Weak second order explicit stabilized methods for stiff stochastic differential equations

Abstract : We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the stepsize reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta Chebyshev methods (ROCK2) for deterministic problems. The convergence, and the mean-square and asymptotic stability properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial differential equations are presented and confirm the theoretical results.
Type de document :
Article dans une revue
SIAM J. Sci. Comput., Sociey for Industrial and Applied Mathematics, 2013, 35 (4), pp.1792-1814. 〈10.1137/12088954X〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00739754
Contributeur : Gilles Vilmart <>
Soumis le : jeudi 11 avril 2013 - 23:38:32
Dernière modification le : vendredi 16 novembre 2018 - 01:23:18
Document(s) archivé(s) le : vendredi 12 juillet 2013 - 04:10:13

Fichier

paper_srock2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Assyr Abdulle, Gilles Vilmart, Konstantinos Zygalakis. Weak second order explicit stabilized methods for stiff stochastic differential equations. SIAM J. Sci. Comput., Sociey for Industrial and Applied Mathematics, 2013, 35 (4), pp.1792-1814. 〈10.1137/12088954X〉. 〈hal-00739754v2〉

Partager

Métriques

Consultations de la notice

382

Téléchargements de fichiers

197