Finite-dimensional Hilbert space and frame quantization

N. Cotfas 1 J.-P. Gazeau 2 A. Vourdas
2 APC - THEORIE
Institut für theoretische Physik, APC - UMR 7164 - AstroParticule et Cosmologie
Abstract : The quantum observables used in the case of quantum systems with finite-dimensional Hilbert space are defined either algebraically in terms of an orthonormal basis and discrete Fourier transformation or by using a continuous system of coherent states. We present an alternative approach to these important quantum systems based on the finite frame quantization. Finite systems of coherent states, usually called finite tight frames, can be defined in a natural way in the case of finite quantum systems. Novel examples of such tight frames are presented. The quantum observables used in our approach are obtained by starting from certain classical observables described by functions defined on the discrete phase space corresponding to the system. They are obtained by using a finite frame and a Klauder-Berezin-Toeplitz-type quantization. Semi-classical aspects of tight frames are studied through lower symbols of basic classical observables.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2011, 44, pp.175303. <10.1088/1751-8113/44/17/175303>


https://hal.archives-ouvertes.fr/hal-00739314
Contributeur : Alina Deniau <>
Soumis le : dimanche 7 octobre 2012 - 19:10:07
Dernière modification le : mardi 11 octobre 2016 - 14:55:49

Identifiants

Collections

OBSPM | CEA | APC | INSMI | PSL | USPC

Citation

N. Cotfas, J.-P. Gazeau, A. Vourdas. Finite-dimensional Hilbert space and frame quantization. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2011, 44, pp.175303. <10.1088/1751-8113/44/17/175303>. <hal-00739314>

Exporter

Partager

Métriques

Consultations de la notice

240