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Abstract. Predicting Alzheimer’s disease (AD) in individuals with some symp-

toms of cognitive decline may have great influence on treatment choice and 

guide subject selection in trials on disease modifying drugs. Structural MRI has 

the potential of revealing early signs of neurodegeneration in the human brain 

and may thus aid in predicting and diagnosing AD. Surface-based cortical 

thickness measurements from T1-weighted MRI have demonstrated high sensi-

tivity to cortical gray matter changes. In this study, we investigated the possibil-

ity of using patterns of cortical thickness measurements for predicting AD in 

subjects with mild cognitive impairment (MCI). Specific patterns of atrophy 

were identified at four time periods before diagnosis of probable AD and fea-

tures were selected as regions of interest within these patterns. The selected re-

gions were used for cortical thickness measurements and applied in a classifier 

for testing the ability to predict AD at the four stages. The accuracy of the pre-

diction improved as the time to conversion from MCI to AD decreased, from 

70% at 3 years before the clinical criteria for AD was met, to 76% at 6 months 

before AD. These results show that prediction accuracies of conversion from 

MCI to AD can be improved by learning the atrophy patterns that are specific to 

the different stages of disease progression. This has the potential to guide the 

further development of imaging biomarkers in AD. 

1 Introduction 

The ability to diagnose and predict Alzheimer’s disease (AD) at an early or even pre-

clinical stage may have great impact on the possibility for improving treatment choic-

es for AD patients. This may lead to reduced costs associated with long-term care. In 

addition, accurate prediction may also reduce costs associated with selecting subjects 

for pharmaceutical trials when performing large scale tests on disease modifying 

drugs, since false positives can be excluded in the initial stage. 



AD is characterized by accumulation of amyloid-β (Aβ) and hyperphosphorylated 

tau in the brain, eventually leading to neurodegeneration. To support an early diagno-

sis of AD, various biomarkers are currently being investigated. Even though the ac-

cumulation of Aβ can be detected in the cerebrospinal fluid (CSF), or by using posi-

tron emission tomography (PET) years before structural changes can be detected, 

structural imaging markers based on magnetic resonance imaging (MRI) are consid-

ered more sensitive to change after the first symptoms appear [1].  Signs of atrophy in 

the medial temporal lobes may aid in differentiating AD from other pathologies as 

MRI examinations often are part of the clinical assessment standard of care in patients 

with mild cognitive impairment (MCI). While studies investigating the usefulness of 

medial temporal lobe atrophy in the diagnosis of AD are ongoing [2-4], the assess-

ment of patterns of cortical thinning across the cerebrum may aid to increase the spec-

ificity of the diagnosis for the disease [5, 6]. 

The high tissue contrast offered by T1-weighted (T1w) MRI enables accurate 

structural neuroimaging analysis, which may be used as a possible surrogate bi-

omarker for diagnosing and predicting AD [7]. Measurements of cortical thickness 

based on MRI are highly sensitive to small structural changes across the cortex. How-

ever, results from previous studies seem to have suggested that cortical thickness 

measurements do not perform better than other techniques when trying to predict AD 

in subjects with MCI, yielding accuracies from 56% to 68% depending on the tech-

nique [3, 4]. Cortical thickness is usually measured at a very high resolution (tens of 

thousands of points on the cerebral cortex). Using such high numbers of measure-

ments in prediction may lead to over-fitting in a discriminatory model. The dimen-

sionality can be reduced by defining regions of interests (ROI) in which measure-

ments are averaged. This reduces the inherent noise of high resolution data and reduc-

es the risk of over-fitting. Usually, such ROIs are predefined from a structural or 

functional perspective. However, the pattern of neurodegeneration may not follow 

standard definitions for anatomical or functional regions; thus, such ROIs may lead to 

loss of discriminative information. Therefore, data driven approaches to select dis-

criminative cortical thickness ROIs, independent of any predefined parcellation, may 

lead to better prediction results. 

Another factor preventing high predictive power is the heterogeneity of images 

used when training a classifier. Usually, a classifier is trained with images from indi-

viduals who convert to AD at some future time point and images from individuals 

who do not convert to AD in the follow-up period. Inherently, there is variability in 

the degree of neurodegeneration simply due to the variability of when the converters 

actually convert. This variability affects how well the coefficients of the classifier can 

be fitted. By homogenizing the images with respect to “time to conversion” and 

thereby the pattern of atrophy, the performance of the classifier may be improved. 

In this study, we investigated the possibilities of improving the prediction accuracy 

by i) automatically selecting the most discriminative ROIs, and ii) homogenizing the 

training data by time to conversion. 



2 Methods 

2.1 Subjects and acquisition 

All data used in the preparation of this article were obtained from the ADNI data-

base (www.loni.ucla.edu/ADNI). The ADNI database contains 1.5T and 3.0T T1w 

MRI scans for AD, MCI, and cognitively normal controls (CN) at several time points. 

The aim was to follow and collect scans from MCI patients at baseline, 6 months, 12 

months, 18 months, 24 months, 36 months and 48 months. The number of participat-

ing subjects was reduced over the course of the study due to drop outs. At each time 

point a clinical diagnosis was made to identify MCI subjects who converted to proba-

ble AD according to the NINCDS-ADRDA Alzheimer's Criteria [8]. 

Several studies have used ADNI data to predict which MCI patients would convert 

to probable AD using a single MRI scan [3, 4, 9-15]. All of these studies have used 

baseline data for the analysis, which rendered the group of progressive MCI (pMCI) 

heterogeneous with respect to “time to conversion”, since the pMCI patients would 

convert anytime over the course of 6 months to 4 years followup. Such heterogeneity 

may conceal the specific neurodegenerative processes that may be attributed to the 

different sub-stages of disease progression. For example, the pattern of atrophy may 

be different in patients one year before diagnosis compared to the pattern two years 

earlier. In this study, we therefore utilized the full ADNI database and selected scans 

at various intervals prior to diagnosis. We selected pMCI scans six months, 12 

months, 24 months and 36 months prior to AD diagnosis and grouped these into time-

homogeneous groups of pMCI. A total of 163 different pMCI subjects were included 

and the majority of these were represented in more than one pMCI subgroup. To iden-

tify characteristic traits for disease progression in the pMCI groups and determine if 

these could be used as markers for prediction, we compared with the group of stable 

MCI (sMCI) patients who did not have a change of diagnosis over the course of the 

ADNI study. Our sMCI group only included those MCI patients who were followed 

for at least three years. Thus for the sMCI group, we selected scans at baseline. Table 

1 lists the selected MCI groups after removing subjects due to scanner acquisition 

artefacts or image processing problems. No differences in age were found between the 

groups, while all pMCI groups had significantly (t-test, p<0.05) smaller MMSE 

scores than the sMCI group. All scans used in the study were acquired at 1.5T MRI 

scanner, with T1w imaging modality. 

2.2 Image processing 

Images were denoised [16] using an estimated standard deviation of noise [17], bi-

as field corrected [18], registered to MNI space [19] and skull stripped [20]. Cortical 

thickness was calculated using FACE (fast accurate cortex extraction) [21] and 

mapped to the cortical surface of a population-specific average non-linear anatomical 

template [22]. Cortical segmentations were manually checked for errors by an expert 

and subjects were excluded if errors were found in one of the image processing steps 

mentioned above. The quality control removed only 2.7% of the scans processed dis-



tributed on six different subjects, resulting in the group sizes listed in Table 1. In gen-

eral, the scans were excluded due to image artefacts (n=2), insufficient stereotaxic 

registration (n=2, same subject) and insufficient skull stripping (n=9, three different 

subjects). 

Table 1. Demographics and proportion of subjects used in one subgroup only (unique rate). 

Significant differences (t-test, p<0.05) for the respective progressive MCI (pMCI) groups com-

pared to the stable MCI (sMCI) group are in bold. 

Group N (females) Age±sd MMSE±sd Unique rate 

sMCI 134 (40) 75.0±7.5 27.6±1.8 100% 

pMCI6 122 (47) 75.3±7.6 25.3±2.6 20% 

pMCI12 128 (54) 75.6±7.1 26.0±2.3 5% 

pMCI24 61 (24) 74.4±7.2 26.7±1.8 2% 

pMCI36 29 (13) 75.8±6.4 26.9±1.7 10% 

2.3 Validation strategy 

In the experiments below, we use a leave-one-out (LOO) validation strategy where 

for each comparison (e.g., pMCI12 vs sMCI), all the subjects (the ensemble of all 

pMCI12 and sMCI) except one are used to select features and generate a classification 

model and the one subject left out is then used for testing.  This procedure is repeated 

for every subject in the two groups compared, thus validating the method with every 

subject. Since the test subject is not used in the selection of features, nor in building 

the classifier, we avoid any bias or “double dipping” in our efforts of predicting con-

verters. It is important to note that we obtain a unique set of features and classifier for 

each LOO test; a total of 876 feature sets. 

2.4 Feature generation and selection 

To explore the patterns of atrophy at the different stages of the progression from 

MCI to AD, we devised a data-driven feature selection method for classification.  

Using the training sets (i.e., the groups to be compared, less the subject to be tested), 

statistical parametric maps of differences in cortical thickness between the sMCI 

group and the pMCI groups were constructed by one-sided t-tests per vertex of the 

template surface (from a total of 162,582 vertices). Our aim was to generate a com-

pact set of features with high discriminating power. Thus, candidate features were 

restricted to a proportion, φ, of the cortical area with the largest magnitude t-values. 

Within this thresholded t-map (Fig. 1a), local maxima were detected and used as seed 

points for a constrained region growing algorithm. For each maxima, region growing 

were performed downhill only in a circular fashion constraining the area to a maxi-

mum of 300 mm
2
 and a maximum accumulated t-value of δ, where δ is defined as 
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where c is the number of seed points. Only regions that reached an accumulated t-

value of δ were kept. These regions constituted the candidate ROIs (Fig. 1b). The 

proportion, φ, of the cortical surface is used to guide the region growing algorithm 

and limiting the number of seed points. However, restricting the features to a too 

small proportion of the surface leads to very small patches of cortical thickness which 

are more affected by noise. In our experiments we found a proportion in the range of 

10% - 15% to be a suitable trade-off. 

Cortical features were determined as the mean cortical thickness for each ROI. To 

remove redundant features and to keep discriminant features, we used the minimal-

redundancy-maximal-relevance (mRMR) criterion [23] as feature selection. We used 

the mutual information difference metric and discretized the features to three states 

(-1,0,1) by thresholding at μ±σ. This was done to ease the mutual information compu-

tation as described in [23]. Based on experiments, we chose to keep the 10 best fea-

tures according to the mRMR criterion (Fig. 1c). 

 

 

Fig. 1. A single instance of the feature generation and selection process for the pMCI12 classi-

fication showing a) thresholded t-map, b) ROIs after constrained region growing from seed 

points, and c) ROIs left after feature selection using mRMR criterion. 

2.5 Classification 

Linear discriminant analysis (LDA) was used for the classification. As described 

above, for each subject to classify a separate classifier was trained with the remaining 

subjects using the subject-specific feature set. The correct classification rate, the sen-

sitivity, the specificity, and the area under the receiver operating characteristic curve 

(AUC) were calculated from the results. Furthermore, McNemar’s chi-square test was 

used to assess whether the classification performed better than a random classifier. 

This was done by performing a random classification and calculating the p-value of 



McNemar’s test with significance level 0.05 that our classification was better than the 

random classification. This validation process was repeated 1000 times for each of the 

876 LOO experiments and the median p-value was reported. 

3 Results 

Medial temporal lobe structures were automatically selected as relevant features in 

all the studied stages. However, the hippocampus, which is considered to be affected 

in the incipient stages of AD, was rarely chosen in the pMCI36 classification prob-

lem. Fig. 2 shows the selected ROIs color coded by the frequency they were selected. 

ROIs for short-term prediction (<12 months) were selected more consistent than for 

long-term prediction (>12 months). 

 

 
Fig. 2. ROIs color coded by frequency of selection for each classification problem. 

Classifier performances for the studied classification problems are shown in Ta-

ble 2. For comparison, we performed similar classifications for the combined group of 

all pMCI using the baseline scans. Since age is an important associated risk factor in 

AD, Table 2 also lists classification results after including age in the LDA. Using the 

age, the AUC is improved in all classification problems, while the accuracy is im-

proved only for the long term prediction. Also, by including age, all classifiers per-

formed significantly better than a random classifier. Receiver operating characteristic 

(ROC) curves for the classifications are shown in Fig. 3.  



Table 2. Classification results using feature sets based on cortical thickness features only and 

including age in the classifier. Acc=Accuracy, Sen=Sensitivity, Spe=Specificity, AUC=Area 

under the ROC curve, MN=McNemar’s test. 

 Cortical thickness only Cortical thickness and age 

Classifica-

tion 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

AUC 

(%) 

MN 

(p-val) 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

AUC 

(%) 

MN 

(p-val) 

pMCI36 69.9 55.2 73.1 63.5 0.198 72.4 48.3 77.6 63.7 0.001 

pMCI24 66.7 59.0 70.2 67.3 0.062 67.2 55.7 72.4 70.7 0.001 

pMCI12 72.9 75.8 70.2 76.2 0.001 70.6 72.7 68.7 76.3 0.001 

pMCI6 75.8 75.4 76.1 80.9 0.001 74.6 72.1 76.9 81.1 0.001 

pMCIall 69.0 68.7 69.4 71.2 0.001 69.4 70.1 68.7 73.7 0.001 

 

 

Fig. 3. ROC curves for the four classification problems using a) cortical thickness only and b) 

cortical thickness and age. 

4 Discussion 

Using cortical thickness features, we obtained prediction accuracies in the range of 

67% - 76% (Table 2). Surprisingly, the accuracy for the pMCI36 prediction is nomi-

nally higher than the pMCI24 prediction. However, the sensitivity and the AUC are 

lower for the pMCI36 prediction. The higher specificity at 36 months compared to 24 

and 12 months prior to conversion suggests that additional confounding factors appear 

later in the process at 24 months. It is unclear at this point what those factors could be, 

perhaps synaptic and network changes in the CNS in response to the pathological 

processes associated with the prodromal period of AD. The inflated accuracy of the 

pMCI36 prediction may also be caused by the low number (n=29) of pMCI individu-

als in this group combined with a relatively high specificity. Better balanced groups 

might yield a more confident estimate of the prediction accuracy for MCI subjects 

three years before AD diagnosis. Whatever the case, clearly, future research is needed 

in this specific area. 



As expected, the sensitivity and the AUC increase as the time to AD diagnosis is 

reduced. According to the McNemar’s test, only the predictions of pMCI less than 12 

months prior to diagnosis (short-term prediction) are significantly better than a ran-

dom classifier when not using the age. However, when adding the age information all 

predictions become significantly better than random even though the sensitivity is 

slightly reduced. 

Compared to previously published studies, which use cortical thickness for predict-

ing pMCI in the ADNI cohort [3, 4, 9, 14], our prediction accuracies are overlapping. 

We obtain higher accuracies for short-term prediction (<12 months) than previous 

studies. In contrast, our results for long-term prediction (>12 months) are similar to 

the results from previously published studies. Our efforts of homogenising data by 

“time to conversion” did not have the expected effect on the long-term prediction. It 

seems that the increased predictive power at the short-term may be attributed to the 

progression of the disease, which yields a more consistent pattern of cortical neuro-

degeneration. Another perhaps more important factor is the relatively small samples 

available to evaluate the long-term predictions. The statistical maps, which are the 

basis for the feature generation, are more affected by noise in the case of small sample 

sizes. With the continuation of ADNI, the number of long-term converters will in-

crease and more consistent feature patterns can be generated for these groups. 

All our prediction accuracies are similar or better than previously published results, 

except for the results in [13], where only 27 pMCI subjects were tested. These results 

highlight the competitive prediction accuracy obtained by the proposed method. 

Compared to the conventional grouping of pMCI and sMCI as published in Wolz 

et al. [4], only the pMCI24 prediction performed slightly worse (66.7% vs. 67.3%), 

however, this difference is not significant. This is an indication of the improved accu-

racy by homogenizing data. In addition, our prediction accuracy when combining all 

pMCI subjects is better than the accuracy obtained by Wolz et al. 

With these new methods, superior prediction accuracies can be obtained. The spec-

ificity was higher than the sensitivity for the long-term prediction. From an economic 

perspective a high specificity is very important in clinical trials when recruiting sub-

jects. Reducing the number of false positives in trials may save time and reduce the 

associated costs. On the other hand, the sensitivity for the long-term prediction lags 

behind. Here, clearly more research needs to be done to improve the technique, and to 

be able to benefit from eventual neuroprotective therapies. 

4.1 Regions  selected for prediction model 

The ROIs most often chosen by the feature selection for prediction indicate which 

anatomical regions are involved at different times prior to the progression from MCI 

to AD (Fig. 2). The shorter time to conversion the more consistent ROI selection is 

seen. This may reflect a better defined structural pattern of degeneration at the later 

stages of the disease or simply an effect of the larger sample sizes yielding a more 

consistent pattern in the LOO experiment. 

Several regions seem to be consistently chosen in all classification problems. As 

shown in Fig. 2, medial temporal lobe structures are selected in all prediction prob-



lems. Hippocampus is frequently included in all predictions except the pMCI36, while 

the right parahippocampal gyrus is used in all cases. The para-hippocampal gyrus has 

previously been found to be highly discriminative for separating AD patients from 

healthy controls using cortical thickness and multivariate analysis, however, in the 

absence of hippocampal segmentation [24]. In addition to medial temporal lobe struc-

tures, ROIs were mostly selected from the cingulate gyrus. The cingulate gyrus is well 

known to be affected in early AD. 

4.2 Image processing 

In this study, we used a combination of highly consistent and robust image pro-

cessing methods to measure the cortical thickness. Previous studies using cortical 

thickness have suffered from high exclusion rates due weak links in the image pro-

cessing pipeline [3, 4, 25]. In our experience, the main factor for excluding scans due 

to processing is the skull stripping step. By using BEaST, a recent robust brain extrac-

tion algorithm [20], we were able to effectively reduce the exclusion rate. In our 

study, we excluded only 2.7% of all scans, which, to the best of our knowledge, is the 

lowest exclusion rate of any published cortical thickness analysis on ADNI data. The 

low exclusion rate enabled us to construct relatively large samples of pMCI subjects 

homogenous with respect to time to conversion. Furthermore, our strategy of de-

noising the images before cortical surface extraction has been shown to provide more 

accurate results than processing unfiltered images [26]. 

4.3 Feature generation 

The feature generation approach used in our study is similar in spirit to the ap-

proach suggested by Fan et al. [27], who used a watershed algorithm on a VBM based 

statistical parametric map to select ROIs. Using a watershed algorithm on the statisti-

cal maps generated by cortical thickness would yield less compact ROIs, as the re-

gions with high t-values often are elongated following a sulcus or gyrus across several 

anatomical regions. In the proposed method, we sought more focal features and there-

fore applied the constrained region growing as described above. We acknowledge that 

our method for feature generation is just one among many possibilities using the sta-

tistical map. Nevertheless, we expect the tendency of increased sensitivity by homog-

enizing the data by time to conversion will remain the same irrespective of the feature 

generation method applied. 

5 Conclusion 

Using patterns of characteristic cortical thinning in disease stages of progressive 

MCI compared to MCI patients who remained stable for three years demonstrated 

promising results for the prediction of patients with prodromal AD progressing to 

probable AD. We obtained a more accurate and unbiased estimate of the predictive 

power of cortical thickness measurements than published to date. The prediction ac-



curacies obtained by subgrouping progressive MCI patients with respect to “time to 

conversion” were better than previously published results on the same cohort. The 

improved accuracies are likely caused by this homogenization and improvements in 

the image processing pipeline in terms of robustness and accuracy. 

The accuracy for the short-term prediction (<12 months) was relatively high (73%-

76%), while the sensitivity for long-term prediction (>12 months) was relatively low 

(55%-59%). To be clinically applicable the sensitivity for the long-term prediction 

needs to be improved to be able to benefit from eventual neuroprotective therapies. 

The relatively high specificity for the long-term prediction holds promises of reduced 

costs associated with recruiting subjects for clinical trials; a reduction in false posi-

tives may save both time and money. 
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