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Color monogenic wavelet representation based

on a tensor-like use of the Riesz transform :

application to image coding

Raphaël Soulard and Philippe Carré

Abstract We propose a new extension of monogenic analysis to multi-valued sig-

nals like color images. This generalization is based on an analogy between the Riesz

transform and structure tensors and takes advantage of the well defined vector dif-

ferential geometry. Our color wavelet transform is non-marginal and its coefficients

- separated into amplitude, phase, orientation and local color axis - have interest-

ing physical interpretation in terms of local energy, contour model, and colorimetric

features. An image coding application is proposed as a practical study.

1 Introduction

Color images are most often handled by working either on intensity or with marginal

schemes (Marginal schemes consist in applying the same process independently on

each color channel [1]). Those methods are sometimes unable to consider some

contours, and may also introduce false colors. Yet color information is fundamental

in some applications such as medical imaging for instance [14, 4].

Differential approaches are more flexible and allow analyzing vector functions

of any dimension within the Riemannian manifolds framework [15]. The vector

structure tensor leads to efficient contour detection and adaptive smoothing [18] by

handling color pixels as entities.

Definitions about 2D signals showed that the 2D phase and frequency concepts

can lead to interesting local geometric analysis of grayscale images tied to a physical

interpretation [7, 2, 5]. Monogenic wavelets [20] perform multiscale local phase

analysis. Unfortunately no color definition exists so far.

We propose to get the best of both worlds by injecting the color structure tensor

formalism into monogenic wavelets. This paper provides a non-trivial color exten-
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Fig. 1 Analytic signal

A(t)eϕ(t) t associated to a

scalar signal s(t). An ‘in-

verted pulse’ is coded by

ϕ = ±π at the amplitude’s

maximum (first arrow); an

increasing slope is coded by

ϕ =− π
2

(second arrow).
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sion of monogenic signal and wavelets to perform coherent multiscale color 2D

phase analysis. This definition is an improvement of our previous work [17].

Special Notations:

- Complex numbers : z = a+ jb = |z|ejarg{z}

- 2D coordinate in bold : x = [x1 x2] ω = [ω1 ω2]

- Classical Fourier transform : s
F
←→ ŝ = TF{s}

2 Multiresolution monogenic analysis

This section recalls the classical analytic/monogenic signal concepts and the mono-

genic wavelets proposed in [20]. Further details will be found in [6, 7, 5, 20].

2.1 Analytic and monogenic signal

The analytic signal sA(t) associated to a real signal s(t) reads:

sA(x) = s(x)+ j{H s}(x) = A(x)ejϕ(x) (1)

with the Hilbert transform : {H s}(x)
F
←→ −jsign(ω)ŝ(ω) (2)

The analytic signal is an amplitude/frequency modulation model mostly used in

communications. But another interpretation in terms of local structure is possible

[7, 2]. As illustrated Fig. 1, amplitude A conveys the relative presence of local energy

while instant phase ϕ encodes some shape information. More precisely, ϕ = 0 or

±π indicates ‘pulse’-like pieces of signal whereas ϕ =±π
2

indicates ‘slopes’. This

geometric interpretation motivated researchers to define a 2D extension to perform

AM/FM image analysis. The most successful one is the monogenic signal.

The Riesz transform of a 2D signal s is made of two parts sR1
and sR2

:

{Rs}(x) = sR(x) = sR1
+ jsR2

F
←→ (ω2− jω1)‖ω‖

−1ŝ(ω) (3)
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Note that this is the C embedding of the Riesz transform according to [11]1. The

monogenic signal sM associated to s reads:

sM = [s sR1
sR2

] = A[cosϕ sinϕ cosθ sinϕ sinθ ] (4)

where θ = arg{sR} ∈ [−π;π[ is the local Riesz orientation along which a 1D Hilbert

analysis is intrinsically done. This 1D analysis can be written:

sA(x) = s(x)+ j|sR(x)|= A(x)ejϕ(x) (5)

Amplitude of the monogenic signal conveys local presence of some geometrical

elements. The θ -phase gives the corresponding local orientation (we will see that

it is equal to a gradient direction). The ϕ-phase results from an intrinsic Hilbert

analysis along orientation θ . So the signal model here is an A-strong structure that

is oriented along θ and looking like rather an edge (ϕ ≈±π/2) or a line (ϕ ≈ 0 or

π). Note that phase based line/edge analysis was discussed in [7, 10].

Monogenic representation is well suited to analyze narrow-band signals, so it is

natural to use it jointly with subband decomposition in order to handle any image.

2.2 Monogenic wavelet transform (MWT)

The scheme of [20] performs multiresolution monogenic analysis by using two par-

allel filterbanks. One ‘primary’ transform and a so-called ‘Riesz-Laplace’ wavelet

transform. Multiresolution analyses are built around the nearly isotropic polyhar-

monic B-spline of [22]:

βγ
F
←→

[

4(sin2 ω1

2
+ sin2 ω2

2
)−

8

3
sin2 ω1

2
sin2 ω2

2

] γ
2

‖ω‖−γ (6)

which is a valid scaling function. The wavelet for the primary decomposition ψ is

a Mexican hat-like nearly isotropic function and the ‘Riesz-Laplace’ wavelet ψ ′ is

derived from it:

ψ(x) = (−∆)
γ
2 β2γ(2x) ψ ′

F
←→

jω1 +ω2

‖ω‖
ψ̂(ω) (7)

where the fractional Laplacian operator is defined by:

(−∆)α s
F
←→‖ω‖2α ŝ (8)

Let ψi,k(x) = 2iψ(2ix−k/2) be the scaled and shifted version of ψ (same for ψ ′).
It is shown [20] that ψi,k and ψ ′i,k form two wavelet frames ensuring perfect recon-

struction and orthogonality across scales. Their operator-like behavior induces:

1 This choice will help to define proper Riesz-based complex wavelets.
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〈s,ψi,k〉 = (ψi ∗ s)(2−(i+1)k) (9)
〈
s,ψ ′i,k

〉
= R (ψi ∗ s)(2−(i+1)k) (10)

This means that wavelet coefficients form an exact monogenic signal at each scale.

Both decompositions are merged into 3-vectors and turned into polar coordinate

according to eq. (4) as illustrated Fig. 2. Interpretation of coefficients is the same

Fig. 2 MWT of image s. Ori-

entation θ is shown modulo π
for visual convenience. Phase

values of small coefficients

have no sense and are nu-

merically unstable so they are

replaced by black pixels.

s A ϕ θ mod π

0 1 0 max 0 π − π
2

0 π
2

as explained for the monogenic signal but now concerns different scales of the im-

age. The ‘pyramid’ design of this wavelet transform helps to achieve near rotation

invariance by the use of a unique 2D wavelet for each transform [21]. It is remark-

able that this approximation does not produces serious artifacts in the representation

of ‘round’ objects like those of figure 2. Dyadic downsampling is done at the low

frequency branch leading to a total redundancy of 4:1.

This representation clearly fails to handle color images. Applying it on intensity

of an image would induce a serious loss of information around isoluminant contours.

Using it marginally would have no more sense by making independent geometric

analyses on each color channel. In this case some processing such as thresholding

would introduce false colors. We propose an extension that keeps the 1D phase

interpretation and yields a coherent color orientation.

3 Extending to color images

This section aims at defining a color counterpart of the monogenic framework.

Based on a link with the gradient and structure tensor features, we extract Riesz

norm and direction from the well known color structure tensor formalism [3, 13].

This concept has been successfully applied in various color applications such as

inpainting and regularization [18]. The second step is to define the corresponding

Hilbert analysis that completes the model.
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3.1 Color Riesz features

First let us recall definitions of the gradient

∇s =

[
∂ s

∂x

∂ s

∂y

]

= [sx sy]
F
←→ [jω1ŝ jω2ŝ] (11)

and its associated structure tensor T = h∗ [∇s]T [∇s]

T (s) =

[
h∗ s2

x h∗ sxsy

h∗ sxsy h∗ s2
y

]

=

[
T11 T12

T12 T22

]

(12)

tied to the smoothing kernel h. Eigenvalues and eigenvectors of T give information

about direction and amplitude of the local maximum variation:

• Eigenvalues λ± =
(

T11+T22±
√

(T22−T11)2 +4T 2
12

)

/2;

• Gradient norm and direction N =
√

λ++λ− θ+= 1
2

arg{T11−T22+j2T12};

Now let us build the tensor TR = [sR1
sR2

]T [sR1
sR2

] formed with the Riesz com-

ponents of s. Construction from Unser et. al. [20] and the work in [9] reveal a link

between Riesz and gradient. Equations (3), (8) and (11) give:

Rs =
(

−(−∆)−
1
2 sx

)

+ j
(

−(−∆)−
1
2 sy

)

(13)

The involved smoothing operation is the linear operator −(−∆)−
1
2 whose Fourier

response is 1/‖ω‖ (see eq. (8)). This means that the Riesz transform is equivalent to

a smoothed gradient or the gradient of a smoothed version of s, so our Riesz-based

tensor reads the following relation:

TR(s) = T (−(−∆)−
1
2 s) (14)

Since the smoothing is isotropic, the orientation estimation is equivalent in both the

gradient case and the Riesz case. As a consequence, we can say that the Riesz norm

and direction are equivalent to gradient features. This suggests the use of the color

structure tensor formalism to retrieve meaningful Riesz features from a color image.

The color structure tensor is the central tool of color differential approaches [3,

13, 15, 18]. Given a color image s= (sr,sg,sb), consider its marginal gradients along

x and y (sr
x,s

g
x ,s

b
x ,s

r
y,s

g
y ,s

b
y). The color structure tensor is defined as follows:

T =

[
a b

b c

]

with

T11 = (sr
x)

2 +(sg
x)2 +(sb

x)
2

T12 = sr
xsr

y + s
g
xs

g
y + sb

xsb
y

T22 = (sr
y)

2 +(sg
y)

2 +(sb
y)

2

(15)

Norm and direction of local maximum variation can still be retrieved by the eigen

decomposition of T . It is now trivial to derive the Riesz case since the color tensor

is the sum of marginal tensors T = Tr +Tg +Tb. The Riesz transforms on red, green
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and blue channels can obviously be combined to form a smoothed version of T . The

color counterpart of the Riesz transform is then scolor

R = N ejθ with:

N
2 = ∑

c∈{r,g,b}

(sc
R1
)2 +(sc

R1
)2 (16)

θ =
1

2
arg

{(

∑
c∈{r,g,b}

(sc
R1
)2− (sc

R2
)2

)

+ j

(

2 ∑
c∈{r,g,b}

sc
R1

sc
R2

)}

(17)

The advantage of this generalization is that the structure tensor gives a coherent

oriented analysis of all color discontinuities. This particular case of color structure

tensor is the link with the monogenic framework. A 1D Hilbert analysis can now be

made between s and |scolor

R |=N so we can adapt it to color images.

3.2 Color monogenic analysis

The key idea is to handle Euclidean norm ‖s‖=
√

s2
r+s2

g+s2
b. In the scalar case,

this reduces to |s|. It is then interesting to rewrite the scalar model while separating

absolute value and sign of s:

s =
√

s2+N 2

︸ ︷︷ ︸

A

cos( arg{s+jN }
︸ ︷︷ ︸

ϕ∈[0;π[

) (18)

=
√

|s|2+N 2

︸ ︷︷ ︸

A

cos( arg{|s|+jN }
︸ ︷︷ ︸

ϕ2∈[0; π
2 [

) s/|s|
︸︷︷︸

“sign”

(19)

The new phase ϕ2 is a restricted version of ϕ to interval [0; π
2
]. Fortunately we keep

interesting qualitative information of edge/line discrimination. The vector counter-

part relies on the separation of s into its Euclidean norm and its ‘color axis’
→
u :

u = s/‖s‖= [cosα , sinα cosβ , sinα sinβ ] (20)

To the best of our knowledge this concept of color axis is new, as a consequence of

our tensor-based color extension. The color monogenic model becomes:

s =
√

‖s‖2 +N 2 cos( arg{‖s‖+jN } ) u (21)

The main 4 components of the new color monogenic signal are therefore scolor

M =
[ sr , sg , sb , N ], and their spherical coordinates are:
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Image A ϕ2
→
u θ

(Color pixels) (Color axis)

0 max 0 π − π
2

0 π
2

Fig. 3 Color monogenic wavelet transform on barbara image.

Amplitude : A =
√

s2
r + s2

g + s2
b +N 2 ∈ [0;+∞[

1D Phase : ϕ2 = arg{‖s‖+jN } ∈ [0; π
2
[

Color axis :

{

α = arg{sr+j

√

s2
g + s2

b} ∈ [0;π[

β = arg{sg+jsb} ∈ [−π;π[

(22)

Color Riesz orientation θ may also be used in practice.

3.3 Color monogenic wavelets

The extension to the wavelet domain is trivial since the above construction relies

on a marginal Riesz transform (non marginality occurs when combining marginal

outputs into meaningful data). We define the two vector - color - wavelets ψ and ψ ′

and their associated coefficients for scale i and position k:

ψ = [ψ ψ ψ ] ψ ′ =
[
ψ ′ ψ ′ ψ ′

]
(23)

wi,k = [ri,k gi,k bi,k] w′i,k =
[
r′i,k g′i,k b′i,k

]
(24)

And the monogenic signal is for each scale i:

wM(k) =
[
ri,k gi,k bi,k ‖w

′
i,k‖
]

(25)

Then A, ϕ and
→
u can be retrieved with eq. (22) by replacing sr (resp. sg, sb and N )

with ri,k (resp. gi,k, bi,k and ‖w′i,k‖). Local orientation θ can be obtained from eq.

(17) by replacing sc
R1
+ jsc

R2
with c′i,k.

See examples of MWT on Fig. 3. Amplitude’s invariance property is linked to

a high visual coherence w.r.t. image contours. Discontinuities of isoluminance like

the boundary between green and red big disks in first image are well detected thanks

to the use of the structure tensor formalism. Phase of small amplitude coefficients
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is irrelevant thus not displayed. Value of ϕ2 at the position of maximum amplitude

reveals the kind of discontinuity as explained section 2.1. This rich description of

discontinuities is exclusive to the phase concept [10] and so makes this signal pro-

cessing approach competitive. In practice ϕ2 is hard to visualize because of its fast

variation. Discontinuities occur from one color to another - drawing an axis in the

color space. This axis is represented by the unit vector
→
u that completes the phase

data. In most cases
→
u is slowly varying. Gradient-based θ is the local color structure

main spatial direction.

This monogenic representation of color images is consistent with the grayscale

definition in terms of ‘signal’ interpretation (phase and orientation) while taking ad-

vantage of a well defined differential model for handling vector signals. We propose

to use this fine representation of visual information in an image coding context.

4 Use for coding purpose

Compression is a great success of wavelets with JPEG-2000 algorithm for example.

One of the fundamental steps in such a scheme is the coding method consisting in

selecting coefficients and representing them numerically (quantization). Specificity

of monogenic data being in polar coordinate makes selection and quantization of

color monogenic coefficients far from straightforward. First, literature is quite poor

about quantization or even statistical modeling of a Euclidean norm and three an-

gles. Second, the redundancy of monogenic analysis makes it not dedicated a priori

to compression. In a previous work [16] we proposed an experimental quantiza-

tion method for quaternionic wavelets (grayscale) that gave encouraging results for

‘lossy’ compression. The phase data turns out to be very light to code without in-

troducing serious visible artifacts. We expect the color monogenic transform to give

analogous results for color images.

Experiments

As a first step to the use of our transform for coding, we propose some experimen-

tal results with uniform quantization to get an idea of the number of bits needed

to properly code wavelet coefficients. This is also a way to better understand the

kind of visual content that is coded by the various data. Note that our quantization

schemes are not comparable with state-of-the-art compression methods that also

include entropy coding and various algorithmic tricks to reduce the amount of data.

We use 4 fixed numbers of bits (BA,Bϕ2
,Bα ,Bβ ) for the whole transform, each

one related to a coordinate. Decomposition level is 4 and the low frequency subband

is not degraded. We show on figure 4 (first column) that a uniform quantization on

6 bits (resp. 2, 3, 4) for A (resp. ϕ2, α and β ) induces almost no visible artifact in

reconstructed image. This choice corresponds to a quantization step of π/8 for the

phase and color axis angles, which may be thought quite coarse. Total number of
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Quantization circles mandrill barbara

BA = 6

Bϕ2
= 2

Bα = 3

Bβ = 4

PSNR: 30 dB 33 dB 32 dB

BA = 3

Bϕ2
= 2

Bα = 3

Bβ = 4

PSNR: 24 dB 23 dB 25 dB

BA = 6

Bϕ2
= 1

Bα = 3

Bβ = 4

PSNR: 21 dB 25 dB 25 dB

BA = 6

Bϕ2
= 2

Bα = 1

Bβ = 2

PSNR: 20 dB 24 dB 23 dB

Fig. 4 Basic uniform quantization of (A,ϕ2,α ,β ) on (BA,Bϕ2
,Bα ,Bβ ) bits.

bits needed to code the image is then 16/9× (6+2+3+4)≈ 27 times the number

of pixels. This amount of data is comparable to the original 24 bit coding of raw

color image. We clearly position the work in the ‘lossy’ case, as usually done with

redundant representations.

By degrading amplitude A (second row) we observe the classical pseudo-Gibbs

effect introducing oscillations at borders of image circles. This also smoothes
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textured areas like the lower left corner of mandrill. So A is analogous to usual

wavelet coefficients, while preserving colors thanks to the non-marginality.

Hard quantization of the phase ϕ2 produces visually annoying ‘wet paper’ effect.

Around discontinuities, phase is expected to be coherent across scales [12]. Some-

times the round off due to quantization may increase small differences of phase

between scales, resulting in visible local bad alignments of graphical elements.

Phase error is more serious in coarsest scales, since they imply phase-shifting on

a large neighboring. This explains altered sharp contours and preserved textures.

Again, color is strikingly coherent like the green-red border between the big disks

of circles.

Finally, by quantizing color axis only on 1+ 2 = 3 bits we naturally introduce

false colors. This confirms that α and β encode some true colorimetric information

being independent from A and ϕ2.

This experiment corroborates the aforementioned theoretical interpretation of co-

efficients, by illustrating the kind of information being carried in each component.

It also shows that our transform is stable with quantization and that it can be intro-

duced in a whole coding scheme. We can independently control contours’ sharpness

and quality of colors with a reasonable number of bits.

5 Conclusion

This paper presents a new proposition of color MWT by extending the grayscale

MWT of Unser et. al. The definition is strongly linked to color structure tensor

while offering a signal processing interpretation through the local phase concept.

The transform is invariant by translation and rotation and gives coherent multiscale

representation of color structures. This non marginal scheme avoids classical prob-

lem of false color and also detects all color contours, which is confirmed in an image

coding application.

The construction can easily be extended to the general multichannel case by con-

sidering general vector structure tensors. It may also be interesting to use truly

isotropic decompositions such as those of [8, 19], though they do not yet offer a

unique reconstruction. We suggest now to exploit this fine representation in practice.

Our prospects include applications in texture analysis and compression. In particu-

lar, statistical modeling of phase angles by circular probability laws.
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