
HAL Id: hal-00737886
https://hal.science/hal-00737886

Submitted on 21 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anomaly Extraction in Backbone Networks Using
Association Rules

Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner, Kavé
Salamatian

To cite this version:
Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner, Kavé Salamatian. Anomaly Extraction
in Backbone Networks Using Association Rules. IEEE/ACM Transactions on Networking, 2012, 20
(6), pp.1788-1799. �10.1109/TNET.2012.2187306�. �hal-00737886�

https://hal.science/hal-00737886
https://hal.archives-ouvertes.fr

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Anomaly Extraction in Backbone Networks Using

Association Rules
Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner, and Kavé Salamatian

Abstract—Anomaly extraction refers to automatically finding,
in a large set of flows observed during an anomalous time interval,
the flows associated with the anomalous event(s). It is important
for root-cause analysis, network forensics, attack mitigation, and
anomaly modeling. In this paper, we use meta-data provided by
several histogram-based detectors to identify suspicious flows, and
then apply association rule mining to find and summarize anoma-
lous flows. Using rich traffic data from a backbone network, we
show that our technique effectively finds the flows associated with
the anomalous event(s) in all studied cases. In addition, it triggers
a very small number of false positives, on average between 2 and
8.5, which exhibit specific patterns and can be trivially sorted out
by an administrator. Our anomaly extraction method significantly
reduces the work-hours needed for analyzing alarms, making
anomaly detection systems more practical.

Index Terms—Association rules, computer networks, data
mining, detection algorithms.

I. INTRODUCTION

A. Motivation

A NOMALY detection techniques are the last line of de-

fense when other approaches fail to detect security threats

or other problems. They have been extensively studied since

they pose a number of interesting research problems, involving

statistics, modeling, and efficient data structures. Nevertheless,

they have not yet gained widespread adaptation, as a number of

challenges, like reducing the number of false positives or sim-

plifying training and calibration, remain to be solved.

In this paper, we are interested in the problem of identifying

the traffic flows associated with an anomaly during a time in-

terval with an alarm. We call finding these flows the anomalous

flow extraction problem, or simply anomaly extraction. At the

high-level, anomaly extraction reflects the goal of gaining more

information about an anomaly alarm, which, without additional

meta-data, is often meaningless for the network operator. Identi-

fied anomalous flows can be used for a number of applications,

Manuscript received November 25, 2009; revised April 25, 2011 and
December 10, 2011; accepted January 18, 2012; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor M. Kodialam.
D. Brauckhoff and A. Wagner are with the Computing Department,

ETH Zurich, Zurich 8092, Switzerland (e-mail: brauckhoff@tik.ee.ethz.ch;
arno@wagner.name).
X. Dimitropoulos is with the Department of Information Technology

and Electrical Engineering, ETH Zurich, Zurich 8092, Switzerland (e-mail:
fontas@tik.ee.ethz.ch).
K. Salamatian is with LISTIC PolyTech, Université de Savoie Chambery An-

necy, Annecy le Vieux Cedex 74944, France (e-mail: kave.salamatian@univ-
savoie.fr).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2012.2187306

Fig. 1. High-level goal of anomaly extraction is to filter and summarize the set
of anomalous flows that coincide with the flows caused by a network event such
as denial-of-service (DoS) attacks or scans.

like root-cause analysis of the event causing an anomaly, col-

lecting network forensics, improving anomaly detection accu-

racy, and modeling anomalies.

B. Anomaly Extraction

In Fig. 1, we present the high-level goal of anomaly extrac-

tion. In the bottom of the figure, events with a network-level

footprint, like attacks or failures, trigger event flows, which,

after analysis by an anomaly detector, may raise an alarm. Ide-

ally, we would like to extract exactly all triggered event flows.

However, knowing or quantifying if this goal is realized is prac-

tically very hard due to inherent limitations in finding the pre-

cise ground truth of event flows in real-world traffic traces. The

goal of anomaly extraction is to find a set of anomalous flows

coinciding with the event flows.

An anomaly detection system may provide meta-data rele-

vant to an alarm that help to narrow down the set of candi-

date anomalous flows. For example, anomaly detection systems

analyzing histograms may indicate the histogram bins that an

anomaly affected, e.g., a range of IP addresses or port numbers.

Such meta-data can be used to restrict the candidate anomalous

flows to these that have IP addresses or port numbers within the

affected range. In Table I, we outline useful meta-data provided

by some well-known anomaly detectors.

To extract anomalous flows, one could build a model de-

scribing normal flow characteristics and use the model to

identify deviating flows. However, building such a micro-

scopic model is very challenging due to the wide variability

of flow characteristics. Similarly, one could compare flows

during an interval with flows from normal or past intervals and

search for changes, like new flows that were not previously

observed or flows with significant increase/decrease in their

volume [16], [8]. Such approaches essentially perform anomaly

detection at the level of individual flows and could be used to

identify anomalous flows.

1063-6692/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Each detector supplies a set of suspicious flows .We filter the union
set of suspicious flows and apply association rule mining to extract the set
of anomalous flows .

TABLE I
USEFUL META-DATA PROVIDED BY VARIOUS ANOMALY DETECTORS. THE
LISTED META-DATA CAN BE USED TO IDENTIFY SUSPICIOUS FLOWS

C. Contributions

In this paper, we take an alternative approach to identify

anomalous flows that combines and consolidates information

from multiple histogram-based anomaly detectors. Compared

to other possible approaches, our method does not rely on past

data for normal intervals or normal models. Intuitively, each

histogram-based detector provides an additional view of net-

work traffic. A detector may raise an alarm for an interval and

provide a set of candidate anomalous flows. This is illustrated

in Fig. 2, where a set represents candidate flows supplied

by detector . We then use association rules to extract from

the union a summary of the anomalous flows . The

intuition for applying rule mining is the following: Anomalies

typically result in many flows with similar characteristics, e.g.,

common IP addresses or ports, since they have a common root

cause, like a network failure or a scripted denial-of-service

(DoS) attack. We test our anomaly extraction method on rich

network traffic data from a medium-sized backbone network.

The evaluation results show that our approach effectively

extracted the anomalous flows in all 31 analyzed cases and,

on average, triggered between 2 and 8.5 false positives, which

can be trivially filtered out by an administrator. In addition, our

solution reduced the classification cost in terms of items that

need to be manually classified by several orders of magnitude.

D. Outline

The rest of this paper is structured as follows. Section II

describes our techniques for extracting anomalous traffic from

flow traces using histogram-based detectors and association

rules. In Section III, we describe the datasets used for this study

Fig. 3. Overview of our approach to the anomaly extraction problem. The
figure illustrates how the meta-data for filtering flows is consolidated from
traffic features by taking the union and how suspicious flows are prefiltered

and anomalous flows are summarized in item-sets by association rule mining.

and present evaluation results. Related work is discussed in

Section IV. Finally, Section V concludes our paper.

II. METHODOLOGY

An overview of our approach to the anomaly extraction

problem is given in Fig. 3. A number of different his-

togram-based anomaly detectors monitor network traffic and

detect anomalies in an online fashion. Upon detecting an

anomaly, we use the union set of meta-data provided by the

detectors to prefilter a set of suspicious flows. This prefiltering

is necessary since it eliminates a large fraction of the normal

flows. A summary report of frequent item-sets in the set of

suspicious flows is generated by applying association rule

mining. The basic assumption behind this approach is that

frequent item-sets in the prefiltered data are often related to

the anomalous event. A large part of our evaluation results

is devoted to the verification of this assumption and shows

that this is indeed true. The entire anomaly extraction process

is automated and can take place both in a online and offline

fashion. In the online case, the anomaly detector triggers the

anomaly extraction process upon detecting an anomaly. In the

offline case, an administrator triggers the anomaly extraction

process to analyze anomaly alarms in a post-mortem fashion

and to determine their validity.

A. Flow Prefiltering

Assume a time interval with an anomaly. Prefiltering se-

lects all flows that match the union of the meta-data pro-

vided by detectors, i.e., all flows that match where

are filtered. Prefiltering usually removes a large part

of the normal traffic. This is desirable for two reasons. First,

it generates a substantially smaller dataset that results in faster

processing in the following steps. Second, it improves the ac-

curacy of association rule mining by removing flows that could

result in false-positive item-sets.

An important detail of our approach is that we keep flows

matching any of the meta-data instead of flows matching all

the meta-data. In other words, we take the union of the flows

matching meta-data rather than the intersection of the flows

matching meta-data. Taking the union is important because

identified meta-data can be flow-disjoint, meaning that they ap-

pear in different flows, in which case the intersection is empty.

For example, consider the Sasser worm that propagated in

multiple stages: Initially a large number of SYN flows scanned

target hosts, then additional flows attempted connections to

a backdoor on port 9996 of the vulnerable hosts, and finally

a third set of frequent flows resulted from downloading the

16-kB worm executable. In this example, an anomaly would

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRAUCKHOFF et al.: ANOMALY EXTRACTION IN BACKBONE NETWORKS USING ASSOCIATION RULES 3

likely be annotated with meta-data about the SYN flag, port

9996, and the specific flow size. The intersection of the flows

matching the meta-data would be empty, whereas the union

would include the anomalous flows. Anomalies often have a

multistage footprint, which highlights that taking the inter-

section of the flows would fail. A comparison between using

the union and the intersection for analyzing actual anomalies

can be found our previous work [3, Section 3.4]. It shows that

the union results in fewer false positives than the intersection,

which may entirely miss an anomaly.

B. Frequent Item-Set Mining

Association rules describe items that occur frequently to-

gether in a dataset and are widely used for market basket

analysis. For example, a rule might reflect that 98% of cus-

tomers that purchase tires also get automotive services [1].

Let be the set of all items in a market

basket and be the set of all transactions.

Each transaction contains a subset of items chosen from .

In association analysis, a collection of zero or more items is

called an item-set. If an item-set contains items, it is called an

-item-set [31].

The problem of discovering all association rules in a dataset

can be decomposed into two subproblems: 1) the main and most

challenging part is finding frequent item-sets, i.e., item-sets

that appears in more than a threshold number of transactions;

and 2) given the frequent item-sets, derive association rules.

The second part is trivial as a frequent item-set implies a

set of candidate association rules. For example, a frequent

item-set gives the candidate rules ,

, and . In this paper, we apply

the first step of association rule mining, i.e., we find frequent

item-sets to extract anomalous flows from a large set of flows

observed during a time interval. We do not compute corre-

sponding association rules as this second step does not provide

any additional information for the purpose of anomaly extrac-

tion. Our assumption for applying frequent item-set mining

to the anomaly extraction problem is that anomalies typically

result in a large number of flows with similar characteristics,

e.g., IP addresses, port numbers, or flow lengths, since they

have a common root cause like a network failure, a bot engine,

or a scripted DoS attack.

We map each flow record into a corresponding transaction .

The transaction width is defined as the number of items present

in a transaction. Each transaction has a width of seven since each

flow record has seven associated features corresponding to its

srcIP, dstIP, srcPort, dstPort, protocol, #packets, #bytes. For ex-

ample, the item refers to a source port

number equal to 80, while item refers

to a destination port number 80. By construction, a transaction

cannot have two items of the same feature type, e.g., two desti-

nation ports.

A transaction is said to contain an item-set if is a

subset of . An important property of an item-set is its support

count, which refers to the number of transactions (flow records)

that contain a particular item-set. For example, the support of the

2-item-set is equal

to the number of flow records that have the given destination IP

address and destination port.

Apriori Algorithm: The standard algorithm for discovering

frequent item-sets is the Apriori algorithm by Agrawal and

Srikant [1]. Apriori computes in each round the support for all

candidate -item-sets. At the end of each round, the -item-sets

with frequency above the minimum support parameter are

selected. The frequent item-sets of round are used in the next

round to construct candidate -item-sets. The algorithm

stops when no -item-sets with frequency above the

minimum support are found. In our setup, Apriori makes at

most seven passes over the dataset as each transaction (flow

record) has exactly seven features.

By default, Apriori outputs all frequent item-sets that it finds.

We modify this to output only maximal frequent item-sets, i.e.,

frequent -item-sets that are not a subset of a more specific fre-

quent -item-set. Maximal item-sets are desirable since

they significantly reduce the number of item-sets to process by

a human expert. The Apriori algorithm takes one parameter, i.e.,

the minimum support threshold, as input. If the minimum sup-

port is selected too small, many item-sets representing normal

flows (false positives) will be included in the output. On the

other hand, if the minimum support is selected too large, the

item-sets representing the anomalous flows might be missed

(false negatives).

Apriori Example: In the following, we give an example

of using Apriori to extract anomalies. For the purpose of this

example, we used a 15-min window of data extracted from

our traces (2 weeks long). In this trace, destination port 7000

was the only feature value that was flagged by our detectors.

It contributed 53 467 candidate anomalous flows. We forced

Apriori to artificially generate false-positive frequent item-sets

by manually adding to the candidate set flows that had

one of the three most frequent destination ports but had not

been flagged by our detector. In particular, the most popular

destination ports were port 80 that matched 252 069 flows,

port 9022 that matched 22 667 flows, and port 25 that matched

22 659 flows. Such frequent flow features can lead to false

positives if they go through our prefiltering process due to

collisions with anomalous features. In total, the input set

contained 350 872 flows. For our example, we set the minimum

support parameter to 10 000 flows and applied our modified

Apriori to the flow set .

The final output of the algorithm is given in Table II, which

lists a total of 15 frequent item-sets. In the first iteration, a total

of 60 frequent 1-item-sets were found. However, 58 of these

were removed from the output as subsets of at least one fre-

quent 2-item-set, i.e., these frequent item-sets were not max-

imal. In the second iteration, a total of 78 frequent 2-item-sets

were found. Again, 72 2-item-sets could be removed since they

were subsets of frequent 3-item-sets. In the third iteration, 41

frequent 3-item-sets were found, of which four item-sets were

not deleted from the output. In the fourth round, 10 frequent

4-item-sets were found, but only one of them remained after re-

moval of redundant 4-item-sets. Two frequent 5-item-sets were

found in round five. Finally, the algorithm terminated as no fre-

quent 6-item-set satisfying the minimum support was found.

Three out of the 15 frequent item-sets had destination port

7000. We verified that indeed several compromised hosts were

flooding the victim host E on destination port 7000. Regarding

the other frequent item-sets, we verified that hosts A, B, and C,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE II
FREQUENT ITEM-SETS COMPUTEDWITH OURMODIFIED APRIORI ALGORITHM. THE INPUT DATA SET CONTAINED 350 872 FLOWS, AND THEMINIMUM SUPPORT

PARAMETER WAS SET TO 10 000 FLOWS. IP ADDRESSES HAVE BEEN ANONYMIZED

which sent a lot of traffic on destination port 80, were HTTP

proxies or caches. The traffic on destination port 9022 (22 573

flows) was backscatter since each flow has a different source

IP address and a random source port number. This backscatter

anomaly was flagged by the detector in an earlier interval where

it had started. The remaining item-sets refer to combinations

of common destination ports and flow sizes and illustrate false

positives that we artificially added in this example for illustra-

tion. Such frequent features can lead to false positives if they go

through our prefiltering process. However, due to their frequent

nature, typically they can be easily identified and filtered our by

administrator. A key feature of our anomaly extraction is that

in addition to leading to a small number of false positives, as

we also discuss in the evaluation section, often it is possible to

easily spot and filter our false positives.

C. Histogram-Based Detector

Histogram-based anomaly detectors [14], [30], [20], [26],

have been shown to work well for detecting anomalous behavior

and changes in traffic distributions. We build a histogram-based

detector for our evaluation that uses the Kullback–Leibler (KL)

distance to detect anomalies. The KL distance has been success-

fully applied for anomaly detection in previous work [11], [26].

Each histogram detector monitors a flow feature distribution,

like the distribution of source ports or destination IP addresses.

We assume histogram-based detectors that correspond to

different traffic features and have each histogram bins.

Our approach for binning of feature values to histogram bins

will be described in the next section.

During time interval , an anomaly detection module con-

structs histograms for the number of flows per traffic feature. At

the end of each interval, it computes for each histogram the KL

distance between the distribution of the current interval and a

reference distribution. The KL distance measures the similarity

of a given discrete distribution to a reference distribution

and is defined as

Coinciding distributions have a KL distance of zero, while de-

viations in the distribution cause larger KL distance values. In

general, the KL distance is asymmetric .

Fig. 4. (top) KL distance time series for the source IP address feature for
roughly two days. (bottom) First difference of the KL distance for the same
period. The dashed line corresponds to the anomaly detection threshold.

Instead of training and recalibrating distributions that repre-

sent normal behavior, we use the distribution from the previous

measurement interval as reference distribution . Hence, wewill

observe a spike in the KL distance time series each time the flow

distribution changes. Assuming an anomalous event that spans

multiple intervals, the KL distance will generate spikes at the

beginning and at the end of an anomalous event. On the other

hand, changes in the total number of flows that do not have an

impact on the distribution will not result in large KL distance

values. The KL distance time series for the source IP address

feature over roughly two days is depicted in Fig. 4 in the upper

plot.

We have observed that the first difference of the KL dis-

tance time series is approximately normally distributed with

zeromean and standard deviation . This observation enables us

to derive a robust estimate, the median absolute deviation, of the

standard deviation and of the anomaly detection threshold

from a limited number of training intervals. We generate an alert

when

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRAUCKHOFF et al.: ANOMALY EXTRACTION IN BACKBONE NETWORKS USING ASSOCIATION RULES 5

Fig. 5. Iterative method for determining the anomalous bins. The KL distance
converges to zero as, in each round, the bin with the largest absolute difference
is aligned with its counterpart in the reference distribution. Already after the
first round, the KL distance decreases significantly.

In Fig. 4, we show the time series for the source

IP address feature and the corresponding threshold. We deliber-

ately use an one-sided threshold, i.e., an alarm is only generated

for positive spikes crossing the threshold, since positive spikes

correspond to a significant increase in the KL distance repre-

senting many additional similar flows whereas negative spikes

typically denote the end of an anomaly.

If an anomaly is detected during interval in the distribution

of traffic feature , we need to identify the set of affected

feature values, e.g., the IP addresses that have been targeted by

a denial-of-service attack. In a first step, we identify the set of

histogram bins contributing to the KL distance spike. Then,

in a second step, the corresponding feature values , e.g., the

DoS victim IPs, are identified. This two-step approach is taken

since typically a large number of feature values are aggregated

into a single bin.

In the first step, to find the contributing histogram bins, we

use an iterative algorithm that simulates the removal of suspi-

cious flows until falls below the detection threshold.

In each round, the algorithm selects the bin with the largest ab-

solute distance between the histogram of

the previous and current interval. The motivation here is that

anomalous flows, e.g., belonging to a denial-of-service attack,

will cause such a difference in flow counts for certain bins. The

removal of flows falling into bin is simulated by setting the

bin count in the current histogram equal to its value in the pre-

vious interval . The iterative process continues until

the “cleaned” histogram does not generate an alert any more.

This procedure is illustrated in Fig. 5, where we plot the KL

distance computed in each round. Already after the first round,

the KL distance decreases significantly.

Having identified the set of anomalous histogram bins by

simulation, we need to obtain the corresponding set of feature

values in the second step. This task is trivial if each bin con-

tains only a single feature value. However, such an approach is

not feasible with sparse traffic features like IP addresses, which

are typically used for anomaly detection. Our approach for iden-

tifying the corresponding feature values is explained in the next

section.

D. Histogram Cloning and Voting

Histogram binning typically groups in a rather ad hoc way

adjacent feature values, e.g., adjacent IP addresses, into a de-

sired number of bins. As an alternative to arbitrary binning, we

introduce histogram cloning. With histogram cloning, different

clones provide alternative ways to group feature values into a

desired number of bins/groups creating effectively additional

views along which an anomaly may be visible. The cloning

mechanism is coupled with a simple voting scheme that controls

the sensitivity of the detector and eventually affects a tradeoff

between false positives and negatives.

In particular, a histogram clone with bins uses a hash func-

tion to randomly place each traffic feature value into a bin. Each

histogram-based detector uses histogram clones

with independent hash functions.1 Upon detection of a disrup-

tion in the distribution, each clone compiles a list of traffic

feature values that are associated with the disruption by keeping

a map of bins and corresponding feature values. The advantage

of histogram cloning is that we obtain additional traffic views

that help us in identifying the correct feature values in each

anomalous bin using a voting scheme. In the short version [3]

of this work, we only keep feature values that have been iden-

tified by all histogram clones . We generalize this

approach to a more flexible scheme that is based on voting. In

particular, voting keeps a feature value if it has been selected

by at least out of clones. With this approach, the tradeoff

between false-positive and false-negative feature values can be

adjusted via the parameters and .

Typically, a histogram bin corresponds to a large number of

feature values, e.g., the 65K unique port numbers are distributed

evenly over 1024 bins if we use a 10-bit hash function for ran-

domization. Therefore the set of feature values identified by

each clone contains a large number normal feature values col-

liding on anomalous bins. Using the traffic views provided by

clones drastically reduces the probability that a normal

feature value appear in an anomalous bin in all of the clones.

Assume that each of the clones has detected a disruption

in the distribution of feature in interval and has identified

responsible bins. Therefore, each clone includes the anoma-

lous feature value in the set with probability . A distinct

normal feature value, on the other hand, is selected only if it col-

lides on one of the selected bins and thus has a selection proba-

bility of , where is the total number of bins.

If an anomalous value is included by one clone, it is likely

that it will also be included by the other clones as these events

are not independent. Consequently, we can derive a lower bound

for the probability that an anomalous feature value is included

by (out of) or more clones

(1)

1Note that histogram cloning uses random projections as they are commonly
used in sketch data structures, e.g., [6], that have been proposed in the literature.
Sketches aim at summarizing a data stream in a compact data structure, which
can be used for answering various queries. In contrast, histogram cloning is a
method to randomly bin histograms that does not target summarization.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III
PARAMETERS INCLUDING DESCRIPTION AND RANGE AS USED IN SECTION III

and an upper bound for the probability that an anomalous feature

value is missed

(2)

The probability that a normal feature value is included by or

more clones, on the other hand, is given by

(3)

Here, we do not derive a bound since the considered events are

not correlated.

To sum up, the meta-data for feature obtained after the

voting process contain feature values representing normal and

anomalous traffic. The ratio of normal and anomalous feature

values depends on the parameters and , on the initial proba-

bility , and the hash function length . The impact of these

parameters on the overall accuracy of our approach is analyzed

next.

E. Parameter Estimation

The various parameters associated with our approach, and

their range as used in the evaluation of this work, are summa-

rized in Table III. Although most of the parameters are associ-

ated with the detection part of our approach, some also impact

the extraction part. In the following, we describe each param-

eter in detail and discuss selection criteria.

Number of Detectors : In this paper, we use five detectors,

which correspond to five features that are frequently used for

network traffic anomaly detection: source IP addresses, desti-

nation IP addresses, source port numbers, destination port num-

bers, and number of packets per flow. In principle, if the com-

putational overhead is reasonable, which is the case with our

detector, more features are welcome since they provide addi-

tional views along which an anomaly may prevail. Other fea-

tures that can be useful for anomaly detection are the following:

the number of packets per flow, the average packet size, the du-

ration of a flow, the source/destination autonomous system (AS)

numbers, and the geographical distribution of IP addresses.

Interval Length : The interval length determines the de-

tectable anomaly scale, i.e., it becomes harder to detect short

disruptions that contain only few flows with longer intervals. On

the other hand, it is not always desirable to detect such short dis-

ruptions. Hence, the desired number of daily or weekly anoma-

lous alarms can be used to set the interval length . The desired

number of alarms depends on the available human resources for

investigating alarms. Some studies report that actionable alarms

require on average 60 min investigation time [25], which would

correspond to eight alarms per day assuming a full-time em-

ployee for analyzing alarms. Another issue related to the in-

terval length is the detection delay as an anomaly can only be

detected at the end of a given interval. Typically used intervals

correspond to delays of fewminutes, e.g., 5–15 min. However, a

sliding window mechanism can shorten this delay. Finally, one

last implication is that a larger results in more flows to be pro-

cessed by association rule mining and in higher computational

overhead. Nevertheless, the overhead of association rule mining

after prefiltering is relatively low as we discuss in Section III.

Hash Function Length : The hash function length is also

involved in a detection sensitivity versus aggregation tradeoff

as discussed for parameter . The smaller the hash function

length, the more flows are aggregated per hash function bin. In

addition, a larger is desired for anomaly extraction as it de-

creases the probability that a normal feature value remains

in the meta-data after voting and, thus, the number of candidate

flows for rule mining. Finally, the parameter also affects the re-

quired memory resources. Assuming that the available memory

resources do not drive the choice of , then an acceptable range

of values can be first determined via simulation using (3) and a

target range for . Then, should be selected together with

based on a desired number of daily/weekly anomalous alarms.

Among the possible choices realizing a desired number

of alarms, the solutions with larger , i.e., smaller bins, are

preferable for anomaly extraction.

Voting Parameters and : The parameter determines the

total number of histogram clones used. The computational re-

quirements in terms of memory and CPU scale linearly with .

Moreover, the parameter has an impact on the probability that

a feature value remains in the meta-data after voting, and thus

on accuracy. The parameter determines the lower bound for

the number of clones that need to select a feature value to be in-

cluded in the final meta-data. Therefore, can vary between 1,

corresponding to the union, and , representing the intersection.

Just like , the parameter impacts the number of flows selected

in the prefiltering step and thus the accuracy of our approach.

The parameter settings for and can also be obtained by sim-

ulation using (1) and (3). Simulation results for and for

different settings of and will be presented in Section III.

Minimum Support : The parameter determines the fre-

quency threshold above which an item-set is extracted by

Apriori as a possible set of anomalous flows. A large extracts

no or few item-sets, which in our experiments were almost

always associated with anomalous events. On the other hand,

decreasing results in more item-sets and in a small but higher

rate of false positives. The size of the top item-sets depends on

many factors, like the used interval length, the monitored link

rate(s), the type of filtering used, and the traffic mix among

others. A specific value for is unlikely to work in all cases.

The value of needs to be determined by trial and error. In

our evaluation of the number of false positives in Section III,

we have used a range between 3000 and 10 000 flows that

resulted in a small number of item-sets. In general, through

our extensive experimentation, we have learned that a suitable

is typically in the range between 1% and 10% of the total

number of input flows. Starting with a value within this range,

typically one can arrive to a suitable within a small number

of 2–3 trials. One possibility is to select a very low that will

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRAUCKHOFF et al.: ANOMALY EXTRACTION IN BACKBONE NETWORKS USING ASSOCIATION RULES 7

generate a large number of item-sets. Note that the generated

item-sets can be ranked by their frequency. Then, one can keep

only the top item-sets according to the frequency ranking. This

could include, for example, the top 10 or top 20 item-sets as

desired. The cost of a lower is more overhead for running

the algorithm. Alternatively, one can start with a high and

progressively decrease it until a sufficient number of anomalous

item-sets has been investigated.

In summary, the parameters and are the simplest as

should generally be large involving additional useful features

and should be low or variable. The parameters and are

mainly involved in a detection-sensitivity-versus-aggregation

tradeoff. This tradeoff should be settled based on the average

number of daily or weekly anomalous alarms. Having set this

tradeoff, then a large , i.e., smaller bins, is desired for anomaly

extraction, which should be balanced by a larger , i.e., 15 min

in our experiments, to achieve sufficient aggregation. Finally,

the parameters and serve to balance the number of false and

true positives produced by prefiltering. A range of acceptable

values can be determined by simulations using the discussed

analytical models.

III. EVALUATION

In this section, we first describe the traces we used for our

experiments, and then evaluate each step of our approach for

different parameter settings. In particular, we evaluate the accu-

racy of our approach, as well as the reduction in classification

cost, in terms of flows or item-sets.

A. Dataset and Ground Truth

To validate our approach, we used a Netflow trace coming

from one of the peering links of a medium-sized ISP

(SWITCH/AS559). SWITCH is a backbone operator con-

necting all Swiss universities and various research labs—e.g.,

CERN, IBM, PSI—to the Internet. We have been collecting

nonsampled and nonanonymized NetFlow traces from the

peering links of SWITCH since 2003. The SWITCH IP address

range contains approximately 2.2 million IP addresses. On

average, we see 92 million flows and 220 million packets per

hour crossing the peering link we used for our experiments. The

dataset used for this study was recorded during December 2007

and spans two continuous weeks.

To generate datasets for evaluating the Apriori algorithm, we

computed the KL distance time series for the two weeks of data

for the following feature distributions: source IP address, desti-

nation IP address, source port number, destination port number,

and flow size in packets. We manually identified 31 anomalous

intervals by visual inspection and top- queries on the data. To

determine the root cause of each anomaly, we extracted all flows

in an anomalous interval and analyzed the time series and dis-

tribution of the five features, the number of packets and bytes

per flow, the flow interarrival times, and the flow durations. We

found a total of 36 different events within the 31 the anoma-

lous intervals. The identified anomalies, their class, and the av-

erage number of flows per class are listed in Table IV. Deter-

mining the class of an anomaly is a complex manual process

that combines hints extracted from visual inspection, like tar-

geted ports or IP addresses, with the expertise of the analyst and

TABLE IV
IDENTIFIED ANOMALIES IN TWOWEEKS OF NETFLOW DATA SEPARATED BY
ANOMALY CLASS. FOR EACH CLASS, WEGIVE THENUMBER OF OCCURRENCES
AND THE AVERAGE NUMBER OF FLOWS CAUSED BY THIS CLASS OF ANOMALY

with knowledge about malware from forums and threat expert

reports to reason about the proper class of an anomaly. We clas-

sified anomalies based on a manual process into seven classes:

Flooding, Backscatter, Network Experiment, DDoS, Scanning,

Spam, and Unknown. Our class “Network Experiment” corre-

sponds to anomalies we traced to a PlanetLab node running in

our university. The “Spam” class corresponds to anomalies tar-

geting SMTP servers, while “Flooding” differs from a standard

“DDoS” in that it involves a small number of sources.

Subsequently, we computed the set of candidate anomalous

flows for each anomalous interval using our modified

Apriori algorithm. After applying Apriori, we manually ana-

lyzed the found frequent item-sets and identified true positives,

which matched the identified events, and false positives, which

matched benign traffic.

B. Accuracy of Histogram Clones

As a first step, we evaluated the detection accuracy of our

histogram-based detector for different values of the interval

length and the hash function length . We found small dif-

ferences in the detection results for equal to 512, 1024, and

2048. We also found that the number of detections decreases

with the interval length . In particular, setting to 1024 and

to 5, 10, and 15 min, we detected 62, 52, and 31 anomalous

intervals, respectively. Based on these numbers and the param-

eter selection guidelines we analyzed in Section II-E, we set

conservatively to 15 min, which corresponds to 2.2 alarms per

day, and to 1024.

To assess the detection accuracy, we used receiver operating

characteristic (ROC) curve analysis. We computed the number

of false positives, i.e., intervals that have an alarm but are not in

the ground truth set, and true positives, i.e., intervals that are in

the ground truth set and have an alarm. An ROC curve plots the

false positive rate (FPR), the ratio between the number of false

positives and the total number of intervals that are not in the

ground truth set, versus the true positive rate (TPR), the ratio

between the number of true positives and the total number of

intervals with an alarm. Different points in the ROC space are

obtained by varying the detection threshold.

In Fig. 6, we plot ROC curves for three histogram clones, i.e.,

using three different hash functions. A detection rate of 0.8 cor-

responds to a false positive rate of 0.03, while a detection rate of

1 (100%) to a false positive rate between 0.05 and 0.08 for dif-

ferent clones. With a false positive rate as low as 0.01, only 40%

of the anomalies are detected. These results are a lower bound

on the performance of our detector. This is because some of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. ROC curves plotting the false positive rate versus the true positive
rate for different thresholds. The three curves correspond to different histogram
clones.

Fig. 7. Upper bound for the probability that an anomalous feature value is
eliminated by voting for different values of and in logarithmic scale. The
results for are marked for better readability. For a given value
of increases with , e.g., for and , we obtain ,
while for and , the probability increases to .

the false-positive intervals might contain unknown anomalous

traffic.

C. Impact of Voting

After the correct interval has been determined, each clone se-

lects histogram bins that are suspected to contain anomalous

flows. The number of responsible bins is determined by the de-

tection threshold and the nature of the anomaly, i.e., whether it is

distributed over many feature values or concentrated on a single

or few feature values. The probability that a clone correctly

identifies an anomalous feature value is equal to the probability

that an anomalous feature value has caused the disruption in the

histogram and the disruption has been detected.

We analyze the impact of voting using simulations. Each

clone includes an anomalous feature value in the set with

probability , while a normal feature value is selected only if it

collides on one of the selected bins with probability .

For simulating the impact of different voting strategies on the

error probabilities according to (1) and (3), we set ,

corresponding to a false positive rate of approximately 0.03

and varied in the range [1, 25].

In Fig. 7, the upper bound for the probability that an

anomalous feature value is missed is plotted for different values

of and in logarithmic scale. The results for and

Fig. 8. Probability that a normal feature value is not eliminated by voting
for different values of and in logarithmic scale. The number of anomalous
bins is (a) and (b) , and the number of total bins is .

are marked for better readability. For a given value of , in-

creases with , e.g., for and , we obtain ,

while for and the probability increases to

. Consequently, the upper bound for a fixed number

of histogram clones increases with the number of clones that

are required to agree on a feature value. In particular, it has its

minimum for and is maximized for .

In Fig. 8(a) and (b), we plot the probability that a normal

feature value is not eliminated by voting for different values of

and in logarithmic scale. The number of selected bins is

and , respectively. The number of total bins is

for both plots. The results for and are marked for

better readability. For a given value of decreases with ,

e.g., for and , the probability for including a normal

feature value is for and for .

For and , the probability decreases to

for , and to for . Moreover, we ob-

serve that the probability of including a normal feature value in

the meta-data increases dramatically with the number of anoma-

lous bins . Consequently, assuming a fixed setting of the voting

parameters, we have to tolerate higher false positive rates for

anomalies affecting multiple bins, e.g., distributed anomalies.

Alternatively, the parameter could be adapted based on the

estimated number of bins to achieve a target probability .

The average number of false-positive feature values can be de-

termined by multiplication of with the average number of

feature values observed within one interval, e.g., between 1 and

65 536 for port numbers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRAUCKHOFF et al.: ANOMALY EXTRACTION IN BACKBONE NETWORKS USING ASSOCIATION RULES 9

The simulation results show that a variety of operating

points can be achieved by setting the voting param-

eters appropriately. The selection of the parameters and

can be further optimized taking into account the induced

accuracy and overhead in the rule mining step. The essential

questions to answer are the following: 1) how is the accuracy

impacted by the number of normal feature values included in

the meta-data that is used for prefiltering the candidate flows;

and 2) how does the rule mining performance decrease with the

number of candidate flows?

D. Accuracy of Frequent Item-Set Mining

After the meta-data has been identified by voting, the cor-

responding flows are filtered and subsequently processed by

the item-set mining process. The accuracy in terms of correctly

identified item-sets depends on the following: the accuracy of

the meta-data used for per-filtering flows, the frequency of the

prefiltered normal and anomalous flows, and the minimum sup-

port parameter .

An interesting question concerning the accuracy of meta-data

is the following: What is the probability that a normal value in

the meta-data results in a false positive item-set? Recall that an

item-set will be generated if more than flows matching the

meta-data have one (1-item-set) or more (-item-set) common

feature values. We have observed that the probability for gen-

erating a false positive item-set from a normal feature value is

highly skewed. For example, if port number 80 is included in the

meta-data, it is likely thatWeb servers with high loadwill appear

as false positive 2-item-sets in the output of Apriori. Neverthe-

less, they will be easy to identify as such. On the other hand,

if other less frequent port numbers are chosen, few flows will

match the feature value, and no false positive item-set will be

generated.

To further study the item-set mining accuracy, we used the

flow data of the 31 anomalous intervals. To generate the input

data sets for Apriori, we set to 3, to 3, and to 1024. This

corresponds to and for . Despite

the large value for , none of the 31 anomalies were missed.

This illustrates the fact that is an upper bound that was de-

rived under the assumption of independence between clones.

On the other hand, as is very low, only few normal feature

values are included in the meta-data.

For 21 anomalous intervals (70%), we obtained no FP

item-sets at all. The number of FP item-sets for the remaining

10 anomalous intervals is plotted in Fig. 9 together with the

average number of FP item-sets over all 31 anomalous intervals

(marked with squares). The number of FP item-sets decreases

with the minimum support since less FP item-sets satisfy the

minimum support condition. Fig. 9 shows that on average

between 2 and 8.5 FP item-sets are generated for minimum

support values between 3000 and 10 000 flows, respectively.

The top three lines in the figure correspond to anomalies with

higher numbers of FP item-sets. The observed FP item-sets

are exclusively caused by common feature values such as

ports, e.g., port 80, or short flow lengths. Hence, if an anomaly

happens to involve such a common feature value, the number

of FP item-sets automatically increases even if no normal

feature values are included in the meta-data. However, most of

Fig. 9. Number of false positive (FP) item-sets generated by Apriori for dif-
ferent minimum support parameter values for 10 anomalous intervals (30%).
For 21 anomalous intervals (70%), we obtain no FP item-sets at all. The av-
erage FP item-set count over all 31 anomalous intervals is marked with squares.

the FP item-sets can be sorted out rather easily by a network

administrator.

An important question is which types of anomalies are cap-

tured with our item-set mining approach. There are two require-

ments for extracting an anomaly. The anomaly should: 1) be

detected by causing a deviation in a traffic feature distribution;

and 2) trigger a large number of flows with similar characteris-

tics. For many anomalies that originate from or are directed to

a single or few IP addresses, these requirements are met. Scan-

ning, flooding, and spamming activity, (distributed) denial-of-

service attacks, as well as related backscatter can be identified

by frequent item-sets. Although the item-set mining approach

is not targeted at botnet detection, anomalous activities such

as spamming, scanning, or flooding are often caused by com-

promised hosts. Other anomalies may not be concentrated on a

single or few IP addresses like network outages, routing anoma-

lies, or distributed scanning. However, distributed scanning ac-

tivity typically has a common destination port and often a fixed

flow length that will appear as a frequent item-set. Anomalies

that affect certain network ranges, such as outages or routing

anomalies can be either captured by using IP address prefixes as

additional dimensions for item-set mining, or by applying con-

cepts from the hierarchical heavy-hitter detection domain [7].

E. Computational Overhead

The computational cost for updating histograms and for com-

puting the KL-distance is linear to the number of histogram

bins. The memory cost is also quite low. For example, 5 detec-

tors with 3 clones and 1024 histogram bins require 472 kB of

memory. The iterative method for determining anomalous bins

converges fairly fast as shown in Fig. 5 and only needs to be

executed when an anomaly is found. Frequent item-set mining

is the most demanding step of our methodology both in terms

of running time andmemory overhead. The exact computational

overhead of Apriori depends highly on the implementation used.

Progressive implementations that use FP-trees and database par-

tition techniques [15] have been shown to outperform standard

hash tree implementations [1]. Nevertheless, for all implemen-

tations, the computational overhead increases with the number

of transactions and the number of frequent 1-item-sets. Since

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. Average decrease in classification cost versus minimum support.

both the number of transactions and the number of frequent

1-item-sets increase as more normal flows are included in the

input data set, the performance of Apriori will decrease with the

size of the input data set, e.g., whenwe lower the threshold of the

histogram-based detectors or do not use meta-data at all. More-

over, some implementations show considerably longer compu-

tation times as the relative minimum support decreases [15],

which is equivalent to increasing the dataset size and keeping

the absolute minimum support constant. For our experiments,

we used an unoptimized implementation of Apriori in Python.

Even with the unoptimized implementation, we were able to

find frequent item-sets within reasonable time: In the worst case,

the algorithm required 5 min to compute frequent item-sets on

a Dual Core AMD Opteron 275 processor. A large number of

frequent item-set mining algorithms with better computational

efficiently than Apriori have been proposed in the literature. A

survey of findings can be found in [12]. We believe that it is pos-

sible to substantially optimize the computational overhead of

our implementation. However, such optimization goes beyond

the scope of this paper.

F. Decrease in Classification Cost

As a result of our approach, we obtain a summarized view

that is based on frequent item-sets instead of flows. Hence, the

problem of manually classifying flows can be reduced to the

problem of classifying item-sets. To quantify this decrease in

classification cost, we assume that the classification cost is a

linear function of the number of items that need to be classified.

Accordingly, we define the reduction in classification cost for

a given dataset as , where denotes the number

of flows in the flagged interval and the number of item-sets

in the output of Apriori. The number of flows in 15-min inter-

vals ranges between 700 000 and 2.6 million flows. Since the

cardinality of depends on the minimum support parameter,

we plot in Fig. 10 the reduction in classification cost for dif-

ferent values of the minimum support parameter. The average

cost reduction increases with the minimum support and ranges

between 600 000 and 800 000. The cost reduction saturates for

larger minimum support parameters as the minimum number

of item-sets is reached. This result illustrates that association

rule mining can greatly simplify root-cause analysis and attack

mitigation.

IV. RELATED WORK

A short version of our work has previously appeared in [3].

Most related to our work, Silveira and Diot [28] recently

introduced a tool called URCA that searches for anomalous

flows by iteratively eliminating subsets of normal flows. URCA

also classifies the type of a detected anomaly. Nevertheless, it

requires to repeatedly evaluate an anomaly detector on different

flow subsets, which can be costly. Compared to this work, we

show that simply computing frequent item-sets on prefiltered

flows is sufficient to identify anomalous flows. DoWitcher [27]

is a scalable system for worm detection and containment in

backbone networks. Part of the system automatically constructs

a flow-filter mask from the intersection of suspicious attributes

(meta-data) provided by different detectors. We also leverage

suspicious attributes from an anomaly detector and study the

anomaly extraction problem in more depth. We highlight that

using the intersection can miss anomalous flows and find that

the union of the meta-data combined with association rule

mining gives better results. Dewaele et al. [9] use sketches

to create multiple random projections of a traffic trace, then

model the marginals of the subtraces using Gamma laws

and identify deviations in the parameters of the models as

anomalies. In addition, their method finds possible anomalous

source or destination IP addresses by taking the intersection

of the addresses hashing into anomalous subtraces. Compared

to this work, we introduce and validate techniques to address

the more challenging problem of finding anomalous flows

rather than IP addresses. Lakhina et al. [17] use SNMP data

to detect network-wide volume anomalies and to pinpoint the

origin–destination (OD) flow along which an anomaly existed.

In contrast, our approach takes as input a large number of flow

records, e.g., standard 5-tuple flows, and extracts anomalous

flows. An OD flow may include millions of both normal and

anomalous 5-tuple flows and, therefore, can form the input

to our methodology. Li et al. [20], use sketches to randomly

aggregate flows as an alternative to OD aggregation. The au-

thors show that random aggregation can detect more anomalies

than OD aggregation in the PCA subspace anomaly detection

method [18]. In addition, the authors discuss how their method

can be used for anomaly extraction. However, the work and

evaluation focus primarily on anomaly detection.

Association rules have been successfully applied to different

problems on networking. Lee and Stolfo [19] show how asso-

ciation rules can be used to extract interesting intrusion pat-

terns from system calls and tcpdump logs. Vaarandi [32] intro-

duces a tool called LogHound that provides an optimized im-

plementation of Apriori and demonstrates how LogHound can

be used to summarize traffic flow records. Yoshida et al. [34]

also use frequent item-set mining to identify interesting events

in traces from the MAWI traffic archive [23]. Li and Deng [21]

outline a variant of the Eclat frequent item-set mining algo-

rithm [35] that operates in a sliding window fashion and eval-

uate it using traffic flow traces from a Chinese university. Chan-

dola and Kumar [5] describe heuristics for finding a minimal set

of frequent item-sets that summarizes a large set of flows. Ma-

honey and Chan [22] use association rule mining to find rare

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRAUCKHOFF et al.: ANOMALY EXTRACTION IN BACKBONE NETWORKS USING ASSOCIATION RULES 11

events that are suspected to represent anomalies in packet pay-

load data. They evaluate their method on the 1999 DARPA/Lin-

coln Laboratory traces [24]. Their approach targets edge net-

works where mining rare events is possible. In massive back-

bone data, however, this approach is less promising. Another

application of rule mining in edge networks is eXpose [13],

which learns fine-grained communication rules by exploiting

the temporal correlation between flows within very short time

windows. Compared to these studies, we show how association

rule mining can be combined with anomaly detection to effec-

tively extract anomalous flows.

Hierarchical heavy-hitter detection methods [10], [36], [7]

group traffic into hierarchical clusters of high resource con-

sumption and focus primarily on optimizing computational per-

formance for summarizing normal traffic. For example, they

have been used to identify clusters of Web servers in hosting

farms. Hierarchical heavy-hitter detection is similar to frequent

item-set mining in that both approaches find different forms of

multidimensional heavy hitters. Compared to these studies, we

learn that intelligently combining multidimensional heavy-hit-

ters with anomaly detection enables us to extract anomalous

flows. In addition, frequent item-set mining scales to higher di-

mensionsmuch better than existing hierarchical heavy-hitter de-

tection methods.

Finally, substantial work has focused on dimensionality re-

duction for anomaly detection in backbone networks [2], [29],

[33], [18], [11], [4], [14]. These papers investigate techniques

and appropriate metrics for detecting traffic anomalies, but do

not focus on the anomaly extraction problem we address in this

paper.

V. CONCLUSION

Anomaly extraction takes as input a large set of flows and

aims at finding the flows associated with the event(s) that trig-

gered an observed anomaly. It is very useful for finding the root

cause of detected anomalies, which helps in anomaly mitiga-

tion, network forensics, and anomaly modeling. In this paper,

we first introduced a histogram-based detector that provides

fine-grained meta-data for filtering suspect flows. Furthermore,

we introduced a method for extracting and summarizing anoma-

lous flows. Our methodmodels flows as transactions and applies

frequent item-set mining to find large sets of flowswith identical

values in one or more features. Using real anomalies and traffic

traces from a medium-sized backbone network, we showed em-

pirically that the extracted frequent item-sets pinpoint the root

cause of the anomalies in all (31) studied cases. In addition, fre-

quent item-set mining produced very few false positives, which

could be trivially filtered out by an administrator. The presented

anomaly extraction approach is generic and can be used with

different anomaly detectors that provide meta-data about identi-

fied anomalies. It reduces the work-hours needed for the manual

verification of anomaly alarms.

A number of possible directions for future research exist.

Optimizing the scalability and efficiency of frequent item-set

mining for dealing with big network traffic data including

stream processing is one open problem. Association rule

mining is likely the most well-studied data mining problem

with a very large number of variants of the Apriori algorithm.

Mining top- item-sets; mining closed or maximal frequent

item-sets; and mining on multilevel, multidimensional, or

quantitative features are possible extensions to our work that

could provide useful additional features for network traffic

monitoring.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in Proc. 20th VLDB, Santiago de Chile, Chile,
Sep. 12–15, 1994, pp. 487–499.

[2] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of net-
work traffic anomalies,” in Proc. ACM SIGCOMM IMW, 2002, pp.
71–82.

[3] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian,
“Anomaly extraction in backbone networks using association rules,”
in Proc. 9th ACM SIGCOMM IMC, 2009, pp. 28–34.

[4] D. Brauckhoff, M. May, and K. Salamatian, “Applying PCA for traffic
anomaly detection: Problems and solutions,” in Proc. IEEE INFOCOM
Mini Conf., 2009, pp. 2866–2870.

[5] V. Chandola and V. Kumar, “Summarization—Compressing data into
an informative representation,” Knowl. Inf. Syst., vol. 12, pp. 355–378,
2007.

[6] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: The count-min sketch and its applications,” J. Algor., vol. 55,
no. 1, pp. 58–75, 2005.

[7] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in streaming data,” Trans. Knowl. Discov.
Data, vol. 1, no. 4, pp. 1–48, 2008.

[8] G. Cormode and S. Muthukrishnan, “What’s new: Finding significant
differences in network data streams,” IEEE/ACM Trans. Netw., vol. 13,
no. 6, pp. 1219–1232, Dec. 2005.

[9] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho, “Extracting
hidden anomalies using sketch and non Gaussian multiresolution sta-
tistical detection procedures,” in Proc. LSAD, 2007, pp. 145–152.

[10] C. Estan, S. Savage, andG. Varghese, “Automatically inferring patterns
of resource consumption in network traffic,” inProc. ACM SIGCOMM,
2003, pp. 137–148.

[11] Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in net-
work traffic using maximum entropy estimation,” in Proc. 5th ACM
SIGCOMM IMC, 2005, pp. 32–32.

[12] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: Cur-
rent status and future directions,” Data Min. Knowl. Discov. vol. 15,
pp. 55–86, Aug. 2007.

[13] S. Kandula, R. Chandra, and D. Katabi, “What’s going on?: Learning
communication rules in edge networks,” in Proc. ACM SIGCOMM,
2008, pp. 87–98.

[14] A. Kind, M. P. Stoecklin, and X. Dimitropoulos, “Histogram-based
traffic anomaly detection,” IEEE Trans. Netw. Service Manage., vol.
6, no. 2, pp. 110–121, Jun. 2009.

[15] W. A. Kosters, W. Pijls, and V. Popova, “Complexity analysis of depth
first and FP-growth implementations of APRIORI,” in Proc. MLDM,
2003, pp. 284–292.

[16] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based
change detection: Methods, evaluation, and applications,” in Proc. 3rd
ACM SIGCOMM IMC, 2003, pp. 234–247.

[17] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” in Proc. ACM SIGCOMM, 2004, pp. 219–230.

[18] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in Proc. ACM SIGCOMM, 2005, pp. 217–228.

[19] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion detec-
tion,” in Proc. 7th USENIX Security Symp., 1998, vol. 7, p. 6.

[20] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone,
and A. Lakhina, “Detection and identification of network anomalies
using sketch subspaces,” in Proc. 6th ACM SIGCOMM IMC, 2006,
pp. 147–152.

[21] X. Li and Z.-H. Deng, “Mining frequent patterns from network flows
for monitoring network,” Expert Syst. Appl. vol. 37, no. 12, pp.
8850–8860, 2010.

[22] M. V. Mahoney and P. K. Chan, “Learning rules for anomaly detec-
tion of hostile network traffic,” in Proc. 3rd IEEE ICDM, 2003, pp.
601–604.

[23] MAWI, “The MAWI Working Group traffic archive,” [Online]. Avail-
able: http://mawi.wide.ad.jp/mawi/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

[24] J.McHugh, “Testing intrusion detection systems: A critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by Lincoln Laboratory,” Trans. Inf. Syst. Secur., vol. 3, pp. 262–294,
2000.

[25] P. E. Proctor, “Marketscope for network behavior analysis, 2H06,”
Gartner, Inc., Stamford, CT, Gartner Res. Rep. G00144385, Nov. 2006.

[26] K. H. Ramah, K. Salamatian, and F. Kamoun, “Scan surveillance in
Internet networks,” in Proc. Netw., 2009, pp. 614–625.

[27] S. Ranjan, S. Shah, A. Nucci, M. M. Munafò, R. L. Cruz, and S.
M. Muthukrishnan, “Dowitcher: Effective worm detection and con-
tainment in the Internet core,” in Proc. IEEE INFOCOM, 2007, pp.
2541–2545.

[28] F. Silveira and C. Diot, “URCA: Pulling out anomalies by their root
causes,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.

[29] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statis-
tical methods for anomaly detection,” in Proc. 5th ACM SIGCOMM

IMC, Oct. 19–21, 2005, pp. 331–344.
[30] M. P. Stoecklin, J.-Y. L. Boudec, and A. Kind, “A two-layered

anomaly detection technique based on multi-modal flow behavior
models,” in Proc. 9th PAM, 2008, Lecture Notes in Computer Science,
pp. 212–221.

[31] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
1st ed. Boston, MA: Addison-Wesley Longman, 2005.

[32] R. Vaarandi, “Mining event logs with SLCT and LogHound,” in Proc.
IEEE NOMS, Apr. 2008, pp. 1071–1074.

[33] A. Wagner and B. Plattner, “Entropy based worm and anomaly de-
tection in fast IP networks,” in Proc. 14th IEEE WETICE, 2005, pp.
172–177.

[34] K. Yoshida, Y. Shomura, and Y. Watanabe, “Visualizing network
status,” in Proc. Int. Conf. Mach. Learning Cybern., Aug. 2007, vol.
4, pp. 2094–2099.

[35] M. Zaki, “Scalable algorithms for association mining,” IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372–390, May–Jun. 2000.

[36] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online identifi-
cation of hierarchical heavy hitters: Algorithms, evaluation, and appli-
cations,” in Proc. ACM SIGCOMM IMC, 2004, pp. 101–114.

Daniela Brauckhoff received the Ph.D. degree in electrical and computer en-
gineering from ETH Zurich, Zurich, Switzerland, in 2010.
She is a Security Architect in the financial industry. She joined the Commu-

nications Systems Group (CSG), ETH, in 2005 as a Research Assistant. During
her Ph.D. studies, she worked on applying principal component analysis in the
context of anomaly detection and on the anomaly extraction problem. Further
contributions were made to the topic of anomaly detection on packet-sampled
network data. She also participated in the development of FLAME, a collection
of tools to facilitate the modification of flow traces. FLAME is published under
GPLv2 and a modified BSD license. Her research interests include backbone
network measurements on flow data, network security, and anomaly detection.

Xenofontas Dimitropoulos received the Ph.D. degree in electrical and com-
puter engineering from Georgia Institute of Technology, Atlanta, in 2006.
He is a Senior Researcher and Lecturer with the Communication Systems

Group (CSG), ETH Zurich, Zurich, Switzerland. During his Ph.D. studies,
he conducted research on measuring the AS topology of the Internet and
on building the BGP parallel-distributed simulator. In the past, he was
a Post-Doc with IBM Research, Zurich, Switzerland, doing research on the
Aurora network traffic profiling system (now known as Tivoli Netcool Perfor-
mance FlowAnalyzer), and a Visiting Scholar with the Cooperative Association
for Internet Data Analysis (CAIDA), San Diego, CA, working on inferring
and modeling AS topologies. His present research interests focus on network
measurements. More information can be found at http://www.fontas.net.
Dr. Dimitropoulos has had various honors, such as a best paper award, a Ful-

bright scholarship, and a Marie Curie fellowship. In addition, he has been in
the program committee of conferences such as the ACM Internet Measurement
Conference (IMC).

Arno Wagner received the Ph.D. degree in Internet security from the Swiss
Federal Institute of Technology at Zurich, Zurich, Switzerland, in 2008.
He is currently a Senior Security Consultant with Consecom AG and a Lec-

turer with the Zurich University of Applied Sciences (ZHAW), both in Zurich,
Switzerland. His research interests include network anomaly detection, Internet
security, and software security.

Kavé Salamatian received the Ph.D. degree in computer science from Paris
SUD–Orsay University, Orsay, France, in 1998. He also received the M.B.A.
degree from Isfahan University of Technology, Isfahan, Iran, in 1993.
He is a Professor with the University of Savoie, Annecy-le-Vieux, France.

He was previously a Reader with Lancaster University, Lancaster, U.K., and an
Associate Professor with the University Pierre et Marie Curie, Paris, France. He
also worked on the market floor as a Risk Analyst and enjoyed being an Urban
Traffic Modeler for some years. During his Ph.D. studies, he worked on joint
source channel coding applied to multimedia transmission over Internet. His
main areas of research are Internet measurement and modeling and networking
information theory. These days, he is working on figuring out if networking is
a science or just a hobby, and if it is a science, what are its fundamentals.

