Using a 3D biomechanical model to improve a light aspiration device for in vivo soft tissue characterisation

Aurélien Deram, Vincent Luboz, Emmanuel Promayon, Yohan Payan

To cite this version:

HAL Id: hal-00739403
https://hal.archives-ouvertes.fr/hal-00739403
Submitted on 8 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Using a 3D Biomechanical Model To Improve a Light Aspiration Device for In Vivo Soft Tissue Characterization (LASTIC)

A. DERAM*,†, V. LUBOZ†, E. PROMAYON† and Y. PAYAN†

† UJF-Grenoble 1 / CNRS / TIMC-IMAG UMR 5525, Grenoble, F-38041, France

Keywords: Soft tissue characterization; Elastic properties; Aspiration

1 Introduction

Estimation of living tissue constitutive law is needed for patient-specific simulations during surgery. However, this task remains very challenging. The device used for characterization must undergo sterilization and must give real time results to characterize tissues that can only be accessed in the operating room (e.g. brain tissues).

The LASTIC device [1] (Fig.1.a) was designed to fulfill these expectations. It can be sterilized and has already been tested during brain surgery [2]. LASTIC is based on the pipette aspiration principle: it applies a range of negative pressures while measuring the tissue deformation. In order to retrieve the mechanical parameters, those measurements are compared to a library of displacement heights which was built using a Finite Element Analysis (FEA) of the aspiration experiment. A least-square minimization method is used to find the best parameters which fit the measured displacements (computation times are below 1s) [1].

The device was compared with standard tensile test for a set of elastic material samples. LASTIC was found to overestimate the Young modulus by an average of 24% [3].

In order to improve the accuracy of LASTIC estimates, we decided to redesign the FEA of the aspiration experiment. In the previous version of LASTIC, the aspiration problem is considered as a 2D axisymmetric problem [2]. However, as the aspiration chamber is not centered in the physical device, symmetrical loading conditions might lead to erroneous estimates (Fig.1.a).

The focus of this paper is to compare the axisymmetric 2D model to a 3D model of LASTIC’s aspiration procedure. The 3D model takes into account the non-symmetry of the device being therefore closer to the exact geometry of the set-up. To check the impact of this new model, results of simulations using the 2D and 3D models are compared against real aspiration experiments.

*Corresponding author. Email: aurelien.deram@imag.fr

Figure 1 (a) The LASTIC device, (b) The corresponding 3D model.

2 Methods

The 3D model of the tissue was defined as a parallelepiped with large dimensions compared to the aspiration hole to avoid edge effects. The LASTIC device was defined as a hollowed cylinder. The tissue was meshed with 10 nodes tetrahedra. The mesh was first refined around the device base and then refined a second time around the hole, resulting in approximately 55000 elements (Fig.1.b). The interface between the device and the tissue was meshed with contact elements so that the tissue can slide without friction on the device. The boundary conditions applied to the model are:
- zero displacement imposed on the lower base of the tissue
- zero displacement imposed on the device
- a negative pressure applied on the tissue inside the device hole.

In order to verify the effectiveness of the new model compared to the previous one, we compared the FEA outputs to the deformations measured by LASTIC on four samples:
- RTV#1: a RTV-EC00 silicone with an estimated Young modulus of 75kPa.
- RTV#2: a RTV-EC00 silicone with an estimated Young modulus of 25kPa.
- Ecoflex: a RTV 141 silicone with an estimated Young modulus of 55kPa.
- Candle gel with an estimated Young modulus of 10.5kPa.
These materials have linear behaviour in the range of deformation considered in this paper (for more details please refer to [3]). Their elastic properties were evaluated by fitting a Neo-Hookean law on tensile test measurements as described in [3].

3 Results

For each experiment, the simulations were performed for two different negative pressures in both 3D and 2D models and the maximum vertical displacement was compared to the one measured on the samples. Simulations were performed using the commercial finite element software ANSYS (version 12). The inputs and results are shown on Table 1.

<table>
<thead>
<tr>
<th>Pressure (mbar)</th>
<th>Deformation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2D</td>
</tr>
<tr>
<td>RTV#1</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.41</td>
</tr>
<tr>
<td>180</td>
<td>1.49</td>
</tr>
<tr>
<td>RTV#2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.25</td>
</tr>
<tr>
<td>90</td>
<td>2.26</td>
</tr>
<tr>
<td>Ecoflex</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.22</td>
</tr>
<tr>
<td>130</td>
<td>1.46</td>
</tr>
<tr>
<td>Candle gel</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Table 1 Results of the simulations and experimental measurements

The 3D model performed slightly better results for lower pressures whereas the 2D model is slightly better for higher ones. The average deformation error normalized by displacement is respectively 27.5% for the 3D model and 27.7% for the 2D model.

4 Discussion and Conclusions

The 3D model presented in this paper gives results similar to the 2D model in term of accuracy, showing that the axisymmetrical geometry of the previous model is not the cause of the errors in LASTIC estimates. The 3D model computation needs 2 to 5 hours on a workstation (Intel Core 2 Quadri-processor Q6600) depending on the tissue deformation. This is much more than the 2s needed by the previously used 2D model. However, as the inverse solution is deduced from a precomputed FEA library, this does not affect the real time estimation of soft tissue parameters.

At this stage, computation results of the 3D model are too similar to the 2D model to be worth the loss in computation time. However, the new model will be more suitable to investigate the effect of friction between the tissue and the device because its geometry better reflects the device shape. Another possible improvement would be to investigate the effect of the tissue thickness. Both models use a tissue with a 50mm thickness which cannot perfectly predict deformation for the thinnest tissues found in computer assisted medical interventions, where thicknesses lesser than 20mm are common (Fig.2).

![Figure 2 Deformation computed by 2D model as a function of tissue thickness (E=55kPa, P=20mbar)](image)

References

