B. Daniel, Isometric immersions into $\mathbb {S}^n\times \mathbb {R}$ and $\mathbb {H}^n\times \mathbb {R}$ and applications to minimal surfaces, Transactions of the American Mathematical Society, vol.361, issue.12, pp.6255-6282, 2009.
DOI : 10.1090/S0002-9947-09-04555-3

B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Commentarii Mathematici Helvetici, vol.82, pp.87-131, 2007.
DOI : 10.4171/CMH/86

B. Daniel, L. Hauswirth, and P. Mira, Constant mean curvature surfaces in homogeneous 3-manifolds, Lectures Notes of the

T. Friedrich, On the spinor representation of surfaces in Euclidean 3-space, Journal of Geometry and Physics, vol.28, issue.1-2, pp.143-157, 1998.
DOI : 10.1016/S0393-0440(98)00018-7

. Th and . Friedrich, Dirac operator's in Riemannian geometry, Graduate studies in mathematics

G. Habib and R. Nakad, The Energy-Momentum tensor on low dimensional Spin c manifolds, 2010.

M. Herzlich and A. Moroianu, Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold, Annals of Global Analysis and Geometry, vol.17, issue.4, pp.341-370, 1999.
DOI : 10.1023/A:1006546915261

O. Hijazi, Eingenvalues of the Dirac operator on compact K??hler manifolds, Communications in Mathematical Physics, vol.311, issue.Suppl. 1, pp.563-579, 1994.
DOI : 10.1007/BF02173430

O. Hijazi, S. Montiel, and F. Urbano, Spinc geometry of K??hler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds, Mathematische Zeitschrift, vol.7, issue.4, pp.821-853, 2006.
DOI : 10.1007/s00209-006-0936-8

K. D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed K???hler manifolds of positive scalar curvature, Annals of Global Analysis and Geometry, vol.14, issue.3, pp.291-325, 1986.
DOI : 10.1007/BF00128050

S. Kobayashi and K. Nomizu, Foundations of differential geometry, 1996.

R. Kusner and N. Schmitt, The spinor representation of surfaces in space, ArXiv:dg- ga, 9610005.

M. A. Lawn and J. Roth, Isometric immersions of hypersurfaces in 4-dimensional manifolds via spinors, Differential Geometry and its Applications, vol.28, issue.2, pp.28-30, 2010.
DOI : 10.1016/j.difgeo.2009.10.005

URL : https://hal.archives-ouvertes.fr/hal-00264969

A. Moroianu, Parallel and Killing Spinors on Spin c Manifolds, Communications in Mathematical Physics, vol.187, issue.2, pp.417-428, 1997.
DOI : 10.1007/s002200050142

URL : https://hal.archives-ouvertes.fr/hal-00125985

A. Moroianu, Spin c Manifolds and Complex Contact Structures, Communications in Mathematical Physics, vol.193, issue.3, pp.661-673, 1998.
DOI : 10.1007/s002200050343

URL : https://hal.archives-ouvertes.fr/hal-00125990

A. Moroianu, Opérateur de Dirac et submersions riemanniennes, 1996.

R. Nakad, Lower bounds for the eigenvalues of the Spin c Dirac operator on manifolds with boundary, Comptes Rendus Mathematique, vol.354, issue.4, pp.1634-1642, 2010.
DOI : 10.1016/j.crma.2015.12.017

URL : https://hal.archives-ouvertes.fr/hal-01112318

R. Nakad, The Energy-Momentum tensor on Spin c manifolds, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00492141

R. Nakad and J. Roth, Eigenvalue estimates for the Dirac operator on Spin c hypersurfaces

P. Piccione and D. V. Tausk, An existence theorem for G-strcture preserving affine immersions, Math. J, vol.57, issue.3, pp.1431-1465, 2008.

J. Roth, Rigidité des hypersurfaces en géométrie riemannienne et spinorielle: aspect extrinsèque et inrtinsèque, 2006.

J. Roth, Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds, Journal of Geometry and Physics, vol.60, issue.6-8, pp.1045-106, 2010.
DOI : 10.1016/j.geomphys.2010.03.007

URL : https://hal.archives-ouvertes.fr/hal-00693020

P. Scott, The Geometries of 3-Manifolds, Bulletin of the London Mathematical Society, vol.15, issue.5, pp.401-487, 1983.
DOI : 10.1112/blms/15.5.401

F. Torralbo and F. Urbano, Compact stable constant mean curvature surfaces in homogeneous 3-manifolds, Indiana University Mathematics Journal, vol.61, issue.3, 2011.
DOI : 10.1512/iumj.2012.61.4667