Procedural Fairness and Endorsement of Prototypical Leaders: Leader Benevolence or Follower Control?

Marius Van Dijke, David De Cremer

To cite this version:

HAL Id: hal-00739340
https://hal.archives-ouvertes.fr/hal-00739340
Submitted on 8 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accepted Manuscript

Procedural Fairness and Endorsement of Prototypical Leaders: Leader Benevolence or Follower Control?

Marius van Dijke, David De Cremer

PII: S0022-1031(09)00256-X
DOI: 10.1016/j.jesp.2009.10.004
Reference: YJESP 2360

To appear in: Journal of Experimental Social Psychology

Received Date: 4 July 2008
Revised Date: 2 October 2009

Please cite this article as: M.v. Dijke, D.D. Cremer, Procedural Fairness and Endorsement of Prototypical Leaders: Leader Benevolence or Follower Control?, Journal of Experimental Social Psychology (2009), doi: 10.1016/j.jesp.2009.10.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Procedural Fairness and Endorsement of Prototypical Leaders: Leader Benevolence or Follower Control?

Marius van Dijke
Department of Psychology, Open University of the Netherlands

David De Cremer
Rotterdam School of Management, Erasmus University

Correspondence to Marius van Dijke, Department of Psychology, Open University of the Netherlands, P.O. box 2960, 6401 DL Heerlen, the Netherlands, Tel: *31-45-5762448, Email: Marius.vanDijke@OU.nl
Abstract

This research explored why strongly identifying followers endorse prototypical leaders by addressing the role of procedural fairness in this process. We introduced the distinction between procedural fairness rules relating to leader benevolence (i.e., whether the leader supports the group’s interests) and follower control (i.e., whether followers can influence the leader’s decisions). We predicted that strongly identifying group members endorse prototypical leaders because they perceive such leaders as acting in line with benevolence related fairness rules rather than because such leaders are perceived as giving followers control. An organizational field study and a laboratory experiment revealed support for these ideas. Our results thus provide insights into why prototypical leaders are endorsed among strongly identifying followers. They also have implications for the procedural fairness literature in showing that frequently studied procedural fairness rules (e.g. voice) do not explain endorsement of leaders believed to support the group’s interests.

Keywords:

Leadership, prototypicality, identification, procedural fairness, justice, legitimacy.
Procedural Fairness and Endorsement of Prototypical Leaders: Leader Benevolence or Follower Control?

An important precondition for effective leadership is that followers support their leaders and voluntarily comply with their decisions (Yukl, 2006). Research consistently shows that followers are more willing to accept decisions and to support their leaders when they perceive that these leaders enact decision making procedures fairly (see Colquitt, Greenberg, & Zapata-Phelan, 2005, for an overview). Findings like these have increased recognition of the relevance of procedural fairness for leadership research (De Cremer & Tyler, in press). The present study explores the role of procedural fairness in the social identity analysis of leadership. This analysis notes that leaders who represent important and salient group characteristics - prototypical leaders - are endorsed more, particularly among followers displaying strong group identification (see Hogg & van Knippenberg, 2003; van Knippenberg & Hogg, 2003, for overviews).

We aim to clarify why prototypical leaders are endorsed by addressing the mediating role of procedural fairness in this process. We argue that strongly identifying followers perceive prototypical leaders as acting in line with a number of procedural fairness rules. More specifically, we distinguish procedural fairness rules (cf. Leventhal, 1980) referring to follower control (i.e., whether followers can influence their leader’s decisions) from rules referring to leader benevolence (i.e., whether the leader takes care of the group’s interests).

We will argue that endorsement of prototypical leaders (as it occurs among high identifiers) is based on perceptions of leader benevolence, rather than on perceptions of follower control (see Figure 1, for a graphic depiction of our predictions). This distinction arguably has important consequences for our understanding of the social identity analysis of leadership and also for our understanding of procedural fairness.

The social identity analysis of leadership
In contrast to virtually all other approaches to studying leadership, the social identity analysis of leadership starts from the idea that leaders are members of the groups they lead, making them subject to but also able to benefit from the same social influence processes as other group members (see Hogg & van Knippenberg, 2003; van Knippenberg & Hogg, 2003; for detailed discussions and reviews of empirical evidence). This idea builds on the assumption derived from self-categorization theory (Turner, 2005; Turner, Hogg, Oakes, Reicher, & Wetherell, 1987) and social identity theory (Tajfel & Turner, 1986) that a subjectively sensed group membership, in reference to specific outgroups, makes group members view themselves and their fellow group members more in terms of a specific salient group membership and less as unique individuals (e.g., “we”, at the social psychology department view ourselves in specific terms when comparing ourselves with “them” at the business school). This cognitive representation of the group – the group prototype – describes in abstract terms what group membership involves and consequently also how group members should think, feel, and behave. Importantly, the likelihood that people find a prototypical description of themselves and their fellow group members personally relevant should be enhanced by group identification, that is, the chronic importance of a social category to the self (Haslam & Ellemers, 2005).

Because the group prototype contains normative behavioral prescriptions, group members embodying the group prototype most (prototypical group members) should be relatively strongly endorsed as legitimate group leaders (Hogg & Reid, 2001; Turner, 2005). Legitimate leaders are viewed as “appropriate, proper, and just” (Tyler, 2006, pp. 376). Followers have been argued to voluntarily comply with and support such leaders even when they take controversial decisions because they are believed to support the group’s interest (Chemers, 1987; Dansereau, Graen, & Haga, 1975; Tyler & Dawes, 1993). Research indeed shows that prototypical group members are relatively likely to emerge as group leaders.
Prototypicality and Fairness

(Fielding & Hogg, 1997; van Knippenberg, van Knippenberg, & van Dijk, 2000). Further, prototypical leaders are viewed as more charismatic (Platow, van Knippenberg, Haslam, van Knippenberg, Spears, 2006) and effective (van Knippenberg & van Knippenberg, 2005; Hains, Hogg, & Duck, 1997), and they are supported more than nonprototypical leaders among high identifiers (Hains et al., 1997; Hogg, Hains, & Mason, 1998; Platow & van Knippenberg, 2001). Finally, prototypical leaders receive more leeway for controversial decisions from highly identifying group members: They are endorsed regardless of the fairness of their ingroup allocations (Platow & van Knippenberg, 2001) and the fairness with which they treat ingroup members (Ullrich, Christ, & van Dick, 2009), and even after task failure (Giesner & van Knippenberg, 2008).

Procedural fairness and leader endorsement

Procedural fairness refers to the perceived fairness of procedures used to make allocation decisions (Tyler, 1988). The concept was introduced in the seventies by Thibaut and Walker (1975) who showed that people find procedures fairer when they can voice their opinion (i.e., process control) and when they can influence decision outcomes (i.e., decision control). Leventhal (1980) proposed a number of additional fairness rules that also enhance fairness perceptions: consistency (decisions are applied consistently over time and over people), accuracy (decisions are based on accurate information), bias suppression (decision makers are neutral and set self-interest aside), ethicality (decisions uphold standards of ethics and morality), correctability (followers can appeal to correct bad outcomes), and representation (all affected parties are heard from; note that all these expectations or aspects of fair treatment are restricted to ingroup, not outgroup, members).

A wealth of research shows that people react positively to authorities perceived as procedurally fair, such as with increased support for leaders (e.g., Huo, Smith, Tyler, & Lind, 1996) and voluntary cooperation to reach the group’s goals (e.g., De Cremer & van Vugt,
2002; see Cohen-Charash & Spector, 2001; Colquitt et al., 2001, for meta-analyses). This effect has been explained in reference to the idea that people expect fairly enacted procedures to guarantee fair outcomes in the long term (Shapiro & Brett, 2005; Thibaut & Walker, 1975). Research has also supported the role of identity processes in explaining such procedural fairness effects. In fact, there is now abundant evidence that being treated fairly by the group leader communicates that one is a valued and respected group member, and that the authority is trustworthy and neutral, which stimulates leader endorsement and voluntary cooperation at least among group members caring strongly about the group (i.e., high identifiers; Lind & Tyler, 1988; Smith, Tyler, Huo, Ortiz, & Lind, 1998; Tyler, 1997; Tyler & Degoe, 1995).

Procedural fairness and endorsement of prototypical leaders

Although a number of studies support the idea that prototypical leaders are considered legitimate among strongly identifying group members, research to date has virtually neglected to examine the process that makes prototypical leaders legitimate. One key element contributing to leaders’ legitimacy is procedural fairness (Tyler, 1997; 2006). Interestingly, the relationship between procedural fairness and leader prototypicality has also been speculated about by the leading theorists in the social identity analysis of leadership. They argue that “the role of leader fairness in leadership effectiveness may thus fruitfully be integrated with, and extend, the social identity analysis of leadership effectiveness” (van Knippenberg & Hogg, 2003, p. 281). Based on these insights, we wish to develop the argument that strongly identifying group members endorse leaders who embody the group prototype because they are perceived as acting more in line with a number of specific procedural fairness rules than non prototypical leaders.

An important qualifying condition that we introduce, however, is that not all procedural fairness rules contribute equally to explaining endorsement of prototypical leaders. Specifically, we argue that procedural fairness rules can be classified into rules referring to
leader benevolence (i.e., whether the leader acts in ways that support the group’s interest) and rules referring to follower control (i.e., whether followers can influence the leader’s decisions). Benevolent leaders do not put their own interest front center (i.e., bias suppression), do not discriminate against group members (i.e., consistency), and consider all relevant information when taking decisions that affect group members (i.e., accuracy).

Follower control, on the other hand, implies that followers can influence their leader’s decisions (i.e., decision control), can voice their opinion, which arguably gives followers the idea of indirect control over the leader’s decisions (process control; see Shapiro & Brett, 2005), and, finally, that followers can correct decisions that lead to wrong outcomes (i.e., correctability). Follower control thus ensures that followers’ interests are represented in the leaders’ decisions (cf. Leventhal, 1980; Tyler, 1988).

This leader benevolence – follower control distinction builds upon the distinction between control (i.e., process control and decision control) and neutrality (including rules relating to bias suppression and accuracy) that is often used in tests of the group value model of procedural fairness (Lind & Tyler, 1988). Control and neutrality related procedural fairness rules are empirically distinct and they also influence different types of outcome variables (Tyler, 1989). It also builds upon Brockner, Ackerman, and Fairchild’s (2001) argument that process control (one aspect of follower control) differs from Leventhal’s (1980) rules of accuracy, bias suppression, and consistency because the former refers to active input from followers whereas the latter refer to leader behavior only. We build upon these works and, importantly, include all of Leventhal’s procedural fairness rules (which prior research did not do), to introduce the distinction between follower control and leader benevolence.

This distinction has important consequences for the present research because it directly addresses the essence of what endorsement of leaders as legitimate means. A wealth of studies show that followers voluntarily support and comply with legitimate leaders even when they
take controversial decisions (see Tyler, 2006, for an overview). However, legitimate leadership implies specific role prescriptions, not only for followers but also for leaders (Biggart & Hamilton, 1984; Dornbusch & Scott, 1975; Emerson, 1962; Magee & Galinsky, 2008). Specifically, followers have been argued to voluntarily comply with legitimate leaders because they expect such leaders to support the group’s interests (Chemers, 1987; Dansereau, Graen, & Haga, 1975; Tyler & Dawes, 1993). In other words, being perceived as benevolent is arguably the core antecedent of being endorsed as a legitimate leader.

Further, because legitimacy implies that leaders receive leeway to take decisions without followers wanting to be involved (Hegtvedt & Johnson, 2000), follower control over the leader’s decisions should be less impactful as a predictor of leader legitimacy. Interestingly, research shows that the procedural fairness rules that we classified as referring to leader benevolence strongly correlate with perceptions of leader legitimacy. However, fairness rules that we classified as referring to follower control (process control and decision control) correlate less strongly with leader legitimacy (Tyler, 1997; see also Colquitt et al., 2001).

This focus on legitimacy as implying leeway for leaders because they are perceived as benevolent is directly relevant for our argument: Given that leader benevolence perceptions are necessary precursors of legitimacy, and given that prototypical leaders receive leeway to take decisions, suggesting that they are believed to have the groups interest at heart, leader benevolence perceptions are likely to be an integral part of leader prototypicality (among strongly identifying group members). In fact such perceptions may well explain why prototypical leaders are endorsed as legitimate group leaders.

Overview of predictions and studies

Building on previous work (see van Knippenberg & Hogg, 2003; Hogg & van Knippenberg, 2003, for overviews), we, first of all, predict that prototypical leaders are endorsed more than non prototypical leaders among strongly identifying group members
The present research aims to explain why this occurs by studying the role of procedural fairness in this process. We therefore introduce the distinction between procedural fairness rules relating to leader benevolence and follower control. We predict that, endorsement of prototypical leaders (among strongly identifying group members) is based on such leaders being perceived as benevolent, rather than being perceived as giving followers control in their decisions (Hypothesis 2). Figure 1 graphically summarizes our predictions.

We test our predictions in two studies in which we distinguish leader benevolence from follower control. Study 1 is a cross-sectional field study in the context of work organizations. We use leader charisma as an indicator of leader endorsement that is positively influenced by leader prototypicality (Platow et al., 2006) as well as by procedural fairness (van Dijke, De Cremer & Mayer, 2009). Study 2 is a laboratory experiment in which we manipulate leader prototypicality and collective identification orthogonally. Here, we include support for the leader as an indicator of endorsement of prototypical leaders (e.g., Platow et al., 1998) that is also influenced by procedural fairness (e.g., Huo et al., 1996).

Study 1

Method

Sample and Procedure. This study was included in a large leadership study. We randomly selected from the Dutch national postal guide 973 people who worked for at least eight hours a week and who had a supervisor. They were sent a letter asking them to participate in “a study on work experience”, by filling out the enclosed questionnaire and returning it in the prepaid envelope. Participation would be completely anonymous. A reminder was sent two weeks after the first mailing. Of these 973 questionnaires, 16 were returned because the addressee no longer lived there, leaving 957 questionnaires that actually reached the intended respondents. 359 questionnaires were returned (38 %) of which 347 respondents responded to all items relevant to the present study. Sixty-five percent of these
respondents were male. Two percent had only lower education (primary school), 39 % only secondary education, 25 % had followed up on their secondary education with vocational education, 23 % had a bachelor, and 9 % had a master degree; 1 % indicated they had “another” education. Thirty-eight percent earned a net month salary below € 1500, 35 % earned between € 1500 and 2000, 14% earned between € 2000 and 2500, and 14% earned more than € 2500. M_{age} was 42.71 ($SD = 10.26$). Respondents worked, on average, 11.94 years for their current organization ($SD = 10.66$) and 8.49 years ($SD = 9.93$) in their current job. Unless otherwise noted these demographic control variables did not impact the results and are not discussed further.

Independent variables. We assessed organizational identification using Mael and Ashforth’s (1992) six-item measure. An example item is “When I talk about my organization, I usually say “we” rather than “they” (1 = strongly disagree, 5 = strongly agree; Cronbach’s $\alpha = .84$).

We assessed leader prototypicality with the five item scale from van Knippenberg and van Knippenberg (2005). An example is “My team leader is a good example of the kind of people in my team” (1 = strongly disagree, 5 = strongly agree; Cronbach’s $\alpha = .91$).

Mediator variables. Perceptions of the leader’s procedural fairness were measured with Colquit’s (2001) seven-item procedural fairness scale including “To what extent are you able to express your views and feelings during decision making procedures?” and “To what extent are procedures applied consistently” (1 = to a small extent, 5 = to a large extent).

We wanted to know whether items referring to follower control (such as the first example above) are empirically distinct from items referring to leader benevolence (bias suppression, consistency, accuracy, and norm congruence, see the second example). PCA on the seven items yielded two factors with eigenvalues > 1 (explaining 69.80 % of the variance). After varimax rotation, the three items referring to follower control loaded on the second
factor (factor loadings > .71 and < .87), rather than the first (loadings > .12 and < .33). The three items referring to leader benevolence loaded on the first factor (loadings > .80 and < .83), rather than the second (loadings > .10 and < .27). Only the ethicality item loaded almost as high on the follower control (.52) as the leader benevolence factor (.64).

To ensure that the procedural fairness scale captures two distinct factors that map on the theoretical distinction between leader benevolence and follower control, we conducted CFA. Based on the PCA and theoretical arguments (see note 1), we excluded the ethicality item and compared the two-factor with the one-factor model. The one-factor model fit insufficiently: $\chi^2(9) = 168.01, p < .001; \chi^2 / df = 18.67; CFI = .83; IFI = .83; RMSEA = .19$. The two-factor model showed satisfactory fit: $\chi^2(8) = 20.21, p < .01, \chi^2 / df = 2.53; CFI = .98; IFI = .98; RMSEA = .07$.

Based on these analyses, we constructed two scales: follower control perceptions (3 items, Cronbach’s $\alpha = .77$) and leader benevolence perceptions (3 items, Cronbach’s $\alpha = .81$).

Dependent variable. We measured leader charisma with two items from Conger and Kanungo (1998) and four items from Pearce and Sims (2002). Specifically, we asked whether the respondents agreed that their team leader frees up sufficient time when they need it, is sensitive to others’ needs and feelings in the organization, has a clear vision and communicates ideas concerning the future, encourages them to seek out learning opportunities, encourages them to seek out educational opportunities, and encourages them to learn by extending themselves” (1 = strongly disagree, 5 = strongly agree; Cronbach’s $\alpha = .87$). These items were taken from scales that are commonly used in organizational studies but they resemble the items that Platow et al. (2006) used in their experiments showing that prototypical leaders are considered charismatic.

Results

Table 1 presents correlations between the scales, means and standard deviations.
We tested our hypotheses with hierarchical regression and subsequent indirect effects analyses. At step 1 in the regression, we entered the background variables. At step 2 we entered the independent variables leader prototypicality and identification. At Step 3, we entered the leader prototypicality x identification interaction (derived from centered versions of the predictors; Aiken & West, 1991). Table 2 presents the results for step 2 and 3 of the regression.

Leader charisma. To assess the equivalence of our study with previous work, we first wanted to establish whether leader prototypicality influences leader charisma significantly more strongly among high than among low identifiers (Hypothesis 1).

At step 1, leader charisma was not related to any of the control variables. At step 2, leader charisma was significantly and positively related to leader prototypicality ($\beta = .67, p < .001$) and to identification ($\beta = .20, p < .001$).

Entering the interaction term at step 3 did not affect the significance of the previously entered variables. Importantly, leader charisma was significantly related to the leader prototypicality x identification interaction ($\beta = .10, p < .01$). Simple slopes analyses (Aiken & West, 1991) further support Hypothesis 1 (see Figure 2): Among low identifiers (one SD below the mean), leader prototypicality was significantly related to leader charisma ($b = .53, SE = .05, t = 10.78, p < .001$). However, among high identifiers (one SD above the mean), this relationship was clearly (and by definition significantly, see Aiken & West, 1991) stronger ($b = .69, SE = .04, t = 15.66, p < .001$). Thus, prototypical leaders were seen as more charismatic by the respondents, but this relationship was stronger for high identifiers, as predicted.

Relative impact on benevolence and control perceptions. To test Hypothesis 2, we assessed whether the leader prototypicality x organization identification interaction influenced leader benevolence perceptions significantly more strongly than follower control perceptions. Following procedures developed by Judd, Kenny, and McClelland (2001), we subtracted
follower control perceptions from leader benevolence perceptions and treated this difference variable as our dependent variable in our initial analysis.

At step 1 and 2 in the analysis, the difference between leader benevolence perceptions and follower control perceptions was only significantly related to highest completed education (both step 1 and 2 $\beta = .13, p < .05$).

At step 3, the difference score was still significantly related to highest completed education ($\beta = .14, p < .05$) and now also to organizational tenure ($\beta = .16, p < .05$). More importantly, the difference score was, as expected also significantly positively related to the leader prototypicality x identification interaction ($\beta = .11, p < .05$). Thus, in line with our ideas, the leader prototypicality - leader benevolence relationship, relative to the leader prototypicality - follower control relationship, is more positive among high than low identifiers.

Follower control perceptions. We subsequently tested if leader prototypicality influences follower control perceptions, and if this effect was moderated by identification.

At step 1 in the analysis, follower control perceptions were significantly related to highest completed education ($\beta = .14, p < .05$) and gender ($\beta = .13, p < .05$; male respondents perceived more control than female respondents). At step 2, follower control perceptions were significantly and positively related to leader prototypicality ($\beta = .24, p < .001$) and to identification ($\beta = .21, p < .001$). The significance of the previously entered control variables did not change.

At step 3 follower control perceptions were not significantly related to the leader prototypicality x identification interaction. Thus, leader prototypicality was related to follower control perceptions, but, as expected, identification did not moderate this relationship.

Leader benevolence perceptions. We proceeded to test if leader prototypicality influences leader benevolence perceptions more strongly among high than low identifiers.
At step 1, leader benevolence perceptions were significantly related to highest completed education only ($\beta = .28, p < .001$). At step 2, leader benevolence perceptions were significantly and positively related to leader prototypicality ($\beta = .22, p < .001$) and to identification ($\beta = .14, p < .01$). The significance of the previously entered control variables did not change.

Entering the interaction term at step 3 did not affect the significance of the previously entered variables. Leader benevolence perceptions were significantly related to the interaction between leader prototypicality and identification ($\beta = .16, t = 3.24, p < .001$). Simple slopes analyses supported our expectations (see Figure 3): Among low identifiers, (one SD below the mean), leader prototypicality was not significantly related to leader benevolence perceptions ($b = .06, SE = .08, t = .75, p < .46$). However, among high identifiers (one SD above the mean), the relation between leader prototypicality and leader benevolence perceptions was significant ($b = .38, SE = .07, t = 5.38, p < .001$). As expected, leader prototypicality thus influences leader benevolence perceptions more strongly among high than low identifiers.

Mediation analysis. Finally, we tested whether leader benevolence perceptions mediate the effect of leader prototypicality on leader charisma (among high identifiers; Hypothesis 2). The identification x leader prototypicality interaction was not significantly related to follower control perceptions. However, we found a significant main effect of leader prototypicality on follower control perceptions. Furthermore, the relationship between leader prototypicality and leader charisma was significant even among low identifiers. This suggests that follower control perceptions potentially can explain part of the variance in charisma attributed to prototypical leaders, regardless of level of identification. We thus tested whether leader benevolence perceptions mediate the effect of leader prototypicality (among high identifiers) on leader charisma while controlling for follower control perceptions (and for demographic background variables). Identification was treated as a moderator of the leader prototypicality –
leader benevolence path, as well as of the leader benevolence – charisma path (see Muller, Judd, & Yzerbyt, 2005, for a rationale). The coefficients for each path were estimated using simple slopes analyses (i.e., β coefficients for high and for low identifiers). These coefficients were multiplied to obtain indirect effects (for high and low identifiers). We used bootstrap procedures advocated by Edwards and Lambert (2007) and Preacher, Rucker, and Hayes (2007) to derive 95% confidence intervals for the (moderated) indirect relationships. Figure 4 graphically depicts the model that we tested (apart from demographic control variables). Note that this model presents a rigorous test of our theoretical model (see Figure 1).

In line with our ideas, initial analyses to estimate the coefficients of the (moderated) paths showed that identification significantly moderated the leader prototypicality - leader benevolence path only ($\beta = .16, t = 3.24, p < .001$). Hence, the finding that identification moderated the leader prototypicality - leader charisma path in the regression analyses resulted from identification actually moderating the leader prototypicality – benevolence perceptions path. These analyses also showed that entering leader benevolence as predictor decreased the effect of the leader prototypicality x identification interaction on charisma ($\beta = decreased from .10, p < .01 to .07, p < .06$).

Figure 5 presents the simple effects for the model with versus without leader benevolence as mediating variable. Entering leader benevolence in the analyses decreased the direct effect of leader prototypicality on charisma among high identifiers (one SD above the mean) but not among low identifiers (one SD below the mean). Further bootstrap simple effects tests showed that the indirect effect of leader prototypicality on leader charisma, via leader benevolence perceptions was significant when identification was high (standardized indirect effect $= .05, 95\%$ confidence interval $=.02 - .09$), rather than low (standardized indirect effect $= .00, 95\%$ confidence interval $=.02 - .03$). These confidence intervals also indicate that the mediated effect was significantly stronger among high than among low identifiers.
Follower control perceptions did not significantly influence charisma ($p < .22$).2,3 In sum, these mediation analyses show that, among high identifiers, the leader prototypicality - charisma relationship is partially mediated by leader benevolence perceptions and not by follower control perceptions. Among low identifiers, the leader prototypicality - charisma relationship is weaker, and not mediated by procedural fairness perceptions.

Conclusion

The results of Study 1 supported our predictions: prototypical leaders were perceived as benevolent (among respondents who identified strongly with their organization). High identifiers also attributed more charisma to prototypical leaders and this positive effect of leader prototypicality was partially mediated by leader benevolence perceptions. Furthermore, leader prototypicality was associated with increased follower control (regardless of the level of identification) but these perceptions did not explain leader charisma. Study 1 thus revealed support for our hypothesis in a setting that allows for conclusions of high ecological validity. However, an obvious limitation of Study 1 is that it does not allow valid causal conclusions. We therefore proceeded to test our hypotheses in a laboratory experiment, to replicate the results of Study 1 in a setting that allows for drawing causal conclusions. In this study, we focused on support for the leader as a commonly used operationalization of leader endorsement in leader prototypicality research.

Study 2

Method

Participants and design. 124 undergraduate students (93 females and 31 males, $M_{age} = 19.77, SD = 2.72$) voluntarily participated in exchange for a monetary reward (7 euros). They were randomly assigned to a 2 (identification with the group: high vs. low) x 2 (leader prototypicality: high vs. low) between-subjects factorial design.

Experimental procedure. Participants arrived at the laboratory and were seated in
separate experimental cubicles, equipped with a computer. All information was communicated via the computer. Participants learned that they would engage, together with four other people in a study about brain-hemispheric dominance and brainstorming in groups. Presumably because the relationship between brain hemispheres and creativity is often discussed in the popular press this cover story turned out to be very credible (which was confirmed during our conversations with participants in the debriefing session). We explained that groups are often hierarchically structured, and this would be the case in this study as well. Specifically, the group task would be monitored by a leader, who would be chosen from the group.

Then, the prototypicality manipulation was introduced (taken from van Knippenberg & van Knippenberg, 2005). Participants were asked to complete a brain-hemisphere dominance test. They subsequently received bogus feedback concerning their own and other group members' test scores. Bogus feedback was given by representing each group member with a letter ranging from A-E and presenting the position of the five group members on a scale ranging from left- to right-hemisphere dominance (actually, all participants received the letter B and a fairly group-typical score). The test results were briefly explained, and some positive characteristics of left and right brain hemisphere dominance were provided.

After having filled out the brain hemisphere test, participants viewed briefly their own and the other group members’ (bogus) test scores. Then, the participants learned that the experimenter assigned one group member to the leader position on a random basis. This was either person D (a group member with a prototypical test score) or person E (a nonprototypical group member).

Then, our identification manipulation commenced (taken from Doosje, Ellemers, & Spears, 1997). Participants filled out a ten-item test (i.e., “Relationships with others are very important to me”) while also holding one hand on a plate that ostensibly measured galvanic skin resistance. Then, they learned that the test scores combined with the skin conductance
measure indicated the extent to which they identified with this particular group. In reality, assignment to the conditions was on a random basis. Test scores were thus unrelated to assignment to conditions. Participants learned that research has yielded norm scores for the identification test. The norms were deliberately kept ambiguous. In the low identification conditions, participants received the following feedback: “You have a score of 27, which is lower than the norm score of 40. You thus identify weakly with this particular group”. In the high identification conditions, participants learned “You have a score of 53, which is higher than the average norm score of 40. You thus identify strongly with this particular group.

Subsequently, the participants received an email from the leader (who was supposedly informed by the experimenter) that the brainstorming task involved discussing one specific topic in the group (the leader would supervise the group). The topics were related to issues relevant for student life. It was said that the quality of the discussion would then be evaluated by an independent party and high quality discussions would be awarded with a financial bonus. Thus, the higher the quality of the ideas and conclusions put forward concerning this topic, the higher the financial bonus would be. The topics that could be discussed, and which had to be chosen before the negotiation task began, were: (1) “Living and food on campus,” (2) “The recently introduced bachelor-master educational system,” (3) “Student housing facilities in the city,” and (4) “Free time and studying.” The participants also learned that the leader would make decisions on how to proceed and select the topic to discuss.

After this, the participants received an email from the experimenters in which we asked them to evaluate the leader before proceeding with the brainstorming task. Their responses would not be visible to the leader. At this point, we solicited the manipulation checks and the dependent measures. Finally, we debriefed the participants, gave them their course credit and thanked them.

Dependent measures. All questions were answered on 7-point scales (1 = *not at all*; 7 =
very much so). To check the validity of our prototypicality manipulation, we asked: “Is the leader representative of what the group stands for?”, “Is this group clearly represented by the leader?” “Does the leader know what this group stands for?”, “Does the leader resemble the group” and “Is the leader different from the group?” (reversed) (α = .80; based on van Knippenberg & van Knippenberg, 2005).

To check the validity of the identification manipulation we asked: “Do you identify with left hemisphere dominants?” and “Do you identify with this group?” (α = .66).

Follower control perceptions were measured with three items: “Will the leader ask for your opinion when taking decisions”, “Will the leader let you participate in decisions”, and “Will the leader let you have influence in decisions” (α = .73; based on Colquitt, 2001).

To measure leader benevolence perceptions (based on Colquitt, 2001), we asked: ”Will the leader treat all group members in the same way”, and “Will the leader base decisions on accurate information?” (α = .89).4

As an index of support for the leader, we asked: “Do you want to vote the leader away”, “Do you want the group to turn against the leader”, and “Do you want to oppose the leader (α = .85; based on Platow et al., 1998). To facilitate comparison with Study 1, we reverse coded this scale such that higher scores reflected more support for the leader.

Results
We tested our hypotheses and checked for the effectiveness of our manipulations using 2 (leader prototypicality) x 2 (identification) ANOVA.

Manipulation checks. A 2-way ANOVA on the average identification question revealed that participants in the high identification condition had a stronger sense of identification than those in the low identification condition (Ms = 4.65 vs. 3.92, SDs = 1.30 vs. 1.31, F(1, 120) = 16.35, p < .01, η² = .07). No main effect of prototypicality, F(1, 120) < 1, ns, nor an interaction, F(1, 120) < 1, ns, was found.
A 2-way ANOVA on the average prototypicality check showed that participants in the high prototypicality condition perceived the leader to be more prototypical of the group than those in the low prototypicality condition (Ms = 5.06 vs. 3.22, SDs = 0.91 vs. 0.96, F(1, 120) = 104.96, p < .001, $\eta^2 = .74$). No main effect of identification, $F(1, 120) < 1$, nor an interaction, $F(1, 120) < 1$, was found. The leader prototypicality and identification manipulation thus appear to have been induced successfully and independently.

Support for the leader. Like in Study 1, we first tested whether we could replicate the finding that prototypical leaders receive more support than non prototypical leaders among high identifiers. A 2-way ANOVA on support for the leader revealed a significant main effect of leader prototypicality ($F(1, 120) = 9.48, p < .01, \eta^2 = .07$) and a significant main effect of identification ($F(1, 120) = 5.89, p < .05, \eta^2 = .05$). These main effects were qualified by a significant interaction effect of prototypicality and identification, $F(1, 120) = 4.87, p < .05, \eta^2 = .04$. In line with Hypothesis 1 (see Table 3), prototypicality significantly influenced leader support among high identifiers ($M_{prototypical} = 5.94, M_{nonprototypical} = 4.87, F(1, 120) = 13.98, p < .001$). Among low identifiers, no significant effect of leader prototypicality was found ($M_{prototypical} = 5.81, M_{nonprototypical} = 5.98, F(1, 120) = .38, ns.$). In line with previous research, prototypical leaders are thus supported more, but only among high identifiers.\(^5\)

Relative impact on leader benevolence and follower control. Subsequently, we tested whether the leader prototypicality x identification interaction influenced leader benevolence perceptions significantly more strongly than follower control perceptions by using the difference between these two measures as our dependent variable. A 2-way ANOVA on this variable revealed only a significant interaction effect of prototypicality and identification, $F(1, 120) = 3.98, p < .05, \eta^2 = .02$. The effect of leader prototypicality was significant among low identifiers ($M_{prototypical} = .14, M_{nonprototypical} = -.30, F(1, 120) = 3.85, p < .05$). Among high identifiers, no significant effect of leader prototypicality was found ($M_{prototypical} = .02$, \(\text{ns.}\).
This suggests, in line with Study 1, that leader prototypicality positively influenced follower control perceptions regardless of the level of identification. However, leader benevolence perceptions were presumably influenced weaker among low than high identifiers, resulting in an effect of leader prototypicality on the variable representing relative impact on leader benevolence versus follower control among low identifiers. The following sections present explicit tests of this idea.

Follower control perceptions. We then tested whether leader prototypicality influences follower control perceptions and whether identification has a role in this process. A 2-way ANOVA on follower control perceptions revealed only a significant main effect of prototypicality, $F(1, 120) = 16.76, \ p < .001, \ \eta^2 = .12$. This indicates, like in Study 1, that prototypical leaders were viewed as giving their followers more control in their decisions ($M_{\text{prototypical}} = 5.17$) than non prototypical leaders ($M_{\text{nonprototypical}} = 4.50$) and that identification did not moderate this effect.

Leader benevolence perceptions. We proceeded to test if leader prototypicality influences leader benevolence perceptions more strongly among high than low identifiers. A 2-way ANOVA on leader benevolence perceptions revealed a significant main effect of leader prototypicality ($F(1, 120) = 9.02, \ p < .01, \ \eta^2 = .07$), which was qualified by a significant interaction effect of prototypicality and identification, $F(1, 120) = 4.17, \ p < .05, \ \eta^2 = .03$. As expected (see Figure 6), we found a significant effect of prototypicality among high identifiers ($M_{\text{prototypical}} = 5.33, \ M_{\text{nonprototypical}} = 4.42, \ F(1, 120) = 12.73, \ p < .001$). Among low identifiers, no significant effect of leader prototypicality was found ($M_{\text{prototypical}} = 5.03, \ M_{\text{nonprototypical}} = 4.86, \ F(1, 120) = .46, \ ns.$). Thus, in line with our ideas, prototypical leaders are viewed as more benevolent, but only among high identifiers.

Mediation analyses. Finally, we tested our idea that leader benevolence perceptions mediate the effect of leader prototypicality on leader charisma (among high identifiers;
Hypothesis 2). We employed the same analytic procedures as in Study 1. Specifically, we tested whether leader benevolence perceptions mediate the effect of leader prototypicality (among high identifiers) on support for the leader while controlling for the role of follower control perceptions. Figure 4 graphically depicts the model that we tested.

Like in Study 1, these analyses revealed that only the leader prototypicality - leader benevolence path was significantly moderated by identification ($\beta = .18, t = 2.04, p < .05$). The moderation of the effect of leader prototypicality on support for the leader by identification that was found in the ANOVAs thus results from identification moderating the effect of leader prototypicality on benevolence perceptions. Furthermore, these analyses also showed that entering leader benevolence in the analysis decreased the effect of the leader prototypicality x identification interaction on support for the leader (β decreased from .19, $p < .05$ to .12, $p < .1$).

Figure 6 presents the simple effects for the model with versus without leader benevolence as mediating variable. Entering the mediating variable in the analyses decreased the direct effect of leader prototypicality on support for the leader among high identifiers but not among low identifiers. Specifically, the indirect effect of leader prototypicality on support for the leader, via leader benevolence perceptions was significant when identification was high (one SD above the mean; standardized indirect effect = .11; 95% confidence interval between .03 and .25), rather than low (one SD below the mean; standardized indirect effect = .02; 95% confidence interval between -.04 and .10). As can be observed from the confidence intervals, this mediated effect was also significantly stronger among high than among low identifiers. Follower control perceptions did not significantly influence support for the leader. Mirroring the results of Study 1, these mediation analyses thus support our idea that, among high identifiers, the effect of leader prototypicality on support for the leader is partially mediated by leader benevolence perceptions. Among low identifiers, the effect of leader prototypicality on
support for the leader is not significant and thus also not mediated by either type of procedural fairness perceptions.

Conclusion

Study 2 again supported our predictions but this time in a controlled laboratory setting. We found, analogous to Study 1, that leader prototypicality increases perceptions of leader benevolence and support for the leader, among strongly identifying group members. Moreover, the effect of leader prototypicality on support for the leader (among high identifiers) was partially mediated by leader benevolence perceptions. Follower control perceptions did not explain leader endorsements, regardless of the level of identification.

General Discussion

In line with previous work (see Hogg & van Knippenberg, 2003; van Knippenberg & Hogg, 2003, for overviews), high group identifiers found prototypical leaders more charismatic than non prototypical leaders (Study 1), and they supported prototypical leaders more (Study 2). These consistent findings provide a firm basis for our subsequent analyses regarding the explanatory role of procedural fairness in this process. We introduced the distinction between procedural fairness rules referring to leader benevolence (i.e., accuracy, consistency, and bias suppression) and rules referring to follower control (i.e., process control, decision control, and correctability). In line with our predictions, we found in an experiment and a field study that leader benevolence perceptions partially explain why high group identifiers endorse prototypical leaders whereas follower control plays no role in this process.

Implications for leadership research

Recent work inspired by the social identity analysis of leadership has taken a moderator approach to show that prototypical leaders receive leeway to take controversial decisions: They are endorsed regardless of whether they allocate outcomes fairly to ingroup members (Platow & van Knippenberg, 2001), whether they treat ingroup members
procedurally fair (Ullrich et al., 2009), and whether they act in a self-benefiting versus self-sacrificial manner (van Knippenberg & van Knippenberg, 2005). The present findings suggest a specific explanation for this phenomenon: Among high identifiers, prototypical leadership implies that leaders are perceived as acting in line with benevolence related procedural fairness rules. And this stimulates followers to give prototypical leaders leeway.

Benevolence as a class of procedural fairness rules refers to taking care of others’ interests and is an important antecedent of trust (Mayer, et al., 1995). Our results showing that benevolence perceptions partially explain the effect of leader prototypicality (among high identifiers) on leader endorsement thus support the idea that prototypical leaders are endorsed because they are trusted to have the group’s interests at heart. This line of reasoning also clarifies further why procedural fairness rules related to follower control do not explain the effect of leader prototypicality on leader endorsements (among high identifiers): Control is valued when leaders are not trusted to care about the group’s interest (cf. De Cremer, Snyder, & Dewitte, 2001). In fact, this argument is in line with Colquitt et al.’s (2001) meta-analysis, which revealed a stronger relationship between procedural fairness rules related to leader benevolence and trust than between follower control and trust.

Follower control guarantees that followers’ interests are represented in the group leader’s decisions (Leventhal, 1980, Tyler, 1988). Leader prototypicality builds upon representing the group, making it likely that prototypical leaders are perceived as leaders who can be controlled in order to ensure that followers’ interests are represented in their decisions. This idea is supported by the finding in both studies that followers perceived more control in decisions of prototypical than non prototypical leaders, regardless of whether they considered the group as important to their self-definition (i.e., regardless of level of identification). Interestingly, the finding that follower control perceptions did not explain endorsement of prototypical leaders points to a drawback of prototypical leadership: Perceiving more control
in leaders’ decisions suggests that such leaders are, in fact, viewed as having less “hard” power over their followers (van Dijke & Poppe, 2006). Because low identifiers care relatively little about the group and its leader but do perceive prototypical leaders as having less power, prototypical leaders may not have an easy job influencing weakly identified followers.

Follower control also plays a central role in participative leadership and delegation because these leadership types also refer to whether followers can influence the leader’s decisions. Such leadership can reveal a number of positive consequences, such as increased employee motivation and decision acceptance, and also higher decision quality (Yukl, 2006). One important concern that has been voiced in this literature is that “after more than 40 years of research on participation, we are left with the conclusion that participative leadership sometimes results in higher satisfaction, effort, and performance, and at other times it does not” (Yukl, 2006, p. 88). Our findings suggest that leader benevolence influences whether participation is effective: Followers may care less about participative leadership when they perceive their leader as benevolent. This also suggests another limitation of prototypical leadership: Lower quality decisions may result because strongly identifying followers are satisfied with limited input in the decisions of prototypical leaders.

Implications for procedural fairness

Process control, one element of follower control, is by far the most extensively studied procedural fairness rule in experimental research and it has even been called the most representative rule (van den Bos, 1999). Bias suppression, accuracy, and consistency have received much less attention (see Colquitt & Jackson, 2006; De Cremer, 2004; Langendijk, van Dijke, & De Cremer, in press; van den Bos & Lind, 2001; van den Bos, Vermunt, & Wilke, 1996; Vermunt, Wit, van den Bos, & Lind, 1996, for exceptions). Field research, on the other hand, usually uses composite measures assessing a number of procedural fairness rules that are believed to represent one procedural fairness construct (see e.g., Colquitt, 2001). The
present findings indicate that it is worthwhile to include different rules in one study. However, such rules should not a priori be viewed as interchangeable operationalizations of procedural fairness: Unlike benevolence related rules, follower control, including process control, played no role in explaining an important class of procedural fairness outcomes, that is, endorsements of leaders as legitimate. This type of procedural fairness outcomes is highly relevant because it is known to influence follower behaviors such as voluntary compliance (Tyler, 2006) and even extra effort to achieve organizational goals (van Dijke et al., 2009).

We hasten to say, however, that our findings were obtained in one specific setting only using one type of outcome measure, that is, leader endorsements. In fact, our results may be more interesting because of the questions they raise than because of the questions they answer. Future research may, for instance, reveal that follower control positively influences important self-related outcomes, such as status in the group and self-esteem, even when controlling for leader benevolence. Procedural fairness positively influences status and, consequently, self-esteem (Koper, van Knippenberg, Bouhuijs, & Vermunt, 1993; Tyler & Blader, 2002). Such outcomes may be influenced relatively strongly by follower control because this forms arguably a more direct indicator of standing than leader benevolence. This suggests an interesting contrast with the present findings, and also with analyses of leader legitimacy because status and self-esteem also result in positive behaviors such as cooperation to reach the group’s goals (see De Cremer & Tyler, 2005, for an overview).

Our results regarding follower control are also interesting in light of the discussion of whether process control effects can be explained by purely instrumental concerns or whether identity concerns also play a role (see Shapiro & Brett, 2005, for a recent overview). In their explanation of process control effects, Thibaut and Walker (1975) noted that process control suggests that followers’ long term outcomes are guaranteed. Subsequent research has claimed that identity concerns can also be relevant. For instance, Lind, Kanfer, and Early (1990)
showed that followers reacted more positively to decisions when they were allowed to voice their opinion even after the decision had already been made. We do not wish to claim that process control communicates no identity information. However, the present findings suggest that identity information may, in fact, be captured more directly by other procedural fairness rules that are implicit in process control. For instance, followers may consider it less likely that leaders are biased towards their own interests when they can voice their opinion, even when this happens after the decision has been made. Future research should investigate how different procedural fairness rules implicitly imply one another more directly. In a similar vein, Brockner et al. (2001) already noted that we know much more about process control than about other procedural fairness rules. The present study further highlights that the psychology of procedural fairness cannot be built on the study of process control alone.

One final issue that we wish to highlight is that, in contrast to the large literature on procedural fairness effects, the present study is a rare example of research that explicitly addresses how followers form perceptions of procedural fairness rules, other than from their direct experience of enacted procedures (see also Mueller & Landsman, 2004; van Dijke & De Cremer, 2008). Arguably, this is an interesting avenue for future research because it directly leads to the formation of novel hypotheses regarding how different procedural fairness rules relate to one another and to important outcome variables.

Strengths and limitations

An important strength of the present research is that we combined different research methods to test our hypotheses. Combining a field and a laboratory study increases our confidence in the ecological as well as internal validity of our results. In fact, the laboratory study revealed even stronger support for the predicted prototypicality \(\times \) group identification interaction on leader endorsements than previous work because this has never manipulated identification with the group, but instead measured it (e.g., Platow & van Knippenberg, 2001;
Ullrich et al., 2008), or relied on proxies such as participants’ fit with the group in vignette procedures (Giesner & van Knippenberg, 2008; van Dijke & De Cremer, 2008).

Nevertheless, we recognize that the results were not completely the same across both studies. In Study 1, leader charisma and leader benevolence perceptions were higher when leader prototypicality and identification were both high than in all other leader prototypicality - identification combinations. In Study 2, leader benevolence and support for the leader were lower when identification was high and leader prototypicality was low than in all other leader prototypicality - identification combinations (see Figure 2 and 3 and Table 3). It is not uncommon to find diverging results across different outcomes of leader prototypicality (e.g., Hains et al., 1997). However, the difference between the two studies may well be attributable to the different contexts. People often enter new situations including laboratory experiments with high expectations of treatment quality. In such new situations, negative information is more likely to influence perceptions than positive information because it violates expectations (McKnight, Cummings, & Chervany, 1998; Weber, Malhotra, & Murnighan, 2005). In the lab study, high identifiers may thus have found a non prototypical leader as violating their positive expectations, which should make them react with particularly low expectations of leader benevolence and, consequently, low support for non-prototypical leaders. In the field study, our respondents worked on average for 11.94 years in the organization, suggesting that many of them were used to non prototypical leaders (i.e., leaders appointed by higher management may or may not be group prototypical). This is reflected in the mean level of leader prototypicality (2.71 on a five-point scale). These employees thus likely had lower expectations of treatment quality making this setting more prone to reveal positive effects of leader prototypicality resulting from violations of negative expectations.

Leader benevolence perceptions significantly mediated the leader prototypically x identification interaction in both studies (on charisma and support for the leader, respectively).
However, in Study 1, leader prototypicality related to leader charisma even among low identifiers. In Study 2, leader prototypicality did not influence support for the leader among low identifiers. This suggests that charisma, while reflecting legitimacy because it motivates followers to voluntarily perform beyond expectations (Yukl, 2006) also directly relates to leader prototypicality, regardless of whether followers find prototypical leaders legitimate (i.e., regardless of identification). This is likely because charisma (e.g., communicating vision) relates to representing the group’s identity (regardless of the group’s importance to the self). Nevertheless, finding that in both studies the interactive effect of leader prototypicality and identification was significantly mediated by leader benevolence strongly suggests that both studies tap into the same identity processes that we set out to investigate.

A final issue that we mention is that leader benevolence perceptions did not completely explain the leader prototypically x identification interaction on charisma and support for the leader. Hence, procedural fairness rules referring to leader benevolence may not completely cover this concept. It is, for instance, imaginable that benevolence also includes respectful and dignified treatment (i.e., interactional fairness; Bies & Moag, 1986). Additionally, although benevolence is a necessary and prime antecedent of legitimacy, both legitimacy and leader prototypically have also been linked to perceived competence (Hains et al., 1997; Hollander, 1980; van Knippenberg & van Knippenberg, 2005) and they arguably also both relate to integrity (i.e., leaders following accepted norms; see also note 1). Nevertheless, although our results do not give a definite and complete answer to the question what explains endorsement of protypical leaders (among high identifiers), they do show that leader benevolence partly explains this endorsement whereas follower control does not.

Concluding remarks

The value of the present research lies in connecting the fields of leadership and procedural fairness. This resulted in a direct attempt to understand what explains endorsement
of prototypical leaders among strongly identifying followers and also what does not explain this endorsement. We believe that we have convincingly shown that, among high identifiers, perceptions of procedural fairness rules referring to leader benevolence partly explain endorsement of prototypical leaders whereas this is not the case for perceptions of follower control. Furthermore, our research has implications for the procedural fairness literature because follower control perceptions, including the well-known fairness rule of process control, play no role in explaining endorsement of prototypical leaders whereas a number of other, far less well understood procedural fairness rules partly explain this endorsement.
References

Prototypicality and Fairness

Ullrich, J., Christ, O., & Van Dick, R. (2009). Substitutes for procedural fairness: Prototypical leaders are endorsed whether they are fair or not. *Journal of Applied Psychology, 94,* 235-244.

effect: The influence of expectations on procedural fairness judgments and performance.

Notes

1. We do not include ethicality in our argument as this is the only procedural fairness rule that is by definition subjective in nature (Leventhal, 1980). Moreover, acting in line with shared values conceptually overlaps with being prototypical. Including this rule would thus stack the deck unfairly in favor of our hypotheses. We also do not explicitly focus on representation, as this rule covers process control and decision control (Leventhal, 1980; Tyler, 1988).

2. Multiple moderated mediation analyses in which identification was also treated as a moderator of the leader prototypicality – follower control and the follower control – charisma paths showed similar results: Follower control did not explain the effect of leader prototypicality on charisma, regardless of identification. The results for leader benevolence were essentially the same as in the analyses presented in the main text.

3. Process control and decision control relate to representation of followers’ interests in the leader’s decisions (Leventhal, 1980, Tyler, 1988). Potentially, follower control could thus play an explanatory role in the endorsement of prototypical leaders if it mediates the effect of leader prototypicality on benevolence perceptions. Because leader prototypicality has a main effect on follower control and interacts with identification to influence leader benevolence perceptions, follower control might influence leader benevolence perceptions particularly among high identifiers. Indirect effect analysis (Preacher et al., 2007) revealed no support for this idea. Although follower control correlates significantly with leader benevolence (see Table 2), identification played no moderating role in this relationship. Moreover, the direct effect of the leader prototypicality x identification interaction on leader benevolence was not decreased and still significant in this analysis.

4. We did not assess bias suppression in Study 2 because the brainstorming task made it
impossible for leaders to be self-interested. In fact, the financial bonus that would be awarded to the best discussion would be allocated to the group by the experimenter.

5. Comparison of Figure 2 and Table 3 reveals a difference between Study 1 and 2:
 Whereas in Study 1, prototypical leaders were found particularly charismatic among high identifiers, in Study 2, non-prototypical leaders received particularly low levels of support among high identifiers. We will return to this issue in the general discussion.

6. Like in Study 1, we also checked for a potential mediating role of follower control in the effect of leader prototypicality on perceived leader benevolence (see note 3).
 Again, follower control correlated strongly with leader benevolence ($r = .55$, $p < .001$), but we found no evidence for mediation.
Table 1

Means, Standard Deviations, and Correlations between the Variables of Study 1

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>Leader benevolence</th>
<th>Leader prototypicality</th>
<th>Collective identification</th>
<th>Leader charisma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follower control</td>
<td>2.56</td>
<td>1.03</td>
<td>.41</td>
<td>.24</td>
<td>.22</td>
<td>.30</td>
</tr>
<tr>
<td>Leader benevolence</td>
<td>2.94</td>
<td>1.02</td>
<td>.18</td>
<td></td>
<td>.22</td>
<td>.38</td>
</tr>
<tr>
<td>Leader prototypicality</td>
<td>2.71</td>
<td>.90</td>
<td></td>
<td></td>
<td>.17</td>
<td>.70</td>
</tr>
<tr>
<td>Coll. identification</td>
<td>3.41</td>
<td>.75</td>
<td></td>
<td></td>
<td></td>
<td>.30</td>
</tr>
<tr>
<td>Leader charisma</td>
<td>2.99</td>
<td>.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. N = 347; all correlations are significant at p < .01.
Table 2

Hierarchical Regression Results of Procedural Fairness Perceptions and Leader Charisma on Organizational identification and Leader Prototypicality (Study 1)

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Relative impact</th>
<th>Follower control</th>
<th>Leader benevolence</th>
<th>Leader charisma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(R^2), (R^2_{\text{change}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>.04, .00</td>
<td>.17, .12**</td>
<td>.17, .08**</td>
<td>.55, .53**</td>
</tr>
<tr>
<td>Org. identification</td>
<td>-.05 (.08) -.04</td>
<td>.25 (.08) .21**</td>
<td>.19 (.07) .14**</td>
<td>.23 (.04) .20**</td>
</tr>
<tr>
<td>Leader prototypicality</td>
<td>.01 (.07) .02</td>
<td>.23 (.06) .24**</td>
<td>.23 (.06) .22**</td>
<td>.62 (.04) .67**</td>
</tr>
<tr>
<td>Step 3</td>
<td>.05, .01*</td>
<td>.17, .03</td>
<td>.20, .03**</td>
<td>.56, .01*</td>
</tr>
<tr>
<td>Org. identification</td>
<td>-.04 (.06) -.04</td>
<td>.25 (.08) .18**</td>
<td>.20 (.07) .13**</td>
<td>.23 (.04) .21**</td>
</tr>
<tr>
<td>Leader prototypicality</td>
<td>.01 (.06) .00</td>
<td>.23 (.06) .20**</td>
<td>.22 (.06) .20**</td>
<td>.61 (.04) .66**</td>
</tr>
<tr>
<td>Identification x leader</td>
<td>.10 (.04) .11*</td>
<td>.06 (.07) .04</td>
<td>.22 (.07) .16**</td>
<td>.11 (.04) .10**</td>
</tr>
</tbody>
</table>

Notes. Relative impact denotes relative influence of leader benevolence versus follower control perceptions, based on standardized versions of these variables. Table presents \(b \) coefficients, then \(SE's \) of these coefficients in parentheses, and then \(\beta \) coefficients at each step of the analyses for step 2 and 3 (thus not reporting the demographic control variables). Indicators of explained variance for each step are given in columns presenting step overviews. *: \(p < .05 \), **: \(p < .01 \). ***: \(p < .001 \).
Table 3

Means and Standard Deviations of Procedural Fairness Judgments and Support for the Leader as a Function of Identification and Prototypicality (Study 2)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Identification:</th>
<th>leader prototypicality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Relative impact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.14 (1.13)</td>
<td>-0.31 (0.87)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>0.02 (0.91)</td>
<td>0.13 (0.84)</td>
<td></td>
</tr>
<tr>
<td>Follower control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>4.65 (0.99)</td>
<td>5.24 (0.75)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>4.35 (1.08)</td>
<td>5.10 (0.76)</td>
<td></td>
</tr>
<tr>
<td>Leader benevolence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>4.86 (0.97)</td>
<td>5.03 (1.14)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>4.42 (0.86)</td>
<td>5.33 (1.05)</td>
<td></td>
</tr>
<tr>
<td>Support for the leader</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>5.81 (1.42)</td>
<td>5.98 (0.76)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>4.88 (0.85)</td>
<td>5.94 (1.31)</td>
<td></td>
</tr>
</tbody>
</table>

Notes. Relative impact refers to relative influence of leader benevolence versus follower control perceptions, based on standardized versions of these variables. For the scales, higher scores indicate higher procedural fairness judgments and stronger support for the leader. Standard deviations are given in parentheses. Means with different subscripts are significantly different from each other per variable. # indicates that means are marginally significantly different ($p < .10$).
Figure Captions

Figure 1. Hypothesized moderation by identification of the mediational role of leader benevolence perceptions in explaining the impact of leader prototypicality on leader endorsement.

Figure 2. The relationship between leader prototypicality and leader charisma as a function of organizational identification (Study 1).

Figure 3. The relationship between leader prototypicality and leader benevolence perceptions as a function of organizational identification (Study 1).

Figure 4. Model used to test indirect effects of leader prototypicality on leader endorsement, Studies 1 and 2.

Figure 5. Role of leader benevolence perceptions in mediating the impact of leader prototypicality on leader charisma, as a function of high identification (top panel) and low identification (bottom panel).

Figure 6. Role of leader benevolence perceptions in mediating the impact of leader prototypicality on support for the leader, as a function of high identification (top panel) and low identification (bottom panel).
Figure 1

Leader prototypicality → Leader benevolence perceptions → Leader endorsement

Collective identification

Prototypicality and Fairness 45
Figure 2

The figure illustrates the relationship between leader prototypicality and leader charisma, with two levels of organization identification: low and high. The x-axis represents low and high leader prototypicality, while the y-axis shows leader charisma. The solid line represents low organization identification, and the dashed line represents high organization identification. The graph shows a positive correlation between leader prototypicality and leader charisma for both levels of organization identification.
Figure 3

![Graph showing the relationship between leader benevolence and organization identification across different levels of leader prototypicality. The graph includes two lines: one for low organization identification and one for high organization identification. The x-axis represents low and high leader prototypicality, while the y-axis represents leader benevolence.]
Figure 4
Figure 5

High identification

\[\beta = .14 \quad *** \]

leader benevolence

\((\beta = .74 \quad ***) \)

leader charisma

\[\beta = .65 \quad *** \]

Standardized indirect effect CI: .02 - .09

Low identification

\[\beta = .06 \]

leader benevolence

\((\beta = .56 \quad ***) \)

leader charisma

\[\beta = .52 \quad *** \]

Standardized indirect effect CI: -.02 - .03
Figure 6

High identification

\[\beta = .44^{**} \]

\[(\beta = .45^{***}) \]

\[\beta = .34^{**} \]

Standardized indirect effect CI: .03 - .25

Low identification

\[\beta = .08 \]

\[(\beta = .07) \]

\[\beta = .07 \]

Standardized indirect effect CI: -.03 - .10