
HAL Id: hal-00738467
https://hal.science/hal-00738467

Submitted on 4 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic synthesis of logical controllers despite
inconsistencies in specifications
Jean-Marc Roussel, Jean-Jacques Lesage

To cite this version:
Jean-Marc Roussel, Jean-Jacques Lesage. Algebraic synthesis of logical controllers despite inconsis-
tencies in specifications. 11th International Workshop on Discrete Event Systems, WODES 2012, Oct
2012, Guadalajara, Mexico. pp. 307–314. �hal-00738467�

https://hal.science/hal-00738467
https://hal.archives-ouvertes.fr


Algebraic synthesis of logical controllers
despite inconsistencies in specifications

Jean-Marc Roussel ∗ Jean-Jacques Lesage ∗

∗ LURPA / ENS Cachan, 61 Avenue du Pt Wilson, F-94235 Cachan
Cedex France, (e-mail: firstname.lastname@lurpa.ens-cachan.fr).

Abstract: This paper deals with the problem of consistency of the requirements which are
the starting point of controller synthesis methods for Discrete Event Systems (DES). In
previous papers, an algebraic synthesis method for logical systems has been proposed. This
method includes a theorem allowing the proof of consistency of the set of specifications. In
this paper, we show that if inconsistencies are detected, the conditions of these inconsistencies
can be given to the designer. It is therefore possible for the designer to propose priority rules
between the involved requirements allowing the correction of incoherent specifications. Both
the mathematical and the methodological aspects of this work are presented. In an illustrative
purpose, the case study of a hydraulic press is developed.

Keywords: Controller synthesis, Algebraic approaches, Boolean algebra, Dependable system

1. INTRODUCTION

Programmable Logic Controllers (PLCs) are frequently
used for the control of safety-critical systems. Since failure
of such systems may have disastrous effects, the use of
formal methods for the design of control algorithms is
often mandatory (IEC 61508 (1998)). Automatic synthesis
methods are among the best solutions to handle this prob-
lem and are one of the most active subjects of research in
the field of Discrete Event Systems (DES) since the end
of 80’s (cf. numerous sessions organized in this field in
the past WODES editions 1 ). Most part of recent works
in this area are still based onto the Supervisory Control
Theory (SCT) (Ramadge and Wonham (1989)) and are
aiming to the synthesis of a Supervisor, and not directly
to the Controller of an automated system. Furthermore,
the use of state models (Finite Automata, Petri Nets...)
and their composition for the construction of the models of
the plant and of the specifications generates a complexity
which remains problematic for the synthesis of a supervisor
for complex systems (Gohari and Wonham (2000)). It is
therefore interesting to explore other ways for performing
synthesis, such as algebraic approaches. In previous works,
we proposed a method specifically developed to get the
control laws that can be directly implemented into the
controller (Hietter (2009)). We have chosen to synthesize
these control laws under the form of recurrent Boolean
equations because of the wide possibilities they offer for
the formalization of safety requirements and for implemen-
tation.

Nevertheless, whatever is the synthesis method used, one
of the weak links of the automatic generation of the
control laws is the step of formal transcription (within
state models or algebraic expressions) by the designer
of the informal requirements and safety properties the
controller has to satisfy. In the case of SCT, some authors

1 available at http://www.diee.unica.it/giua/WODES/

have proposed more or less generic approaches for the
construction of the models of the plant (Hanisch et al.
(1998)) or of the specifications (Roussel and Giua (2005)).
But in any case, the hypothesis that requirements can be
inconsistent has never been taken into account, except
in (Zowghi and Offen (1997)) where authors propose a
theorization of requirements evolution. Unfortunately in
the framework of industrial collaborations we have been
able to verify that it is often the case. In this paper we
show how, in consideration of specific hypotheses, it is
possible to install a correction loop for helping the designer
to formalize these requirements and so, improving the
synthesis method robustness to the lack of precision of
the specifications.

This paper is organized as follows. Some basics of algebraic
synthesis are given in Section 2, and Section 3 recalls
the main steps of our method. Section 4 presents the
mathematical framework of our approach and new results
that allow us to accept inconsistencies in specifications.
The strategy we developed for making the synthesis more
robust to the lack of consistency of the specifications is
described in section 5 thanks to a case study.

2. PROBLEM STATEMENT

Fig. 1 proposes a generic representation of a DES whose
the controller has p Boolean inputs (ui), q Boolean out-
puts (yj) and r Boolean state variables (xl). Plant and
Controller are connected through a closed loop exchanging
inputs and outputs signals. The state variables, needed
for expressing sequential behaviors of the controller, are
represented by internal variables.

The algebraic modeling of the control laws of the controller
necessitates the definition of (q + r) switching functions
of (p + r) variables. Even if this representation is very
compact (the r Boolean state variables allow the represen-
tation of 2r different states), the construction by hands of



Combinational
behavior

State var.
behavior

ui yjxl

Controller

Plant

/
q

/
p

/
r

{
yj [k] = Fj(u1[k], · · · , up[k], x1[k − 1], · · · , xr[k − 1])

xl[k] = Fq+l(u1[k], · · · , up[k], x1[k − 1], · · · , xr[k − 1])

Fig. 1. A sequential DES

these switching functions is a very tedious and error-prone
task (Huffman (1954)): the controller of Fig. 1, admits 2p

inputs combinations, can send 2q outputs combinations

and can express (22
(p+r)

)(q+r) sequential behaviors. That
is the reason why algebraic modeling approaches have
been replaced by methods based on state models since
the middle of 50’s (Mealy (1955), Moore (1956)). Nev-
ertheless, thanks to recent mathematical results obtained
onto Boolean algebras (Rudeanu (2001), Brown (2003)),
the automatic algebraic synthesis of switching functions is
now possible.

In Pnueli and Rosner (1989) an interesting approach for
the systematic construction of a reactive program from
its formal specification is proposed. In this work, the
program synthesis is considered as a theorem proving
activity. A program with input x and output y, specified
by the formula ϕ(x, y), is constructed as a by-product
of proving the theorem (∀x)(∃y)ϕ(x, y). The specification
ϕ(x, y) characterizes the expected relation between the
input x and the output y computed by the program. This
approach is based on the observation that the formula
(∀x)(∃y)ϕ(x, y) is equivalent to the second order formula
(∃f)(∀x)ϕ(x, f(x)), stating the existence of a function f ,
such that ϕ(x, f(x)) holds for every x.

This approach provides a conceptual framework for the rig-
orous derivation of a program from its formal specification.
It has also been used to synthesize specifications under the
form of finite automata from their Linear Temporal Logic
(LTL) description (Filiot et al. (2011)).

The core of our approach is based on this strategy: we
aim at deducing the (q + r) switching functions of (p+ r)
variables which define the behavior of the controller from
a formula ϕ(ui[k], xl[k−1], yj [k], xl[k]) that holds for every
k, every ui[k] and every xl[k − 1].

To cope with combinatorial explosion, switching functions
will be handled through a symbolic representation (and
not their truth-tables which contains 2(p+r) Boolean val-
ues). Each input ui (res. output yj) of the controller will
be represented by a switching function Ui (res. Yj). To
take into account the recursive aspect of state variables,
each state variable xl will be represented by two switching
functions: Xl (for time [k]) and pXl (for time [k − 1]).

According to this representation, the synthesis of control
laws of a logical system from its specification can now

be transformed into the search of the solution of the
mathematical problem:

(∀Ui)(∀ pXl)(∃Yj)(∃Xl)ϕ(Ui, pXl, Yj , Xl)

where (Ui, pXl, Yj , Xl) are (p+ q+ 2r) switching functions
of (p+ r) variables.

3. OVERVIEW OF OUR METHOD

The input data of the proposed method (Fig 2) are
unformal functional and safety requirements given by
the designer. In practice, these requirements are most
often given in a textual form and/or by using technical
Taylor-made languages (Gantt Diagrams, Function Blocks
Diagrams, Grafcet...).

Functional and
safety requirements

Formalization1

Set of formalized
requirements

Consistency checking2

Priorities
between

requirements

Inconsistency
conditionsSystem of equations

Equation solving3

Parametric
solution

Solution choice4

Control laws

Optimization
Criteria

Fig. 2. The algebraic synthesis method step by step

All the steps of our synthesis method are implemented
into a prototype software tool developed in Python 2 . The
first step is the formalization of requirements within an
algebraic description. Requirements expressed with a state
model can directly be translated into recurrent Boolean
equations, thanks to the algorithm proposed by Machado
et al. (2006). Generic formalization of some requirements
(change of operation modes, emergency management...)
are also proposed for helping the designer to formalize
“standard” requirements given in textual form (examples
are given in Section 5.2). In case where the know-how of
the designer enables him to build a priori the global form
of the solution (or of a part of the whole solution) it is
also possible to give fragments of solution as requirements
(Hietter et al. (2008c)).

The second step consists in checking the consistency of the
set of requirements by symbolic calculation. In a previous
paper (Hietter et al. (2008a)), a theorem allowing the proof
of consistency of the set of requirements has been pro-
posed. In this paper, we show that if inconsistencies are de-
tected, the conditions of these inconsistencies can be given
2 Case studies are available online: http://www.lurpa.ens-
cachan.fr/isa/asc/case studies.html



to the designer. It is therefore possible for the designer
to propose priority between the involved requirements
allowing the correction of inconsistent specifications. We
will develop more especially the mathematical results on
which this step of the method is based in Section 4.3; it
will be applied to a case study in Section 5.3.

The core of the method is the third step, which consists in
the synthesis of the control laws. This step is performed by
solving the system of equations which represents the set
of consistent requirements. The mathematical results we
have obtained (Theorem 2 recalled in Section 4.2), allow to
find a symbolic expression of the set of solutions under the
form of a parametric expression (Hietter et al. (2008b)).

In the fourth step of the method, a particular solution
has to be chosen among the set of solutions. For that, a
specific value of each parameter of the general solution has
to be fixed. In some cases, optimal solutions, according to
given criteria, can be automatically found (Leroux (2011)).
For ergonomic reasons, the synthesized control laws can
finally be displayed under the form of a finite automaton
(Guignard (2011)).

After the mathematical background of the method has
been recalled, we are going to show how, in consideration
of specific hypotheses, the second step of the method can
be improved by a correction loop helping the designer to
formalize the requirements and so improving the robust-
ness of our synthesis method to the lack of precision of the
specifications.

4. MATHEMATICAL BASICS

Section 4.1 recalls classical notations and results onto the
Boolean algebra of n-variable switching functions. Sec-
tion 4.2 recalls the principal results on which our synthesis
method is based. Section 4.3 presents the new results we
use for helping the designer to formalize requirements.

4.1 The Boolean algebra of n-variable switching functions

To avoid confusion between Boolean variables and Boolean
functions of Boolean variables, each Boolean variable bi is
denoted as bbi. The set of the two Boolean values b0 and

b1 is denoted as: B = {b0, b1}. The classical two-element
Boolean Algebra is ({b0, b1},∨,∧,¬, b0, b1).

An n-variable switching function is a mapping 3

f : Bn → B where B = {b0, b1}
(bb1, . . . , bbn) 7→ f(bb1, . . . , bbn)

Let Fn(B) be the set of the 22
n

n-variable switching func-
tions. Fn(B) contains (n + 2) specific n-variable switch-
ing functions: the 2 constant functions (0, 1), and the n

projection-functions (f iPj). These functions are defined by:

0 : Bn → B

(bb1, . . . , bbn) 7→ b0

1 : Bn → B

(bb1, . . . , bbn) 7→ b1

f iPj : Bn → B

(bb1, . . . , bbn) 7→ bbi

3 From Section 3.11 of Brown (2003).

Fn(B) can be equipped with three closed operations in
order to obtain the Boolean Algebra (Fn(B),+, ·, , 0, 1):

Op. + : Fn(B)2 → Fn(B)

(f, g) 7→ f + g

Op. · : Fn(B)2 → Fn(B)

(f, g) 7→ f · g

Op. : Fn(B)→ Fn(B)

f 7→ f

where ∀(bb1, . . . , bbn) ∈ Bn,
(f + g)(bb1, . . . , bbn) = f(bb1, . . . , bbn) ∨ g(bb1, . . . , bbn)

(f · g)(bb1, . . . , bbn) = f(bb1, . . . , bbn) ∧ g(bb1, . . . , bbn)

f(bb1, . . . , bbn) = ¬f(bb1, . . . , bbn)

A Boolean formula onto Fn(B) is a composition F(α1, . . . , αn)
of (α1, . . . , αn) by operations +, · and . It represents one
and only one element of Fn(B) and can be expressed as:

F(α1, . . . , αn) = F0(α2, . . . , αn) · α1 + F1(α2, . . . , αn) · α1

where F0(α2, . . . , αn) and F1(α2, . . . , αn) are Boolean for-
mulae of α2, . . . , αn. These two formulae can be directly
obtained from F(α1, . . . , αn) as follows:{F0(α2, . . . , αn) = F(α1, . . . , αn)|α1←0 = F(0, α2, . . . , αn)

F1(α2, . . . , αn) = F(α1, . . . , αn)|α1←1 = F(1, α2, . . . , αn)

It is also possible to define a partial order relation, called
Inclusion-Relation, between elements of Fn(B).

Definition 1. (Inclusion-Relation). 4

∀(x, y) ∈ Fn(B)2, define x ≤ y if and only if x · y = x.

Relation Inclusion is a partial order: it is reflexive (x ≤ x),
antisymmetric (if x ≤ y and y ≤ x, then x = y) and
transitive (if x ≤ y and y ≤ z, then x ≤ z).
Since x ·y = x⇔ x ·y = 0, we also have x ≤ y ⇔ x ·y = 0.

4.2 Solutions of Boolean equations over Fn(B)

Consider the Boolean algebra of n-variable switching func-
tions (Fn(B),+, ·, , 0, 1).

• Let (f 1
Pj, · · · , f

n
Pj) be the projection-functions of Fn(B).

• Let (x1, · · · , xk) be k elements of Fn(B) considered
as unknowns.

For notational convenience, we note ‘Xk’ the vector
(x1, · · · , xk) of the k unknowns and ‘Pj’ the vector
(f 1
Pj, · · · , f

n
Pj) of the n projection-functions of Fn(B).

Any set of simultaneously-asserted relations of n-variable
switching functions can be reduced to a single equivalent
relation as: F(Xk,Pj) = 0. For that, it is sufficient:

• to rewrite each equality according to:

F1(Xk,Pj) = F2(Xk,Pj) ⇔
F1(Xk,Pj) · F2(Xk,Pj) + F1(Xk,Pj) · F2(Xk,Pj) = 0

• to rewrite each inclusion according to:

F1(Xk,Pj) ≤ F2(Xk,Pj)⇔ F1(Xk,Pj) · F2(Xk,Pj) = 0

• to group rewritten equalities as follows:{
F1(Xk,Pj) = 0

F2(Xk,Pj) = 0
⇔ F1(Xk,Pj) + F2(Xk,Pj) = 0

4 Definition 15.6 of Grimaldi (2004).



In order to express Eq(Xk,Pj) = 0 in a canonic form, the
following notation has to be introduced: for x ∈ Fn(B)
and a ∈ {0, 1}, xa is defined by

x0 = x x1 = x

This notation can be used for vectors as follows:
for Xk = (x1, · · · , xk) ∈ Fn(B)k and Ak = (a1, · · · , ak) ∈
{0, 1}k, XAk

k is defined by

XAk

k =

i=k∏
i=1

xaii = xa11 · . . . · x
ak
k

Theorem 1. Canonic form of a Boolean equation
Any Boolean equation Eq(Xk,Pj) = 0 can be expressed in
the canonic form∑

Ak∈{0,1}k
Eq(Ak,Pj) ·XAk

k = 0

where Eq(Ak,Pj) (with Ak ∈ {0, 1}k) are the 2k discrimi-
nants 5 of Eq(Xk,Pj) according to Xk.

This canonic form is obtained by expressing Eq(Xk,Pj)
according to the k unknowns. For example, we have:

Eq(x1, x2,Pj) = Eq(0, 0,Pj) · x1 · x2 + Eq(0, 1,Pj) · x1 · x2
+ Eq(1, 0,Pj) · x1 · x2 + Eq(1, 1,Pj) · x1 · x2

Theorem 2. Solution of a k-unknown equation
The Boolean equation over Fn(B)

Eq0(Xk,Pj) = 0 (1)

is consistent (i.e. has at least one solution) if and only if
the following condition is satisfied:∏

Ak∈{0,1}k
Eq0(Ak,Pj) = 0 (2)

When (2) is satisfied, Equation (1) admits one or more
k-tuple solutions (S(x1), · · · , S(xk)) where each S(xi) is
defined by

S(xi) =
∏

Ak−i∈{0,1}k−i

Eqi−1(0,Ak−i,Pj)

+ pi ·
∏

Ak−i∈{0,1}k−i

Eqi−1(1,Ak−i,Pj)
(3)

where

• Eqi(xi+1, · · · , xk,Pj) = Eqi−1(xi, · · · , xk,Pj)|xi←S(xi)

• pi is an arbitrary parameter, i.e, a freely-chosen ele-
ment of Fn(B).

The general form of this theorem can be found in Rudeanu
(2001) or Brown (2003). However, in these works, the
solution is not expressed in a parametric form, but only
with intervals. The proof of this parametric formulation,
which is mandatory in our approach, can be found in
Hietter (2009).

4.3 Two new theorems for coping with inconsistencies of
specifications

In practice, it is very difficult for a designer to specify
the whole requirements of a complex system without
inconsistencies. It is the reason why requirements given by
the designer are often declared as inconsistent according to
Theorem 2. Since the inconsistency condition is a Boolean
5 The term of ‘discriminant’ comes from Brown (2003).

formula, it is possible to use it for the detection of the
origin of inconsistencies. Two cases have to be considered:

• Several requirements cannot be simultaneously re-
spected. In this case, a hierarchy between require-
ments can be proposed in order to find a solution. The
requirements which have the lower priority have to be
corrected for becoming consistent with the require-
ments which have the higher priority. This strategy
is based on Theorem 4.

• The detected inconsistency refers to combinations
of the projection-functions for which the designer
knows that there is no solution. To avoid blocking
the synthesis process, it is necessary to introduce new
assumptions and to use Theorem 3.

Theorem 3. Solution of a Boolean equation according to
an assumption among the projection-functions.
The following problem

Equation to solve:

Eq0(Xk,Pj) = 0

Assumptions:

A(Pj) = 0

(4)

admits the same solutions as the following equation:

Eq0(Xk,Pj) ≤ A(Pj) (5)

Proof. According to A(Pj) = 0, Eq0(Xk,Pj) = 0 can be
rewritten as:{

Eq0(Xk,Pj) = 0

A(Pj) = 0
⇔ A(Pj) + Eq0(Xk,Pj) = 0

⇔ A(Pj) +A(Pj) · Eq0(Xk,Pj) = 0

⇔

{
A(Pj) · Eq0(Xk,Pj) = 0

A(Pj) = 0
⇔
{

Eq0(Xk,Pj) ≤ A(Pj)

A(Pj) = 0

Equation A(Pj) · Eq0(Xk,Pj) = 0 is consistent if and only
if the following condition is true (Theorem 2):

A(Pj) ·
∏

Ak∈{0,1}k
Eq0(Ak,Pj) = 0 (6)

By construction, this new condition is the subset of the
initial condition (

∏
Ak∈{0,1}k Eq0(Ak,Pj) = 0) for which

the proposed assumption is satisfied. All the others terms
have been removed.

If (6) is satisfied, (5) admits one or more k-tuple solutions
where each component S(xi) is defined by

S(xi) =A(Pj) ·

 ∏
Ak−i∈{0,1}k−i

Eqi−1(0,Ak−i,Pj)

+pi ·
∏

Ak−i∈{0,1}k−i

Eqi−1(1,Ak−i,Pj)


+A(Pj) · pi

As A(Pj) = 0, S(xi) can also be expressed as:

S(xi) =
∏

Ak−i∈{0,1}k−i

Eqi−1(0,Ak−i,Pj)

+ pi ·
∏

Ak−i∈{0,1}k−i

Eqi−1(1,Ak−i,Pj)

When A(Pj) = 0 is satisfied, the solutions of (5) are also
solution of Equation Eq0(Xk,Pj) = 0.



2

Theorem 4. Solution of a Boolean equation system accord-
ing to a priority rule between requirements.
The following problem

Equations system to solve:
HR FH(Xk,Pj) = 0

LR FL(Xk,Pj) = 0

OR FO(Xk,Pj) = 0

Priority rule between requirements:

HR� LR

(7)

where:

• FH(Xk,Pj) = 0 is the formal expression of the
requirements which have the higher priority (HR).
• FL(Xk,Pj) = 0 is the formal expression of the

requirements which have the lower priority (LR).
• FO(Xk,Pj) = 0 is the formal expression of the others

requirements (OR).
• HR � LR is the priority rule between inconsistent

requirements.

admits the same solutions as the system of equations:
FH(Xk,Pj) = 0

FL(Xk,Pj) ≤ I(Pj)

FO(Xk,Pj) = 0

(8)

where I(Pj) is the inconsistency condition between re-
quirements ‘HR’ and ‘LR’:

I(Pj) =
∏

Ak∈{0,1}k
(FH(Ak,Pj) + FL(Ak,Pj))

Proof. Thanks to Theorem 2, the inconsistency condition
I(Pj) between requirements ‘HR’ and ‘LR’ can be found
by solving equation: FH(Xk,Pj) + FL(Xk,Pj) = 0. We
have:

I(Pj) =
∏

Ak∈{0,1}k
(FH(Ak,Pj) + FL(Ak,Pj))

To remove the inconsistency between Requirements ‘HR’
and ‘LR’ according to the priority rule ‘HR � LR’, it is
necessary to restrict the range of requirement ‘LR’ to the
part for which there is no inconsistency, i.e. I(Pj) = 0.
That is the case, when FL(Xk,Pj) = 0 is replaced by
FL(Xk,Pj) ≤ I(Pj).

Thanks to Theorem 2, (9) admits always one or more k-
tuple solutions and it is impossible to find a less restrictive
condition over Requirement ‘LR’.{

FH(Xk,Pj) = 0

FL(Xk,Pj) ≤ I(Pj)
(9)

2

5. SYNTHESIS OF CONTROLLERS DESPITE
INCOHERENT REQUIREMENTS

5.1 Control system specifications

Let us consider a hydraulic press with a vertical ram
(Fig 3). A safety-light curtain is used to safeguard op-
erators during the movements of the ram. A control panel
allows to select the mode of operation: Manual or Auto-
matic mode.

• In Manual mode, all the operations are carried out by
pressing the corresponding push-buttons. As soon as
a push-button is released, the ram movement stops.

• In Automatic mode, the cycle starts by pressing the
‘Start’ push-button: the ram is going down and comes
back to the up position after the press operation has
been done.

Fig. 3. A hydraulic press and its human-machine interfaces

Inputs and outputs of the controller (Fig. 4a) Each
movement of the ram is controlled thanks to a Boolean
output (‘goUp’ and ‘goDown’). The controller is informed
of the position of the ram thanks to inputs ‘up’ and
‘down’. The safety light curtain is connected to input ‘lc’
(lc = b1 when the operator is not in the detection zone
of the light curtain). The control panel of the press is
composed of an emergency stop button (input: ‘esb’), a
three position center-off switch for the operating mode
selection (‘sbA’, off: no mode selected, ‘sbM’) and four
push-buttons (inputs: ‘vpb’, ‘spb’, ‘uppb’ and ‘dopb’).

Control laws to synthetize It is not possible to identify
automatically how many and which state variables must
be used. The designer has to fix the state variables by
expertise.

For this case study, we propose to use 5 state variables:
one for each output; one for each mode of operation (Auto-
matic, Manual) 6 and one for characterizing a state where
the press is in a failure mode (Fail). According to this
choice, 5 15-variable switching functions (Auto, Manual,
Fail, GoUp and GoDown) have to be synthesized (Fig. 4b).
The 15 projection-functions of F15(B) are therefore:

• The 10 switching functions (Up, Down, Lc, Esb, SbA,
SbM, Vpb, Spb, Uppb, and Dopb) which characterize
the behavior of the inputs of the controller. They are
defined as follows:

Up : B15 → B

(up[k], . . . , goDown[k − 1]) 7→ up[k]

• The 5 switching functions (pAuto, pManual, pFail,

pGoUp and pGoDown) which characterize the pre-
vious behavior of the state variables of the controller.
They are defined as follows:

pAuto : B15 → B

(up[k], . . . , goDown[k − 1]) 7→ auto[k − 1]

5.2 Algebraic formalization of requirements

The complete formalization of the behavior of the hy-
draulic press is given Fig. 4c. In order to illustrate the
power of expression of relations Equality and Inclusion,
6 These mode variables must not be confused with inputs ‘sbA’ or
‘sbM’ which are the demand of operator for reaching these modes.



a) Inputs and outputs of the controller

Control panel

Off
ManualAutomatic

Up

Down

Start

Validation

Emergency
Stop Control

of the
hydraulic press

(Press ram in Up position) up
(Press ram in Down position) down
(Safety light curtain not broken) lc

(Emergency stop button) esb
(Three position switch in Automatic Position) sbA

(Three position switch in Manual Position) sbM
(‘Validation’ Push-button) vpb

(‘Start’ Push-button) spb
(‘Up’ Push-button) uppb

(‘Down’ Push-button) dopb

goUp (To move up the press ram)

goDown (To move up the press ram)

b) General form of the expected control laws

auto[k] = Auto(up[k], . . . ,dopb[k], auto[k − 1],manual[k − 1], fail[k − 1], goUp[k − 1], goDown[k − 1])

manual[k] = Manual(up[k], . . . ,dopb[k], auto[k − 1],manual[k − 1], fail[k − 1], goUp[k − 1], goDown[k − 1])

fail[k] = Fail(up[k], . . . ,dopb[k], auto[k − 1],manual[k − 1], fail[k − 1], goUp[k − 1], goDown[k − 1])

goUp[k] = GoUp(up[k], . . . ,dopb[k], auto[k − 1],manual[k − 1], fail[k − 1], goUp[k − 1], goDown[k − 1])

goDown[k] = GoDown(up[k], . . . ,dopb[k], auto[k − 1],manual[k − 1], fail[k − 1], goUp[k − 1], goDown[k − 1])

c) Complete formal specification

Requirements:

R1 Auto ·Manual + Auto · Fail + Manual · Fail = 0

R2 Esb ≤ Fail

R3 Up ·Down ≤ Fail

R4 Fail · pFail ≤ Lc

R5 Auto = SbA

R6 Auto · pAuto ≤ Up · Lc

R7 Auto · pAuto ≤ Vpb

R8 Auto · Lc ≤ Up

R9 Auto · pAuto · (Lc + Up) ≤ Fail

R10 Manual = SbM

R11 Manual · pManual ≤ Lc

R12 Manual · pManual ≤ Vpb



R20 GoUp ·GoDown = 0

R21 Up ≤ GoUp

R22 Down ≤ GoDown

R23 (GoUp + GoDown) ≤ Lc

R24 (GoUp + GoDown) ≤ (Auto + Manual)

R25 Manual ≤ ((GoUp ·Uppb) + (GoUp ·Uppb))

R26 Manual ≤ ((GoDown ·Dopb) + (GoDown ·Dopb))

R27 Manual · (Uppb ·Dopb) ≤ (GoUp + GoDown)

R28 Auto · (GoUp · pGoUp) ≤ Up

R29 Auto · (GoDown · pGoDown) ≤ Down

R30 Auto ≤ (Up + GoUp + GoDown)

R31 Auto ≤ ((GoDown · pGoDown) · (Up · Spb)

+(GoDown · pGoDown) · (pGoDown ·Up · Spb))

Priority rules:

{R1,R2,R3,R4} � R5 (* Fail mode has priority on Automatic mode. *)

{R6,R7,R8} � R5 (* Starting rules have priority on the switch position rule. *)

{R1,R2,R3,R4,R8} � R10 (* Fail mode has priority on Manual mode. *)

{R11,R12} � R10 (* Starting rules have priority on the switch position rule. *)

{R21,R23,R27} � R25 (* Safety requirements have priority on functional requirements. *)

{R21,R23,R27} � R26 (* Safety requirements have priority on functional requirements. *)

R23� R28 (* Safety requirements have priority on functional requirements. *)

R23� R29 (* Safety requirements have priority on functional requirements. *)

R23� R30 (* Safety requirements have priority on functional requirements. *)

{R22,R23} � R31 (* Safety requirements have priority on functional requirements. *)

Assumptions:
A1 SbA · SbM = 0 (* The 2 positions of the switch button are exclusive. *)

A2 pAuto · pManual + pAuto · pFail + pManual · pFail = 0 (* Consequence of R1. *)

A3 pGoUp · pGoDown = 0 (* Consequence of R20. *)

Optimization criteria:

Minimisation of: Fail

d) Solution obtained by symbolic calculation

Fail = Esb + Up ·Down + Lc · pFail + Up · Lc · pAuto

Auto = Esb · SbA · (Up ·Down · Lc ·Vpb + pAuto · (Up ·Down + Up · Lc))

Manual = Esb · SbM · (Up ·Down) · (Lc ·Vpb + pManual)

GoUp = Esb ·Up · Lc · (SbA · pAuto · (Down + pGoDown) + SbM ·Uppb ·Dopb · (Vpb + pManual))

GoDown = Esb ·Down · Lc · (SbA · (Spb ·Up · (Vpb + pAuto) + pGoDown · (pAuto + (Vpb ·Up)))

+SbM ·Dopb ·Uppb · (Vpb + pManual))

e) Control laws of the hydraulic press

fail[k] = esb[k] ∨ up[k] ∧ down[k] ∨ ¬lc[k] ∧ fail[k − 1] ∨ ¬up[k] ∧ ¬lc[k] ∧ auto[k − 1]

auto[k] = ¬esb[k] ∧ sbA[k] ∧ (up[k] ∧ ¬down[k] ∧ lc[k] ∧ vpb[k] ∨ auto[k − 1] ∧ (up[k] ∧ ¬down[k] ∨ ¬up[k] ∧ lc[k]))

manual[k] = ¬esb[k] ∧ sbM[k] ∧ ¬(up[k] ∧ down[k]) ∧ (lc[k] ∧ vpb[k] ∨manual[k − 1])

goUp[k] = ¬esb[k] ∧ ¬up[k] ∧ lc[k] ∧ (sbA[k] ∧ auto[k − 1] ∧ (down[k] ∨ ¬goDown[k − 1]) ∨ sbM[k] ∧ uppb[k] ∧ ¬dopb[k] ∧ (vpb[k] ∨manual[k − 1]))

goDown[k] = ¬esb[k] ∧ ¬down[k] ∧ lc[k] ∧ (sbA[k] ∧ (spb[k] ∧ up[k] ∧ (vpb[k] ∨ auto[k − 1]) ∨ goDown[k − 1] ∧ (auto[k − 1] ∨ (vpb[k] ∧ up[k])))

∨sbM[k] ∧ dopb[k] ∧ ¬uppb[k] ∧ (vpb[k] ∨manual[k − 1]))

Fig. 4. Details of the case study



all the requirements used for the synthesis of the operation
modes are expressed in textual form hereafter:

• R1 The three modes (Automatic, Manual and Fail)
are exclusive.
• R2 While the Emergency stop button ‘esb’ is pressed,

the press is in Failure mode.
• R3 If the observed position of the ram is both ‘up’

and ‘down’, the press is in Failure mode.
• R4 For leaving the Failure mode, the operator must

not be in the detection zone of the light curtain.
• R5 The press is in Automatic mode if and only if

the three position center-off switch is turned on ‘sbA’
position.

• R6 For reaching the Automatic mode, the press ram
must be in ‘up’ position and the operator must not
be in the detection zone of the light curtain.

• R7 For reaching the Automatic mode, the ‘vpb’ push-
button must be pressed.

• R8 During the Automatic mode, the operator can be
in the detection zone of the light curtain without to
be in danger only if the press ram is in ‘up’ position.

• R9 During the Automatic mode, if the operator is
detected by the light curtain while the press ram is
not in ‘up’ position, one has to switch into the Failure
mode.

• R10 The press is in Manual mode if and only if the
three position center-off switch is turned on ‘sbM’
position.

• R11 For reaching the Manual mode, the press ram
must be in ‘up’ position and the operator must not
be in the detection zone of the light curtain.

• R12 For reaching the Manual mode, the ‘vpb’ push-
button must be pressed.

The relation “Inclusion” is the more used in our approach
since it allows the expression of both sufficient (as R2)
and necessary conditions (as R4).

5.3 Synthesis process

In traditional design methods, the design procedure of a
logic controller is not a linear process, but an iterative one
converging to an acceptable solution. At the beginning of
the design, requirements are neither complete nor without
errors. Most often, new requirements are added during the
search of solutions, others are corrected. This complemen-
tary information is given by the designer after analysis
of the partial solutions he found or when inconsistencies
have been detected. If we do not make the hypothesis that
the specifications are complete and consistent, designing
a controller with a synthesis technique will also be an
iterative process in which the designer plays an important
role.

Synthesis of the operation modes For this case study,
we have started with the synthesis of operation modes.
The first four studied requirements have been: R1, R2,
R5 and R10. For this subset of requirements, the result
given by our software tool was the following inconsistency
condition:

I0 = SbA · SbM + Esb · SbA + Esb · SbM

Since requirements are declared as inconsistent, we have to
give complementary information to precise our specifica-

tion. By analyzing each term of this formula, it is possible
to detect the origin of the inconsistency:

• SbA·SbM: What happens if the Automatic mode and
the Manual mode are simultaneously selected? We
consider that it is not possible (due to the technology
of the three position center-off switch) and we have
added Assumption A1.
• Esb · SbA: What happens if the Emergency stop

button is activated during the Automatic mode? We
consider that the Fail mode has priority on Automatic
mode (for security reasons) and we have added the
priority rule: {R1,R2} � R5.
• Esb · SbM: What happens if the Emergency stop

button is activated during the Manual mode? We
consider that the Fail mode has priority on Manual
mode (for security reasons) and we have added the
priority rule: {R1,R2} � R10.

With this complementary information, Problem (10) ad-
mits as parametric solution (11):

Requirements:

R1 Auto ·Manual + Auto · Fail

+Manual · Fail = 0

R2 Esb ≤ Fail

R5 Auto = SbA

R10 Manual = SbM

Priority rules:{
{R1,R2} � R5

{R1,R2} � R10

Assumptions:{
A1 SbA · SbM = 0

(10)


Fail = Esb + p1 · SbA · SbA p1 ∈ F15(B)

Auto = Esb · SbA

Manual = Esb · SbM

(11)

By gradually adding all the requirements and selecting the
solution which minimizes the Fail mode (the parameter
p1 is fixed to 0) the solution we obtain is proposed
on Fig. 4d (the first three equations). In an illustrative
purpose, a state model representation of the synthesized
operation modes management, automatically built thanks
to Guignard (2011), is given in (Fig. 5). The transition
conditions are non-trivial Boolean expressions of inputs
that take into account the whole set of specifications given
in Section 5.2.

Synthesis of the reactive control laws To obtain the
complete control law of the hydraulic press, the solution
previously obtained for the operation modes has to be
completed thanks to requirements R20 to R31. All the
priorities rules and assumptions used for this case study
are given on Fig. 4c. The solution we obtain is proposed
on Fig. 4d.

The control laws presented Fig. 4e have been obtained by
translating the expression of the five unknowns according
to the projection-functions into relations between recur-
rent Boolean equations. These control laws can be auto-
matically translated in the syntax of the Ladder Diagram
language (IEC 61131-3 (2003)) before being implemented



1 : ∅ 2 : Manual

3 : Auto 4 : Fail

E1−2 = ¬esb ∧ lc ∧ sbM ∧ vpb ∧ (¬up ∨ ¬down)

E1−3 = ¬esb ∧ lc ∧ sbA ∧ vpb ∧ up ∧ ¬down

E1−4 = esb ∨ up ∧ down

E2−1 = ¬esb ∧ ¬sbM ∧ (¬up ∨ ¬down ∧ ¬(lc ∧ sbA ∧ vpb))

E2−3 = ¬esb ∧ lc ∧ sbA ∧ vpb ∧ up ∧ ¬down

E2−4 = esb ∨ up ∧ down

E3−1 = ¬esb ∧ ¬sbA ∧ (¬lc ∧ up ∧ ¬down∨
(¬sbM ∨ ¬vpb) ∧ (up ∧ ¬down ∨ lc ∧ ¬up))

E3−2 = ¬esb ∧ lc ∧ sbM ∧ vpb ∧ (¬up ∨ ¬down)

E3−4 = esb ∨ up ∧ down ∨ ¬up ∧ ¬lc

E4−1 = ¬esb ∧ lc ∧ (¬up ∨ ¬down)∧
(¬sbA ∧ ¬sbM ∨ ¬vpb ∨ sbA ∧ ¬up)

E4−2 = ¬esb ∧ lc ∧ sbM ∧ vpb ∧ (¬up ∨ ¬down)

E4−3 = ¬esb ∧ lc ∧ sbA ∧ vpb ∧ up ∧ ¬down

Fig. 5. State model of modes of operation

into a PLC. The complete code is composed of only 10
rungs.

6. CONCLUSION

Many research works in the field of DES aim at for-
malizing steps of the systems life cycle. Since 20 years,
significant progresses have been obtained for the synthesis,
verification, performance evaluation, diagnosis ... of DESs.
Nevertheless, one of the common difficulties of these works
is that there comes a time when it is necessary to pass
from the informal expression of the knowledge of a system
to its formalization. Few works have paid attention to this
important task which is very error prone. In this paper,
we proposed an iterative process that allows coping with
inconsistencies of the requirements during the synthesis of
the controller. The framework in which we proposed this
approach is an algebraic synthesis method. Since the prob-
lem is located to the frontier between formal and informal,
intervention of the designer is necessary. Nevertheless, we
have shown that this intervention can be guided by the
results the formal method provides.

REFERENCES

Brown, F.M. (2003). Boolean Reasoning: The Logic of
Boolean Equations. Dover Publications.

Filiot, E., Jin, N., and Raskin, J.F. (2011). Antichains
and compositional algorithms for LTL synthesis. Form.
Methods Syst. Des., 39(3), 261–296.

Gohari, P. and Wonham, W.M. (2000). On the complexity
of supervisory control design in the RW framework.
IEEE Trans. on Systems, Man, and Cybernetics - part
B, 30(5), 643–652.

Grimaldi, R.P. (2004). Discrete and Combinatorial Mathe-
matics: An Applied Introduction. Addison-Wesley Long-
man Publishing Co., Inc. Boston, MA, USA, Fifth edi-
tion.

Guignard, A. (2011). Symbolic generation of the automa-
ton representing an algebraic description of a logic sys-
tem. Master’s thesis, ENS Cachan.

Hanisch, H.M., Lüder, A., and Tbieme, J. (1998). A
modular plant modeling technique and related controller
synthesis problems. In Proceedings of 1998 IEEE Inter-
national Conference on Systems, Man, and Cybernetics,
686–691.

Hietter, Y. (2009). Synthèse algébrique de lois de com-
mande pour les systèmes à évènements discrets logiques.
Ph.D. thesis, ENS Cachan.

Hietter, Y., Roussel, J.M., and Lesage, J.J. (2008a). Alge-
braic synthesis of transition conditions of a state model.
In Proceedings of 9th International Workshop On Dis-
crete Event Systems (WODES’08), 187–192. Göteborg,
Sweden.

Hietter, Y., Roussel, J.M., and Lesage, J.J. (2008b). Al-
gebraic synthesis of dependable logic controllers. In
Proceedings of 17th IFAC World Congress, 2008, 4132–
4137. Seoul, South Korea.

Hietter, Y., Roussel, J.M., and Lesage, J.J. (2008c). Calcul
des conditions de transition d’un Réseau de Petri par
synthèse algébrique. In Proceedings of CIFA’08, CDRom
paper 83. Bucharest, Romanian. 6 pages.

Huffman, D.A. (1954). The synthesis of sequential switch-
ing circuits. J. of the Franklin Institute, 257(3-4), 161–
190 and 275–303.

IEC 61131-3 (2003). IEC 61131-3 Standard: Pro-
grammable controllers - Part 3: Programming lan-
guages. International Electrotechnical Commission,
Geneva, Switzerland, 2 edition.

IEC 61508 (1998). IEC 61508 Standard: Functional
Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems. International Electrotechnical
Commission, Geneva, Switzerland.

Leroux, H. (2011). Algebraic synthesis of logical controllers
with optimization criteria. Master’s thesis, ENS Cachan.

Machado, J., Denis, B., Lesage, J.J., Faure, J.M., and
Fereira, J. (2006). Logic controllers dependability ver-
ification using a plant model. In Proceedings of the
3rd IFAC Workshop on Discrete-Event System Design,
DESDes’06, pp. 37– 42. Rydzyna, Poland.

Mealy, G.H. (1955). A method for synthesizing sequential
circuits. Bell System Technical Journal, 34(5), 1045–
1079.

Moore, E.F. (1956). Gedanken Experiments on Sequential
Machines. In Automata Studies, 129–153. Princeton U.

Pnueli, A. and Rosner, R. (1989). On the synthesis of
a reactive module. In Proceedings of the 16th ACM
symposium on Principles of programming languages,
POPL’89, 179–190. ACM, New York, NY, USA.

Ramadge, P.J.G. and Wonham, W.M. (1989). The control
of discrete event systems. Proceedings of the IEEE
Transactions on Automatic Control, 77(1), 81–98.

Roussel, J.M. and Giua, A. (2005). Designing dependable
logic controllers using the supervisory control theory.
In Proceedings of the 16th IFAC World Congress, 2005.
Praha, Czech Republic. CDRom paper 4427, 6 pages.

Rudeanu, S. (2001). Lattice Functions and Equations (Dis-
crete Mathematics and Theoretical Computer Science).
Springer.

Zowghi, D. and Offen, R. (1997). A logical framework for
modeling and reasoning about the evolution of require-
ments. In Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering, 247–257.


