Holomorphic Hermite polynomials and a non-commutative plane

J.-P. Gazeau 1 F. Hugon Szafraniec
1 APC - THEORIE
Institut für theoretische Physik, APC - UMR 7164 - AstroParticule et Cosmologie
Abstract : One more coherent state quantization of a complex plane is presented. Although the complex plane is equipped with a non-rotationally invariant measure, we still obtain a canonical commutation rule (up to a simple rescaling). We explain how the involved coherent states, built from holomorphic continuations of Hermite polynomials, are related to the non-commutative plane.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2011, 44, pp.495201. <10.1088/1751-8113/44/49/495201>


https://hal.archives-ouvertes.fr/hal-00739312
Contributeur : Alina Deniau <>
Soumis le : dimanche 7 octobre 2012 - 19:05:59
Dernière modification le : mardi 11 octobre 2016 - 14:55:49

Identifiants

Collections

CEA | OBSPM | APC | INSMI | PSL | USPC

Citation

J.-P. Gazeau, F. Hugon Szafraniec. Holomorphic Hermite polynomials and a non-commutative plane. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2011, 44, pp.495201. <10.1088/1751-8113/44/49/495201>. <hal-00739312>

Exporter

Partager

Métriques

Consultations de la notice

285