vh on the whole boundary of the square [0, 2L]× [0, 2L], where L = 50 and we consider the following
exact solutions:

ηex = .2 cos(2πx/L− t) cos(2πy/L− t), uex = .5 sin(2πx/L− t) cos(2πy/L− t),

vex = .5 cos(2πx/L− t) sin(2πy/L− t), D(x, y) = 1− .5 cos(2πx/L) cos(2πy/L),

adding an appropriate right-hand side function.

We measure at time T = 1 and for θ2 =
2

3
, δt =

.01

2n
and δx =

2L

N
=

2L

2n+5
∀n ∈ {0, 1, 2, 3, 4}, the following

errors
NL2(η) = ‖ηh − ηex‖L2 , NH1(η) = ‖ηh − ηex‖H1 , NL2(V) = ‖uh − uex‖L2 + ‖vh − vex‖L2

NH1(V) = ‖uh − uex‖H1 + ‖vh − vex‖H1

and we end up with the following results:

N δt NL2(η) rate NL2(V) rate NH1(η) rate NH1(V) rate
25 .01/20 0.241446 - 1.10773 - 0.603174 - 1.62575 -
26 .01/21 0.0607759 1.99013 0.280157 1.98329 0.301957 0.998228 0.812757 1.00021
27 .01/22 0.01524 1.99564 0.0703759 1.99308 0.151186 0.998017 0.406962 0.99793
28 .01/23 0.0038124 1.9987 0.017602 1.99909 0.075782 0.9975 0.203552 0.99965

Table 1 – L2 norm of the error for η and V.

Figure 13 – Rate of convergence for sBBM system with variable bottom in space.

So, the L2(Ω×]0, T [)2 norm slope for η and V is of order ∼ 2 and the L2(0, T ;H1(Ω)2) slope for η and V is
of order ∼ 1 as shown in the Figure 13 and which confirms the convergence of the second-order Runge-Kutta
scheme in time for the sBBM system with variable bottom in space.

4.2 Propagation of a Tsunami wave in the Mediterranean sea with a flat bottom.

In this section, the non-dimensional and unscaled variables in (4) i.e. g = 1. We simulate here, the
propagation of a wave that looks like a Tsunami wave generated by an Earthquake in the Mediterranean sea over
the sBBM (4) with a flat bottom −D(x, y) = −1, 5 Km which is the average depth of the Mediterranean sea.
This wave was defined above in the passive generation part of the Section 3 where, in this case, the initial solution
is concentrated in the small rectangle [x0 − 5W ;x0 + 4W ]× [y0 − 1.5L; y0 + 2.5L] and we take these following
values : L = 20 Km, W = 10 Km, δ = 7◦, φ = 0◦, θ = 90◦, E = 9, 5 GPA is the Young’s modulus, ν = 0, 27 is
the Poisson’s ratio, U = 2, 5 m, (x0; y0) = (2390. ∗ scale, 590. ∗ scale) and the fault depth(x0; y0) = 10 Km. In
this example, we will take the fact that the Lamé constants µ and λ are given by the formulas µ = E/2(1 + ν)
and λ = Eν/(1 + ν)(1− 2ν).
We also use the following settings : for the step time δt = 0.1 = 1 s, a reflective BC for all the boundary, for the
adaptmesh of FreeFem++:
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fespace Vhinit(Thinit ,P0);

Vhinit hT=hTriangle;

real Dx=hT[]. min;

uadapt=eta0+u0+v0;

Th=adaptmesh(Th ,uadapt ,err =1.e-6,errg =1.e-2,hmin=Dx ,iso=true ,nbvx=1e8);

[eta0 ,u0,v0]=[eta0 ,u0,v0]; MAX=MAX; D=D;

and for our new adapt mesh technique :

fespace Wh(Th ,P1);

mesh Thp=Th;

uadapt=eta0+u0+v0;

real isoadapt =5.e-2, erradapt =1.e-7, smoothadapt =5.e-3,epsadapt =2e-2;

bool output =true;

real wv=0.;

{ AdaptGS(Thp ,uadapt ,erradapt ,isoadapt ,smoothadapt ,epsadapt ,Thinit ,output ,wv

å); }

fespace Whp(Thp ,P1);

Wh peta0=eta0 ,pu0=u0 ,pv0=v0; Whp Dp ,MAXp ,eta0p ,u0p ,v0p;

matrix BWinterp=interpolate(Whp ,Wh ,inside=true);

eta0p []= BWinterp*peta0 [];u0p[]= BWinterp*pu0[];v0p[]= BWinterp*pv0[]; MAXp []=

åBWinterp*MAX[];

Th=Thp;

[eta0 ,u0,v0]=[eta0p ,u0p ,v0p]; MAX=MAXp; D=D;

We note that, we adapt the mesh around the solution each 100 iterations i.e. each 10 s by using the following value
for the adapt mesh uadapt= η + u+ v, isoadapt=5e-2, erradapt=1e-7, smoothadapt=5e-3, epsadapt=2e-2.

Figure 14 – The mesh and the solution at t = 1000 s, with the Full method at left, the Adapt GS at the center
and the Adapt FF with err=1.e-7 at the right.

Figure 15 – The solution at t = 3000 s, with the Full method at left, the Adapt GS at the center and the Adapt
FF with err=1.e-7 at the right.
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In order to compare the results between adaptmesh of FreeFem++, our new adapt mesh technique and without
using mesh adaptation, we plot in addition to the free surface elevation η in the Figures 14 → 15, the variation
of η vs time in Figure 16 at two wave ’gauges’ placed at the positions represented by � in Figure 7 (top, right)
and the mass of the water

∫
η. Specifically, gauges were placed at the points (i) : (2350. ∗ scale, 550. ∗ scale),

(ii) : (2104. ∗ scale, 665. ∗ scale).
In the Figure 18, we represent the comparison between the three methods : Full, Adapt FF and Adapt GS of
the maximum of the propagation of the solution at time t = 6800sec.
We also plot the computation time for each adapt mesh, the computation time of the simulation, the number of
degree of freedom in Figure 17.
We can see in Figures 16 and 17 that the adaptmesh of FreeFem++ with err=1.e-2 is the fastest method but

unfortunately it does not preserve the mass invariant

∫
η. On the other hand, our new adapt mesh technique

preserves the mass invariant throughout the simulation with an error of order 2.1e− 3 and an important time
computation difference with the one without mesh adaptation which is very good method for the Tsunami wave
propagation.
For the adaptmesh of FreeFem++ with err=1.e-7, we also get an almost a mass conservation with an error of
order 9.5e− 4, but we obtain some difference in wave gauge with the Full method which is due to the refinement
mesh adaptation and the interpolation of the solution, although the computation time is almost the double of
the new adapt mesh technique.
We note also that we can go faster with our new mesh adaptation technique if we can also trunk the mass matrix
after trunking the mesh, of course if the mass matrix is a constant along the simulation of the Full mesh, this is
an outgoing project.

Figure 16 – Comparison between the three methods : Full, Adapt FF and Adapt GS of the free surface elevations
(in meters) vs time (in seconds), computed numerically at two wave gauges and of the mass conservation.

Figure 17 – Comparison between the three methods : Full, Adapt FF and Adapt GS of the computation time of
each adaptemsh, the number of degree of freedom and the computation time of the simulation.
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Figure 18 – Comparison between the three method Full (up), Adapt GS (middle) and Adapt FF (down) of the
maximum of the propagation of the solution of a Tsunami wave in the Mediterranean sea for t = 6800 s.
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4.3 Propagation of a Tsunami wave near Java island : passive generation .

In this section, we will take the same initial data as defined above in the passive generation part of Section 3,
we take δt = 1 s as the time step size and we note that, we adapt the mesh after computing the initial data
for η and then every 50 s by using the following value for the adapt mesh uadapt= η + u+ v, isoadapt=3e-2,
erradapt=1e-4, smoothadapt=5e-9, epsadapt=30e3.
We compare here the results between our new adapt mesh technique and without using mesh adaptation. To
this end, we plot the free surface elevation η in the Figures 19 and 20.

Figure 19 – Passive generation : The bottom and the solution at t = 250 s (left, solution (min= −0.36 m,
max= 0.38 m), bottom (min= −6207 m, max= −2096 m)), t = 500 s (center, solution (min= −0.26 m, max= 0.35
m), bottom (min= −6207 m, max= −243 m)) and t = 1000 s (right, solution (min= −0.21 m, max= 0.29 m),
bottom (min= −6207 m, max= −100 m)), with the Adapt GS method.

Figure 20 – Passive generation : Comparison between the bottom and the solution at t = 1500 s, with the Adapt
GS method (left, solution (min= −0.38 m, max= 1.07 m), bottom (min= −6207 m, max= −100 m)) and with
the Full one (right, solution (min= −0.38 m, max= 1.07 m), bottom (min= −6207 m, max= −100 m)).

We also plot, the variation of η vs time (in Figure 21) at four numerical wave gauges placed at the following
locations: (i) (107.345◦,−9.295◦), (ii) (106.5◦,−8◦), (iii) (105.9◦,−10.35◦) and (iv) (107.7◦,−11◦) (see Figure 11
(left)) where (i) is the position of the epicenter. However, because of the large variations of the bottom, shorter
waves were generated, especially around Christmas Island (southwest of Java) and around the undersea canyon
near the Earthquake’s epicenter.

Finally, we present a comparison of the Kinetic, Potential and Total energy with the Full mesh (in Figure 22,
top left) and with the Adapt GS method (in Figure 22, top right) defined in [3] as:

Ec =
1

2
ρw

∫
Ω

(∫ η

−D(x,y)

|V |2dz

)
dxdy, Ep =

1

2
ρw · g

∫
Ω

η2dxdy,
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Figure 21 – passive generation : Comparison between the two methods Full and Adapt GS of the free surface
elevations (in meters) vs time (in seconds), computed numerically at four wave gauges where the gauge (i)
correspond to the epicenter.

where ρw = 1027 Kg/m
3

is the ocean water density, the number of degree of freedom (in Figure 22, down left)
and the computation time of the simulation (in Figure 22, down right). We obtain here an error of order 2.6e− 4
between the Total Energy with Adapt GS and without adaptation.

Figure 22 – passive generation : Comparison between the two methods Full and Adapt GS of the Kinetic,
Potential and Total energy, the number of degree of freedom and the computation time of the simulation.

We present in the Figure 23 the comparison of the maximum of the propagation of the solution between the
Full and the Adapt GS method at t = 1750 s.
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Figure 23 – Passive generation : Comparison between the maximum of the solution at t = 1750 s, with the
Adapt GS method (left) and with the Full one (right).

4.4 Propagation of a Tsunami wave near Java island : active generation .

For a more realistic case as in the Java 2006 event, we use the active generation in order to model the
generation of a Tsunami wave as in [4, 5]. In this case we consider zero initial conditions for both the surface
elevation and the velocity field, we take δt = 2 s as the time step size, we assume that the bottom described in
the Section 3 is moving in time and we note that we adapt the mesh, before the end of the generation time
t = 270 s, each 3 iterations i.e. each 6 s by using the following value for the adapt mesh uadapt= η + u+ v,
isoadapt=5e-2, erradapt=1e-4, smoothadapt=5e-9, epsadapt=50e3 and then for t > 270 s each 25 iterations
i.e. each 50 s.
We compare here only the results between our new adapt mesh technique and without using mesh adaptation.
To this end, we plot the free surface elevation η in the Figures 24 → 26. However, because of the large variations
of the bottom, shorter waves were generated, especially around Christmas Island (southwest of Java) and around
the undersea canyon near the Earthquake’s epicenter.
We also plot, the variation of η vs time (in Figure 27) at four numerical wave gauges placed at the following
locations: (i) (107.345◦,−9.295◦), (ii) (106.5◦,−8◦), (iii) (105.9◦,−10.35◦) and (iv) (107.7◦,−11◦) (see Figure 11
(left)) where (i) is the position of the epicenter.

Figure 24 – Active generation : The bottom and the solution at t = 100 s (left, solution (min= −0.17 m,
max= 0.07 m), bottom (min= −6207 m, max= −2589 m)), t = 200 s (center, solution (min= −0.19 m,
max= 0.08 m), bottom (min= −6207 m, max= −2285 m)) and t = 270 s (right, solution (min= −0.14 m,
max= 0.10 m), bottom (min= −6207 m, max= −2084 m)), with the Adapt GS method.
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Figure 25 – Active generation : The bottom and the solution at t = 500 s (left, solution (min= −0.15 m,
max= 0.10 m), bottom (min= −6207 m, max= −260 m)) and t = 1000 s (right, solution (min= −0.14 m,
max= 0.09 m), bottom (min= −6207 m, max= −100 m)), with the Adapt GS method.

Figure 26 – Active generation : Comparison between the bottom and the solution at t = 1500 s, with the Adapt
GS method (left, solution (min= −0.29 m, max= 0.13 m), bottom (min= −6207 m, max= −100 m)) and with
the Full one (right, solution (min= −0.29 m, max= 0.13 m), bottom (min= −6207 m, max= −100 m)).

At the end, we present a comparison of the Kinetic, Potential and Total energy with the Full mesh (in Figure
28, top left) and with the Adapt GS method (in Figure 28, top right) defined in [3] as:

Ec =
1

2
ρw

∫
Ω

(∫ η

−D(x,y)

|V |2dz

)
dxdy, Ep =

1

2
ρw · g

∫
Ω

η2dxdy,

the number of degree of freedom (in Figure 28, down left) and the computation time of the simulation (in Figure
28, down right). We obtain here an error of order 2e− 5 between the Total Energy with Adapt GS and without
adaptation.
We present in the Figure 29 the comparison of the maximum of the propagation of the solution between the Full
and the Adapt GS method at t = 1750 s.
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Figure 27 – Active generation : Comparison between the two methods Full and Adapt GS of the free surface
elevations (in meters) vs time (in seconds), computed numerically at four wave gauges where the gauge (i)
correspond to the epicenter.

Figure 28 – Active generation : Comparison between the two methods Full and Adapt GS of the Kinetic,
Potential and Total energy, the number of degree of freedom and the computation time of the simulation.
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Figure 29 – Active generation : Comparison between the maximum of the solution at t = 1750 s, with the Adapt
GS method (left) and with the Full one (right).

5 Conclusion and Outlook

We show in this paper, the usefulness of FreeFem++ for the simplified Boussinesq system of BBM type by
building the domain, on the one hand using a photo taken from Google Earthr and on the other hand through
an xyz bathymetry downloaded from the NOAA website. For the simulation of a Tsunami wave near Java
island, the digital computing environment that we developed allows the integration of realistic data (bathymetry
and geography) in a relatively simple framework. Another work concerning the generation, propagation and
inundation of a Tsunami wave will be discussed in the case of the Shallow Water equations in [14], where in this
case, we are not constraint by the smoothness of the bathymetry to avoid blow-up and where the same special
adapt technique with a parallel version of the code will be introduced.
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All the videos of the simulations of a Tsunami wave for the results presents in this paper are given in the
following links :
http://www.lamfa.u-picardie.fr/sadaka/movies/Tsu_Medit_Full.mov

http://www.lamfa.u-picardie.fr/sadaka/movies/Tsu_Medit_Adapt_GS.mov

http://www.lamfa.u-picardie.fr/sadaka/movies/Tsu_Medit_Adapt_FF_1EM2_sol.mov

http://www.lamfa.u-picardie.fr/sadaka/movies/Tsu_Medit_Adapt_FF_1EM2_mesh.mov

http://www.lamfa.u-picardie.fr/sadaka/movies/Tsu_Medit_Adapt_FF_1EM7_sol.mov

http://www.lamfa.u-picardie.fr/sadaka/movies/Tsu_Medit_Adapt_FF_1EM7_mesh.mov

http://www.lamfa.u-picardie.fr/sadaka/movies/Okada_Java_Dynamic.gif

http://www.lamfa.u-picardie.fr/sadaka/movies/Java_Bottom_Displacement.gif

http://www.lamfa.u-picardie.fr/sadaka/movies/Tsu_Java_sBBM_Pas_Adapt_GS_Full.mov

http://www.lamfa.u-picardie.fr/sadaka/movies/Tsu_Java_sBBM_Act_Adapt_GS_Full.mov
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