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Dear Prof. Hansen,

Thank you very much for your message regarding reviewer comments on our manuscript “Ap-

plication of phenomenological freezing and melting indicators to the exp-6 and Gaussian core

potentials” (TMPH-2011-0225) submitted to Molecular Physics. We studied carefully the reviewer

report and agreed with most of the reviewer suggestions. The paper has been therefore revised

taking all of the reviewer comments into account. Details of changes are summarized below in the

response to the reviewer.

Response: First, we would like to thank the Referees for his/her careful examination of our

work, expert comments, and useful suggestions. We took into account all the criticism and recom-

mendation made and revised the manuscript accordingly. The following changes were made:

1. The introductory part has been rewritten. The Lindemann, Hansen-Verlet and a couple of

other well known criterion for melting/freezing have been properly acknowledged (Refs. 1-5).

2. We added a reference related to the analytical freezing criterion for cluster-forming liquids

proposed by Likos et al. (Ref. 12).

3. When pointing out relevance of GCM for describing polymer solutions (beginning of p. 3)

we have added references to papers suggested by the referee (Refs. 18-22).

4. We have rewritten the beginning of the paragraph describing GCM phase diagram. The

first sentence now reads “After the first approximate calculation of the GCM phase diagram by

Stillinger (Stillinger1997) a detailed analysis was performed by Lang et al. (Lang) and subsequently

by others (PrestipinoJCP2005,Mausbach).” The reference to the paper by Lang et al. has been

added (Ref. 35); reference order has been rearranged.

5. Finally, we made necessary revisions at the end of p. 3 and p. 4 of the manuscript regarding

the description of parameters δ and L. Now it is stated explicitly that the parameter δ is expected to

be a quasiuniversal constant with the value δ = 0.10±0.01, based on experience with other systems

(LJ and IPL). The parameter L is not a true constant, but can be thought of as quasiuniversal in

a broader sense: L is quasiuniversal function of potential steepness. However, for relatively soft

interactions we are dealing with in this paper, the value of the parameter L is expected to lie in a

relative narrow range around L ∼ 200. We verify this towards the end of the manuscript (end of p.

5, beginning of p. 6) and find reasonable agreement between these expectation and actual values of

δ and L, determined by fitting eqs. (3) and (4) to known simulation results. Our main conclusion

that although there is certain level of agreement with the simulation results, this agreement is

merely qualitative, is of course not affected by these revisions.
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Application of phenomenological freezing and melting indicators

to the exp-6 and Gaussian core potentials

Sergey A. Khrapak1,2 and Franz Saija3

1Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany

2Joint Institute for High Temperatures, 125412 Moscow, Russia

3 CNR-IPCF, Viale Ferdinando Stagno dAlcontres 37, 98158 Messina, Italy

(Dated: July 29, 2011)

We apply two simple analytical melting and freezing indicators proposed earlier

to the two exemplary systems exhibiting anomalous melting behavior, exp−6 and

Gaussian core models. It is shown that the main anomalous feature – reentrant

melting regime – is well reproduced. Detailed comparison with the available data

from numerical simulations demonstrates, however, that the agreement is merely

qualitative. This implies that in general these indicators should be used with some

care for purposes other than rough estimates of the location of the fluid-solid phase

change.

PACS numbers: 64.70.D-, 64.70.dj

Investigating phase behavior of different substances is an outstanding physical problem

with significant impact on basic and applied research. In general, thermodynamic equilibria

can be estimated by means of the knowledge of the Gibbs free energy of the competing

phases. However, calculating the free energy of either a dense fluid or a hot solid still

remains a demanding computational task. Moreover, there exist various systems in which

the effective interaction potential between the constituent particles depends on a number of

system parameters, which can vary from one situation to another. In this case even modern

computational methods are not very feasible in obtaining the complete phase portrait of

the system, since multidimensional parameter space should be scanned. For such reasons

other approaches, such as well known criteria for freezing and melting like e.g. Lindemann

melting law,1 Hansen-Verlet freezing rule2, Raveché-Mountain-Streett criterion for freezing3

and some other4,5 can be often quite useful. These criteria typically predict quasiuniversal

values of certain structural or dynamical measures of one of the two coexisting phases at the
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phase transition. Another possibility is associated with approximate analytical expressions

relating the location of phase boundaries to the shape of the interaction potential between

the particles or other special parameters of the substance. Although expressions of this kind

cannot be completely universal and their applicability is typically limited to a certain class

of interactions, they can be very useful in approximately predicting the location of phase

changes without any computational cost.

To give a few relevant examples of such expressions we mention the empirical formulae

for liquid-vapor coexistence densities proposed by Guggenheim6 and a number of different

approximate methods to estimate the parameters of the liquid-vapor critical point.7–9 In

the context of the fluid-solid phase transition we point out semi-empirical melting equations

describing additivity of melting curves,10 an approximate melting equation derived using

the simplest harmonic cell model consideration,11 an accurate analytical freezing criterion

for cluster-forming liquids,12 a universal freezing equation applicable to a certain class of

diverging repulsive potentials,13 and the freezing indicator in the form of the properly nor-

malized second derivative of the interaction potential.14,15 The purpose of this research note

is to check the applicability of some of these approximate melting and freezing equations to

systems exhibiting anomalous reentrant melting behavior. We consider two special examples

of such systems: particles interacting via exp−6 or Buckingham potential16 and Gaussian

core model (GCM).17

The exp-6 potential is defined as

U(r) =





+∞, r < r0,

ε
α−6

{
6 exp

[
α

(
1− r

σ

)]− α
(

σ
r

)6
}

, r ≥ r0,
(1)

where ε is the energy scale, the parameter α controls the softness of the repulsive part of the

potential, σ is the distance at which the potential has a minimum, and r0 is the hard-core

diameter, corresponding to the maximum of the function appearing in the second line of

Eq. (1). This potential is widely used to describe the properties of various materials under

extreme conditions.

The Gaussian core potential is

U(r) = ε exp
(−r2/σ2

)
, (2)

where ε and σ are again the energy and length scales. This is bounded potential (interaction

energy tends to a constant value ε when the distance between the particles tends to zero)
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which is frequently used in the context of soft matter physics, e.g. to describe effective

interactions in many-body systems of polymer solutions.18–23

Phase behavior of both considered systems is extensively studied using various theoretical

and numerical simulation methods. A key common property of these systems is that the

melting temperature, as a function of pressure or density, exhibits a maximum, followed by

a region of reentrant melting. Such behavior is often explained by the existence of a range

of interparticle distances where the strength of the repulsive interaction reduces as the sep-

aration between the particles decreases (so-called core-softening, see Ref. 24 and references

therein), although recently it was demonstrated that this is not a necessary condition for

reentrant melting.25,26 Our main goal in the rest of this short note is to check wether sim-

ple phenomenological freezing and melting equations can adequately reflect this anomalous

shape of the fluid-solid coexistence (with respect to standard simple-fluid-like behavior).

The first analytical approach is based on the cell model with a spherically averaged

potential in the harmonic approximation.11 The resulting melting equation can be written

as

T =
Nnn

9
δ2[x2U ′(x)]′x=xnn

, (3)

where T is the temperature, Nnn is the number of nearest neighbors, δ is the effective

Lindemann fraction, x is the normalized distance (x = r/σ), and xnn is the structure-

dependent distance between nearest neighbors. In deriving Eq. (3) only nearest-neighbor

contribution to the interaction has been taken into account.11 The stable crystalline structure

of the exp−6 and GCM solids is the face-centered cubic (fcc) lattice for sufficiently steep

repulsion (low density) and the body-centered cubic (bcc) lattice for softer repulsion. In the

wide parameter range characteristic for reentrant melting of the both systems considered

here, the stable solid phase is the bcc lattice. Very dense exp−6 fluids can also exhibit

freezing into hard-sphere-like fcc solid due to the presence of the hard core in the interaction

potential. This regime is however beyond the scope of this note. For the fcc solid we

have Nnn = 12 and xnn = (
√

2/ρ)1/3, while for the bcc solid we have Nnn = 8 and xnn =

(3
√

3/4ρ)1/3, where ρ is the particle density in units of σ−3. The effective Lindemann fraction

δ is in principle an adjustable parameter, which can be chosen by fitting this equation to

some known point(s) on the melting curve. However, application to Lennard-Jones (LJ)

and inverse-power-law (IPL) systems demonstrated that δ lies in a relatively narrow range

δ ' 0.10±0.01, i.e. it is expected to be quasiuniversal.27 Melting equation (3) with δ ' 0.105
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was also successfully applied to describe fcc solid-fluid phase change in the exp−6 model

with α = 13, but only in the low density and temperature range, far from the regime where

reentrant melting occurs.11

The second analytical approach is based on the observation that the freezing indicator in

the form of the properly normalized second derivative of the interaction potential,

L = U ′′(x)x2/T |x=x̄ (4)

remains approximately constant along the freezing curve for various interaction potentials.

Here x̄ is the structure-independent mean interparticle separation x̄ = (1/ρ)1/3. Originally,

freezing criterion in the form of Eq. (4) was applied to the Yukawa (Debye-Hückel) interaction

potential in the context of complex (dusty) plasmas.28–30 It works reasonably well provided

the ratio of the mean interparticle distance to the screening length is not too large (<∼ 10),

i.e. the interaction remains sufficiently soft. More recently this freezing indicator has been

successfully applied to the 12-6 Lennard-Jones fluid14 as well as to other related LJ-type

fluids.15 The exp−6 potential with α = 13 is one of the models considered in Ref. 15, but

again in the regime of sufficiently low densities and temperatures, very far from the reentrant

melting behavior.

The value of the parameter L appearing in Eq. (4) is not strictly universal, it can depend

on the concrete potential. However, it has been conjectured that this parameter is mainly

sensitive to the steepness of the interaction potential evaluated at the mean interparticle

distance.15 For sufficiently soft interactions L remains approximately constant, but then

grows systematically with potential steepness. For example, for the IPL family of potentials

[U(r) ∝ r−n] the values of L at freezing, evaluated using different numerical data, are

scattered in a relatively narrow range 180 ' L ' 240, provided n <∼ 10.14,15 For larger n

the parameter L increases systematically with n and a relevant smooth fit is available.15

This fit can be used to predict the value of L for certain potentials. For instance, for the

n−6 LJ potentials the value corresponding to the high-temperature high-density asymptote,

governed by r−n repulsion, can be taken.15 Although for the potentials at hand the procedure

is not straightforward, we can expect that for these soft potentials the values of L should

not be located too far from the corresponding soft-interaction range (L ∼ 200). If true,

this will give further support to the conjecture that L can be though as a “quasiuniversal”

quantity, in the sense indicated above.
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Let us now compare the numerical data for the fluid-solid coexistence of the exp−6

and GCM models available in the literature with the functional form suggested by simple

analytical melting and freezing equations (3) and (4). The relative differences between

densities at freezing and melting are rather small for the potentials considered (for instance

for the GCM potential they do not exceed' 3% in the whole range of densities studied so far)

so we can basically disregard the difference between melting and freezing and concentrate

on the shape of the fluid-solid coexistence curves.

Figures 1-3 show the freezing points (symbols) of the exp−6 systems with α = 10, 11

and 13, respectively, evaluated using different numerical simulation techniques, on the tem-

perature vs density plane. The solid line is the corresponding fit using the freezing equation

(4), dashed and dotted curves correspond to the melting equation (3) applied to fcc and

bcc solids, respectively. The figures demonstrate that the main qualitative property – the

existence of reentrant melting region – is well reproduced. The maximum temperature and

the corresponding density are also in reasonable agreement with numerical data31,32 for the

cases α = 10 and α = 11 (figures 1 and 2). The freezing equation (4) does somewhat

better work in these cases. Melting equations (3) is less accurate, especially from the side

of higher densities. The deviations are more pronounced for the assumption of the fcc solid

structure, in agreement with the fact that bcc is the stable phase in this parameter regime.

The available numerical fata33 for the case α = 13 (shown in fig. 3) are very far from the

regime where melting anomaly occurs. In this range the freezing and melting equations are

almost indistinguishable. This explains why melting and freezing equation (3) and (4) have

been previously found to accurately describe fluid-solid coexistence of the exp−6 model

with α = 13 in Refs. 11 and 15, respectively. The effective Lindemann fractions for the

relevant bcc structure obtained here are all in the expected range δ = 0.10± 0.01, reported

earlier for other potentials. The parameter L increases smoothly with α, but remains in

the reasonable proximity of the expected soft-interaction range. Note that for α = 13 we

have L ' 223, which is very close to that suggested in Ref. 15 (L ' 226), despite of a

mathematical deficiency involved there.

After the first approximate calculation of the GCM phase diagram by Stillinger,34 a de-

tailed analysis was performed by Lang et al.35 and subsequently by others.36,37 Figure 4

shows the phase diagram of the GCM system on the temperature vs density plane. Symbols

correspond to the numerical results related to the fluid-solid transition and obtained using
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different simulation techniques.34,36,37 Solid curve is the fit using the freezing equation (4),

dashed (dotted) curve is plotted using the melting equation (3) applied to the fcc (bcc)

solid. One of the main properties of the GCM model – existence of the maximum freez-

ing/melting temperature – is again reproduced. The value of the maximum temperature and

the density at which it is reached are in reasonable agreement with simulation results. On

the “low-density” side of the fluid-solid coexistence of the GCM system the analytical ap-

proximations considered almost coincide and their predictions are in rather close agreement

with the available simulation results. They correctly reproduce the dominant dependence

T ∝ exp(−ρ−2/3) arising from the hard-sphere-limit consideration.34 On the “high-density”

side of the solid-fluid coexistence the agreement is much less convincing. The freezing indi-

cator (4) is irrelevant here. The melting equation (3) yields better results, especially for the

melting of the bcc lattice (which is the stable solid structure in this regime). The obtained

effective Lindemann fraction for the bcc lattice is δ ' 0.105, in good agreement with other

systems. Nevertheless, the dominant dependence T ∝ exp(−Kρ2/3), where K is the appro-

priate constant, along the solid-fluid phase change of GCM system in the high-density limit,

derived on the basis of duality relations,38 is not reproduced.

We can summarize main results from this study as follows. We tested the application

of simple analytical melting and freezing equations to the two different models, exp−6

and GCM systems, exhibiting anomalous reentrant melting behavior. It is shown that the

main qualitative feature of reentrant melting itself is reproduced well. The values of the

maximum temperature and the density at which it occurs are usually not too far from

the values obtained in numerical simulations. Melting equation (3) for the bcc solid is

better suitable to describe fluid-solid coexistence of the GCM model. The freezing indicator

(4) is somewhat more convenient to describe fluid-solid coexistence of the exp−6 systems.

Overall, however, the agreement between these approximate equations and numerical data

is merely qualitative. One should therefore be careful when using these equations, especially

if sufficient accuracy is needed. More accurate and reliable approximation are required in

these cases.

This work was partly supported by DLR under Grant 50WP0203. (Gefördert von der

Raumfahrt-Agentur des Deutschen Zentrums für Luft und Raumfahrt e. V. mit Mitteln

des Bundesministeriums für Wirtschaft und Technologie aufgrund eines Beschlusses des
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4 H. Löwen, Phys. Rep. 237, 249 (1994).

5 P. V. Giaquinta and G. Guinta, Physica A 187, 145 (1992).

6 E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).

7 G. A. Vliegenthart and H. N. W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000).

8 M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941 (2000).

9 H. Okumura and F. Yonezawa, J. Chem. Phys. 113, 9162 (2000).

10 Y. Rosenfeld, Chem. Phys. Lett. 38, 591 (1976).

11 Y. Rosenfeld, Mol. Phys. 32, 963 (1976).

12 C. N. Likos, B. M. Mladek, D. Gottwald, and G. Kahl, J. Chem. Phys. 126, 224502 (2007).

13 S. A. Khrapak and G. E. Morfill, Phys. Rev. Lett. 103, 255003 (2009).

14 S. A. Khrapak, M. Chaudhuri, and G. E. Morfill, Phys. Rev. B 82, 052101 (2010).

15 S. A. Khrapak, M. Chaudhuri, G. E. Morfill, J. Chem. Phys. 134, 054120 (2011).

16 R. A. Buckingham, Proc. R. Soc. London, Ser. A 168, 264 (1938).

17 F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).

18 P. J. Flory and W. R. Krigbaum, J. Chem. Phys. 18, 1086 (1950).
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FIG. 1: (Color online) Fluid-solid coexistence of the exp−6 model with α = 10 on the temperature

vs density plane. Reduced units are used, temperature is in units of ε and density is units of σ−3.

Symbols correspond to the freezing points estimated in Ref. 32 using the so-called “heat-until-it-

melts” numerical procedure. The red curve is the best fit using the functional form of the freezing

indicator [Eq. (4)] with L ' 170.8. The blue curve is the best fit using the melting equation (3)

assuming fcc solid (resulting in the effective Lindemann fraction δfcc ' 0.083). The brown curve is

also plotted using the functional form of Eq. (3), but assuming bcc solid (resulting in δbcc ' 0.101).
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36 S. Prestipino, F. Saija, and P. V. Giaquinta, J. Chem. Phys. 123, 144110 (2005).

37 P. Mausbach, A. Ahmed, and R. J. Sadus, J. Chem. Phys. 131, 184507 (2009).

38 F. H. Stillinger, Phys. Rev. B 20, 299 (1979).

Page 9 of 11

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

9

0 2 4 6 8 10 12
0

5

10

15

20
 Numerical simulation
 Freezing indicator (4) 
 Melting equation (3) for fcc 
 Melting equation (3) for bcc

= 11

T

FIG. 2: (Color online) Fluid-solid coexistence of the exp−6 model with α = 11 on the temperature

vs density plane (reduced units). Symbols correspond to the freezing points obtained in Ref. 31

using the “exact” free energy calculations. The color scheme of the curves is the same as in Fig 1.

The resulting fitting parameters are L ' 180.8, δfcc ' 0.081, and δbcc ' 0.100.
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 Numerical simulation
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FIG. 3: (Color online) Fluid-solid coexistence of the exp−6 model with α = 13 on the temperature

vs density plane (reduced units). Symbols correspond to the freezing points obtained in Ref. 33

using the “exact” free energy calculations. The color scheme of the curves is the same as in Fig 1.

The resulting fitting parameters are L ' 222.9, δfcc ' 0.099, and δbcc ' 0.109.
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FIG. 4: (Color) Fluid-solid coexistence of the GCM system on the temperature vs density plane

(reduced units). Crosses are estimates of the melting points obtained using MD simulations and

the Lindemann melting criterion.34 Circles correspond to the freezing points obtained in Ref. 36

using Monte Carlo (MC) technique. Triangles are the freezing points obtained in Ref. 37 using

a combination of equilibrium and non-equilibrium molecular dynamics (MD) simulation methods.

The red curve is a fit using the functional form of the freezing indicator [Eq. (4)] with L ' 190.

The blue (brown) curve is a fit using the melting equation (3) assuming fcc (bcc) solid with the

effective Lindemann fraction δfcc ' 0.087 (δbcc ' 0.105).
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