Sill image object categorization using 3D models
Raluca Diana Petre, Titus Zaharia

To cite this version:

HAL Id: hal-00738217
https://hal.archives-ouvertes.fr/hal-00738217
Submitted on 3 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sill Image Object Categorization Using 3D Models
Subtitle as needed (paper subtitle)

Raluc\-Diana Petre
ARTEMIS Department
Institut TELECOM; TELECOM SudParis
Evry, France
Raluc\-Diana.Petre@it-sudparis.eu

Titus Zaharia
ARTEMIS Department
Institut TELECOM; TELECOM SudParis
Evry, France
Titus.Zaharia@it-sudparis.eu

Abstract— This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to associate the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Experiments show that such a system can achieve recognition rate up to 70.4%.

Keywords-indexing and retrieval; object classification; 2D and 3D shape descriptors; 2D/3D indexing.

I. INTRODUCTION

Nowadays, the amount of multimedia content available for the general public is permanently increasing. Disposing of powerful search and retrieval methods becomes a key issue for efficient indexing and intelligent access to AV material. This paper addresses the problem of automatic 2D object recognition, which is of crucial importance, since identifying automatically the semantics of the elements present in an image allows a machine to easily retrieve the required content.

The great majority of the existing approaches make use on machine learning (ML) techniques. However, the methods based on ML require large and already label training databases.

As today numerous 3D graphical model repositories are available, we have developed a method that exploits the information included in categorized 3D model databases and thus avoiding the ML. Therefore, we use 2D/3D indexing and matching algorithms in order to find the 3D model which is the most similar to a 2D object (Figure 1). Thus, the semantics of the 3D model can be transferred to the unknown 2D object allowing its identification.

This paper is structured as follows. In section II we are going to briefly present the related work. The 2D/3D indexing principle and the proposed approaches are described in section III. The experimental protocol as well as the results are presented and analyzed in section IV. Finally, section V concludes the paper and presents our future work.

II. RELATED WORK

In the field of object recognition, a large part of the approaches is based on machine learning [1], [2]. Such algorithms allow to automatically learn to recognize complex structures. They include two main steps: the learning and the recognition. In the learning stage the system needs a large variety of example data from which it can extracts information about classes. Further, in the recognition stage, the system exploits the information driven in the learning step in order to identify new data. As two similar objects may have very different appearances, due to their color, texture, 3D pose etc., the learning database has to present objects covering all of these possibilities.

However, a more stable feature is the shape of the objects. Thus, using synthetic 3D models and exploiting only the shape information, the issues related to the appearance can be avoided.

The idea of using classified 3D models for real object recognition purposes was recently exploited by Toshev et al. in [3] and by Liebelt et al. in [4]. However, in [3] the algorithm aim at recognizing 2D objects automatically segmented not from images but from videos. Thus, the unknown object to be identified is represented by a set containing several images. Each 3D model used in the recognition stage is described by a set of $N=20$ views with the help of shape context descriptor [5]. These projections are selected by k-mean clustering of 500 evenly distributed views around the model.

The algorithm proposed by Liebelt et al. makes use of textured 3D models (in contrast to the approach presented in our present work and the one proposed in [3] which exploits only the shape information of the models). The a priori information is extracted from views of the 3D models and organized for each class as a visual codebook of $K=2000$ clusters of appearance features.

In our present work we propose a new image recognition framework that is evaluated on larger databases (up to 23 query

| 2D-3D matching algorithm
<table>
<thead>
<tr>
<th>3D model</th>
<th>2D image</th>
<th>Output: labeled image</th>
</tr>
</thead>
</table>

Figure 1. 2D object categorisation using 3D labeled models.
categories including the 2 respectively 3 classes tested in [3] and [4]) as described in section IV.

III. THE 2D/3D INDEXING

The principle of 2D/3D indexing consists in presenting the 3D model as a set of 2D views. These views are binary images and correspond to 3D-to-2D projections from several viewing angles (Figure 2.). As the projections obtained by using opposite directions represent one the mirror reflection of the other, all the viewing angles lie in half of the virtual space \((z \geq 0)\).

Further, each view is characterized with the help of a set of 2D shape descriptors. In order to allow matching between 3D models and 2D objects, the same shape descriptor is used for the query objects, which are first manually segmented from still image.

A. The 3D-to-2D projection

Before generating the set of projections, each 3D object is normalized in size and 3D pose. Firstly, the 3D model is resized to fit the unit sphere. Then, the model is turned in order to align the three axes of inertia (computed using the Principal Component Analysis – PCA [6]) with the coordinate system.

Further, the 3D model is rendered using \(N\) viewing angles by positioning the camera in \(N\) different places around the object and orienting it toward the coordinate system origin (which coincides with the center of the object) (Figure 3.). For each viewing direction \(n_i (i=1\ldots N)\) results a 2D binary projection \(P(M)\) of the model \(M\).

There are several strategies that can be used in order to acquire the set of projections \(\{P_i(M)\}\). Each strategy is characterized by a number \(N\) of projections and by a set \(\{n_i\}\) of viewing directions (meaning that for a given number of projection \(N\) there is an infinity of sets \(\{n_i\}\) of viewing directions).

A first approach, suggested by the MPEG-7 Multiview descriptor, is based on the idea that the most representative views are those corresponding to the projections on the three principal planes. Optionally, if we consider the eight octants described by the principal planes, then we can use the bisectors of these octants as viewing directions (Figure 4.). From now on, we will refer to these techniques as PCA3, respectively PCA7.

A second approach places the camera on the vertexes of a dodecahedron surrounding the 3D model [7]. In order to obtain additional views, the edges of the dodecahedron are successively divided, resulting into 3, 9 and 33 vertexes (and implicitly the same number of views) (Figure 5.). These strategies are called OCTA3, OCTA9 and OCTA33.

Finally, a uniform repartition of the viewing angles around the model can be obtained by using the vertexes of a regular dodecahedron (Figure 6., as suggested for the Light Field Descriptor (LFD) [8]. Two sub-cases are possible. For the first one we have placed the cameras uniformly around the canonical representation of the object. This strategy will be referred as LFDPCA. Finally, we have used the same repartition of the camera given by the dodecahedron, but we have applied a random rotation of the 3D model (strategy referred by LFD). This choice is justified by the fact that the objects in real images are represented in a quasi-random pose.
Finally, we also propose a second contour-based descriptor, so-called Angle Histogram (AH). The contour of the 2D object is first extracted and sub-sampled in \(N \) successive 2D points. For each point \(i \) is computed the angle \(\alpha_i \) defined by the points \(i-n, i, \) and \(i+n \). Having the ensemble of angles \(\alpha_i, i=1…N \) for a given step \(n \), we can compute the angular histogram. When using low values of the step \(n \), the three considered points are close one from the other and the histogram describes the local variations of the contour. When using larger values of the step \(n \), the angular histogram encodes the global behavior of the contour. The 2D AH descriptor is composed by concatenating several histograms which are described by different values of the step \(n \). In the present work we have used 18-bins for each angular histogram and 5 different histograms to create the AH descriptors. The distance between two objects encoded by the AH descriptor is given by the \(L_1 \) distance between the corresponding coefficients.

In order to evaluate the above presented descriptors (i.e., CS, RS, HT and AH) and projection strategies (PCA3, PCA7, OCTA9, OCTA33, LFD and LFDPCA), we have established an evaluation protocol described in the following section.

IV. EXPERIMENTAL RESULTS

A. Evaluation protocol

The experiments we have carried out aim at finding the performance of a 2D shape recognition approach based on 2D/3D indexing.

In order to transfer the semantics from a classified 3D model to an unknown 2D object represented by an image (Figure 1.), we need a tool allowing the matching between 2D and 3D content. By using the 2D/3D indexing methods presented in section III, a 2D object \(O \) can be compared to a 3D model \(M \). Their distance \(d(O, M) \) is given by the minimum distance between the object and each projection \(P(M) \):

\[
d(O, M) = \min_{i} d(O, P_i(M)).
\]

In order to identify the class of a 2D object, it is compared against all the 3D models from the considered repository. Further, the models \(M_i \) are sorted by decreasing order of similarity and only the first \(N_M \) of them are retained. Each model retained votes for a category and thus we can identify the \(k \) most represented classes \((C_1…C_k) \) among the first models. Finally, one or several classes are associated to the unknown image. If one of these classes coincides with the category to which belongs the image, then we can state that the recognition has succeeded.

The evaluation measure that we have used is the recognition rate (RR), defined as the percentage of cases when the recognition has succeeded. Depending on the number \(k \) of categories that are taken into account, different \(RR(k) \) values are obtained. In our experiments we have considered \(RR(1), RR(2) \) and \(RR(3) \).

Two different 3D model repositories were used in order to evaluate the performance of the recognition system. The first one is the MPEG-7 3D Model database [16] and consists of 362 models semantically divided in 23 categories. The second
The experiments have been carried out on a 2D objects database consisting in 115 images randomly chosen from the web (5 images for each MPEG-7 category). The interest objects were manually segmented from each image before the extraction of the shape descriptor. When considering the PSB, only 65 of these 2D objects have been tested.

Tables 1 and 2 present the recognition rates obtained when using the MPEG-7 respectively the PSB databases.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>RECOGNITION RATE USING THE MPEG-7 DATABASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>PC(A3 PC(A7 LFD LFDPDA OA(TA3 OA(TA9 OA(TA33</td>
</tr>
<tr>
<td>RR(1)</td>
<td>33.9 34.8 37.4 33.9 37.4 37.4</td>
</tr>
<tr>
<td>RR(2)</td>
<td>41.7 53.9 52.2 50.4 41.7 51.3</td>
</tr>
<tr>
<td>RR(3)</td>
<td>53.9 61.7 59.1 60.0 53.9 56.5</td>
</tr>
<tr>
<td>RS</td>
<td>PC(A3 PC(A7 LFD LFDPDA OA(TA3 OA(TA9 OA(TA33</td>
</tr>
<tr>
<td>RR(1)</td>
<td>24.3 22.6 28.7 27.0 24.3 26.1</td>
</tr>
<tr>
<td>RR(2)</td>
<td>36.5 37.4 40.9 37.4 36.5 42.6</td>
</tr>
<tr>
<td>RR(3)</td>
<td>40.9 45.2 46.1 45.2 40.9 50.4</td>
</tr>
<tr>
<td>AH</td>
<td>PC(A3 PC(A7 LFD LFDPDA OA(TA3 OA(TA9 OA(TA33</td>
</tr>
<tr>
<td>RR(1)</td>
<td>30.4 35.7 44.3 42.6 30.4 32.2</td>
</tr>
<tr>
<td>RR(2)</td>
<td>47.8 55.7 60.9 56.5 47.8 48.7</td>
</tr>
<tr>
<td>RR(3)</td>
<td>56.5 61.7 67.0 62.6 56.5 60.0</td>
</tr>
<tr>
<td>HT</td>
<td>PC(A3 PC(A7 LFD LFDPDA OA(TA3 OA(TA9 OA(TA33</td>
</tr>
<tr>
<td>RR(1)</td>
<td>18.3 20.9 27.0 24.3 18.3 28.7</td>
</tr>
<tr>
<td>RR(2)</td>
<td>27.0 29.6 35.7 30.4 27.0 36.5</td>
</tr>
<tr>
<td>RR(3)</td>
<td>37.4 37.4 46.1 35.7 37.4 43.5</td>
</tr>
</tbody>
</table>

We observe that in the most cases LFD and OCTA33 projection strategies yield the maximal performances in terms of recognition rates. The difference of the scores obtained with the LFD and with the LFDPDA strategies may be explained by the fact that a part of the 3D models present symmetries (as the cars, the airplanes, the humanoids…). The views generated by the LFDPDA strategies are obtained using couples of symmetrical positions of the camera and thus results pairs of mirror-reflected images. Therefore, the redundancy appeared in the LFDPDA reduce the number of useful views from 10 to 5.

For the MPEG-7 database we reach 60% recognition rate for the CS descriptor and 70.4% for AH while only 49.6% when using HT and 54.8% when RS was employed. When using the PSB, the same tendency can be observed: the descriptors providing best recognition rates are CS and AH with scores of 64.6% for CS and 60% for AH.

The fact that we accept several possible classes as response means that the system is able to reduce the number of candidate categories from 161 (in the case of PSB database) to \(k=1,2,3\). In a second stage of our work we intend to implement an algorithm able to select among these \(k\) proposed classes.

Finally, in order to be useful, a recognition system has to dispose of appropriate interface allowing user interaction. The platform that we propose is illustrated in figures 7 and 8.

The user has the possibility to select one or several 2D/3D indexing methods (among those presented in section III) and to choose a query image. For each indexing method, the system returns the first three categories that are the most probable for that query and also sort all the 3D models from the considered database by decreasing similarity with the given example.

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>RECOGNITION RATE USING THE PSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>PC(A3 PC(A7 LFD LFDPDA OA(TA3 OA(TA9 OA(TA33</td>
</tr>
<tr>
<td>RR(1)</td>
<td>32.3 41.5 40.0 41.5 32.3 41.5</td>
</tr>
<tr>
<td>RR(2)</td>
<td>43.1 53.8 53.8 50.8 43.1 49.2</td>
</tr>
<tr>
<td>RR(3)</td>
<td>49.2 58.5 58.5 55.4 49.2 56.9</td>
</tr>
<tr>
<td>RS</td>
<td>PC(A3 PC(A7 LFD LFDPDA OA(TA3 OA(TA9 OA(TA33</td>
</tr>
<tr>
<td>RR(1)</td>
<td>26.2 20.0 23.1 24.6 26.2 29.2</td>
</tr>
<tr>
<td>RR(2)</td>
<td>30.8 27.7 32.3 41.5 30.8 43.1</td>
</tr>
<tr>
<td>RR(3)</td>
<td>38.5 35.4 38.5 41.5 38.5 46.2</td>
</tr>
<tr>
<td>AH</td>
<td>PC(A3 PC(A7 LFD LFDPDA OA(TA3 OA(TA9 OA(TA33</td>
</tr>
<tr>
<td>RR(1)</td>
<td>27.7 40.0 40.0 36.9 27.7 35.4</td>
</tr>
<tr>
<td>RR(2)</td>
<td>40.0 50.8 49.2 53.8 40.0 50.8</td>
</tr>
<tr>
<td>RR(3)</td>
<td>49.2 55.4 52.3 58.5 49.2 53.8</td>
</tr>
<tr>
<td>HT</td>
<td>PC(A3 PC(A7 LFD LFDPDA OA(TA3 OA(TA9 OA(TA33</td>
</tr>
<tr>
<td>RR(1)</td>
<td>10.8 12.3 21.5 18.5 10.8 26.2</td>
</tr>
<tr>
<td>RR(2)</td>
<td>12.3 15.4 32.3 23.1 12.3 33.8</td>
</tr>
<tr>
<td>RR(3)</td>
<td>15.4 20.0 36.9 24.6 15.4 35.4</td>
</tr>
</tbody>
</table>

Figures 7 and 8 show two examples of queries representing a helicopter and respectively a formula 1 car when using CS and AH descriptors and OCTA33 and LFD projection strategies.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel approach for 2D object categorization. Experimental results show that the information contained in the 3D models can be exploited in order to semantically label 2D objects segmented from images. Several descriptors have been tested and for both 3D model databases the two contour-based descriptors (CS and AH) provided best recognition rates. Among the projection strategies presented in section III A, LFD and OCTA33 are those giving in most of the cases the best result.

In order to increase the recognition rate, for our future work we intend to exploit the complementarities between the descriptors by combining them. Also, we intend to develop a second algorithm which will select a unique response among those proposed by the current system.
ACKNOWLEDGMENT

This work has been performed within the framework of the UBIMEDIA Research Lab, between Institut TELECOM and Alcatel-Lucent Bell-Labs.

REFERENCES