High Resolution Difference Bands of Ethane C2H6 from torsionally Excited Lower States: Rotation-Torsion Structure of the $\nu \mathbf{2}, \nu \mathbf{1 1}$ and $\nu \mathbf{4}+\nu \mathbf{1 1}$ Vibrational States.

Carlo Di Lauro, Franca Lattanzi, Veli-Matti Horneman

- To cite this version:

Carlo Di Lauro, Franca Lattanzi, Veli-Matti Horneman. High Resolution Difference Bands of Ethane C2H6 from torsionally Excited Lower States: Rotation-Torsion Structure of the $\nu 2, \nu 11$ and $\nu 4+\nu 11$ Vibrational States.. Molecular Physics, 2011, pp.1. 10.1080/00268976.2011.614283 . hal-00736796

HAL Id: hal-00736796
https://hal.science/hal-00736796
Submitted on 30 Sep 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High Resolution Difference Bands of Ethane C2H6 from torsionally Excited Lower States: Rotation-Torsion Structure of the v2, v11 and v4+v11 Vibrational States.

Journal:	Molecular Physics		
Manuscript ID:	TMPH-2011-0182.R1		
Manuscript Type:	Full Paper		
Date Submitted by the			
Author:	29-Jul-2011		
Complete List of Authors:	di Lauro, Carlo; University of Naples, retired Lattanzi, Franca; University of Naples Federico II, Medicinal Chemistry Horneman, Veli-Matti; University of Oulu, Physics		
Keywords:	high resolution infrared spectra, Infrared difference bands, Torsional splitting, Barrier to internal rotation, Torsional Coriolis coupling		

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.
figures.zip

SCHOLARONE" ${ }^{\text {T }}$
 Manuscripts

High Resolution Difference Bands of Ethane $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}$ from torsionally Excited Lower States: Rotation-Torsion Structure of the v_{2}, v_{11} and $v_{4}+v_{11}$ Vibrational States.

Franca Lattanzi ${ }^{\text {a }}$, Carlo di Lauro ${ }^{\mathrm{a}^{*}}$, and Veli-Matti Horneman ${ }^{\mathrm{b}}$
a Chimica Fisica, Università di Napoli Federico II, Via D. Montesano 49, I-80138 Napoli, Italy
b
Departement of Physics, University of Oulu, Oulu, Finland
Corresponding author: Carlo di Lauro, Via Bonito 27/C, I-80129 Napoli, Italy.
car.dilauro@gmail.com

Abstract

A high resolution Fourier transform infrared spectrum of $\mathrm{C}_{2} \mathrm{H}_{6}$, measured with a pressure of 173.3 Pa and an optical path of 153.2 m , was analyzed between 1050 and $1295 \mathrm{~cm}^{-1}$.

Extensive absorption due to the difference band $v_{11}-v_{4}$, and several rotation-torsion lines of the difference band $v_{2}-v_{4}$, in the region of the x, y-Coriolis resonance of v_{2} and v_{11}, were observed.

This allowed us to perform a detailed rotation-torsion analysis of the upper states v_{11} and v_{2}. The anomalous torsional structure, found in the non-degenerate vibrational state v_{2}, can be explained as the effect of an Hamiltonian term accounting for a strong dependence of the torsional barrier height on the normal vibrational coordinate q_{2}. The value of the barrier height derivative $\frac{\partial \mathrm{V}_{3}}{\partial \mathrm{q}_{2}}$ is estimated to be $127 \pm 10 \mathrm{~cm}^{-1}$.

We also could detect and assign "hot" difference transitions belonging to the $\left(v_{4}+v_{11}\right)-2 v_{4}$ band, yielding information on the upper state $v_{4}+v_{11}$. We believe that transitions from $3 v_{4}$ to $2 v_{4}+v_{11}$ are also detectable in the investigated region.

Keywords

High resolution infrared spectra. Infrared difference bands. Torsional splitting.
Barrier to internal rotation. Vibration-rotation Coriolis coupling. Torsional Coriolis coupling.

1. Introduction

Ethane is a key molecule owing to its highly symmetric geometry and peculiar internal rotation dynamics. It is also a relevant species in the applied research, because of its presence in the atmospheres of the Earth and outer planets, and in comets. For these reasons, the infrared active fundamental transitions of ethane have been extensively studied under high resolution, in spite of the particular complexity of the absorption spectrum, characterized by a high density of lines and anomalous rotation-torsion patterns generated by the interaction of several vibrational states, see Ref. [1-3] to mention only the most recent contributions. One may think that a detailed knowledge of the infrared inactive fundamental vibrational states is by far less important, but it is not so: In fact, infrared inactive modes ("g"-vibrational states under $\mathrm{D}_{3 \mathrm{~d}}$, the point group of the "rigid" staggered conformations) also occur in combination states that are involved in the complex interaction mechanisms affecting the observable absorption spectrum. Thus an accurate knowledge of the infrared inactive modes is quite helpful in the study of these complex mechanisms.

Owing to the selection rule $\mathrm{u} \leftrightarrow \mathrm{g}$ holding for electric dipole transitions, g-fundamental vibrational states cannot be reached from the vibrational ground state (which is a g-state), but only from lower u-states, in the so called difference transitions. The lowest u-vibrational state of ethane is the first excited torsional state v_{4}, about $289 \mathrm{~cm}^{-1}$ above the ground state, and this is the most favourable lower state for difference transitions, being the most populated u-state at the thermal equilibrium. Apart from the fact that the v_{4} state is less populated than the ground vibrational state, there is another factor that makes the difference transitions quite weak: they imply the change of two units (at the least) in the vibrational quantum numbers. Thus difference bands normally can be observed only in spectral regions free from stronger absorption, The spectral region of ethane between the high-frequency wing of the fundamentals v_{9} (centered at $823 \mathrm{~cm}^{-1}$) and the low-frequency wing of the fundamental v_{8} (centered at $1472 \mathrm{~cm}^{-1}$), approximately between 1000 and $1300 \mathrm{~cm}^{-1}$, is quite free from absorption and then it is a favourable region for the observation of difference bands. There are two g-vibrational fundamentals observable in this spectral region, as upper states in difference transitions from v_{4} : They are v_{2} (about $1397 \mathrm{~cm}^{-1}$) with $v_{2}-v_{4}=\sim 1108 \mathrm{~cm}^{-1}$, and $v_{11}\left(\right.$ about $1468 \mathrm{~cm}^{-1}$) with $v_{11}-v_{4}=$ $\sim 1179 \mathrm{~cm}^{-1}$.

Thus we decided to measure a high resolution Fourier transform infrared spectrum of ethane in the above spectral region, using a very long optical path, in the aim to measure and analyze the difference bands $v_{2}-v_{4}$ and $v_{11}-v_{4}$.

2. Experimental details

The experimental laboratory work was carried out in the Infrared laboratory at the University of Oulu with the BRUKER IFS 120 HR Fourier spectrometer. A $\mathrm{C}_{2} \mathrm{H}_{6}$ sample for laboratory use were obtained from Sigma-Aldrich. The studied weak absorption region from 940 to $1260 \mathrm{~cm}^{-1}$ required a very long recording time, 127 hours, with the sample at the pressure of 173 Pa in a multi-pass sample cell [4] with the absorption path length of 153.2 m . In the measurement the cell was provided with two potassium bromide (KBr) windows, a glowbar source was used, a germanium film on KBr was employed as a beam splitter and the infrared radiation was detected with a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. The instrumental resolution due to the maximum optical path difference of the interferometer was $0.0016 \mathrm{~cm}^{-1}$. The aperture broadening was $0.0018 \mathrm{~cm}^{-1}$ at $1100 \mathrm{~cm}^{-1}$. Together with the Doppler broadening these instrumental effects gave the final spectral resolution $0.002 \mathrm{~cm}^{-1}$, near the lower wavenumber end of the spectral region, and $0.0029 \mathrm{~cm}^{-1}$ near the higher end. All the spectra were calibrated using the transitions of carbonyl sulfide (OCS) in the $2 v_{2}$ band. [5].

3. Description of the spectrum

The dominant extended feature observed in the investigated spectral region, between 1040 and $1295 \mathrm{~cm}^{-1}$, is a perpendicular band that can be easily identified as the difference band $v_{11}-v_{4}$. In fact, the spacing of its Q -sub-branches is compatible with the value of the ζ-Coriolis constant expected for v_{11}, and the differences of P, Q and R combinations sharing the same upper state correspond to the appropriate rotational energy differences in the v_{4} lower state. The J-structure of the Q-sub-branches degrades toward the high wavenumbers, because the B-rotational constant has a smaller value in the lower state, v_{4}. The torsional splitting of the transition lines is of the order of $0.2 \mathrm{~cm}^{-1}$ as in v_{4}, but with opposite sign, showing that v_{4} is the lower state and that the splitting in the upper state is considerably smaller. We could find and assign transitions of $v_{11}-v_{4}$ with $K^{\prime \prime} \Delta K$ from -17 to 14 , denoting by $K^{\prime \prime}$ the absolute value of the quantum number associated with the total angular momentum component on the quantization axis, in the lower state. The ${ }^{\mathrm{r}} \mathrm{Q}_{3}$ sub-branch, with its two torsional components, is shown in Fig. 1.

The density of the spectral lines becomes quite low far in the low-wavenumber wing, so that we could observe and identify very weak features, down to $K^{\prime \prime} \Delta K=-17$. On the contrary, the line density remains high in the high-wavenumber wing, where the absorption due to the fundamentals v_{6} and v_{8} eventually starts. This is also due to the fact that "hot difference bands", mostly $\left(v_{4}+v_{11}\right)-2 v_{4}$ and $\left(2 v_{4}+v_{11}\right)-3 v_{4}$, occur at higher wavenumbers than $v_{11}-v_{4}$, due to the large anharmonicity of the torsional mode v_{4}. The fact that these "hot difference bands" are strong enough to be observed, can be understood by considering that the expressions for their transition probabilities, contain the square of the matrix element $\left\langle\mathrm{v}_{4}, \mathrm{v}_{11}=0\right|\left(\partial^{2} \mu_{\alpha} / \partial \mathrm{q}_{11} \partial \mathrm{q}_{4}\right)_{0} \mathrm{q}_{11} \mathrm{q}_{4}\left|\mathrm{v}_{4}-1, \mathrm{v}_{11}=1\right\rangle$, with $\alpha=\mathrm{x}$ or y , and then they are proportional to v_{4}. Thus, assuming for $v_{4}, 2 v_{4}$, and $3 v_{4}$ the estimated anharmonic values 289,545 and $757 \mathrm{~cm}^{-}$ ${ }^{1}$, from transition probabilities and lower level populations one finds that that the strengths of $v_{11}-v_{4},\left(v_{4}+v_{11}\right)-2 v_{4}$ and $\left(2 v_{4}+v_{11}\right)-3 v_{4}$ are in the ratios $1.00: 0.58: 0.31$ at 296 K .

We were able to identify several sub-branches of $\left(v_{4}+v_{11}\right)-2 v_{4}$. They show a large torsional splitting, about $4 \mathrm{~cm}^{-1}$, mostly due to the lower state. Fig. 2 shows the ${ }^{r} Q_{3}$ sub-branch of $\left(v_{4}+v_{11}\right)-2 v_{4}$.

A few additional weaker Q-branches, which cannot be assigned to $v_{11}-v_{4}$ nor to $\left(v_{4}+v_{11}\right)-2 v_{4}$, are apparent at even higher wavenumbers. We believe that they belong to $\left(2 v_{4}+v_{11}\right)-3 v_{4}$, on the basis of the intensity consideration of above.

The $v_{2}-v_{4}$ parallel band is very weak. Its Q -branch transitions occur as an irregular dense series of weak lines, between 1003 and $1007 \mathrm{~cm}^{-1}$, but no line assignments could be done. However, several P-transition lines, activated by the x, y-Coriolis interaction of v_{2} and v_{11} near resonance, could be detected and identified for K between 10 and 15 . This will be discussed in the next paragraph.

4. The energy matrix and perturbations.

In the analysis of the spectrum we considered for the upper state the vibrational levels v_{2} (mainly symmetric CH_{3} umbrella vibration of the two methyl groups, of $\mathrm{A}_{1 \mathrm{~s}}$ symmetry under the extended molecular group $\mathrm{G}_{36}(\mathrm{EM})$, see Bunker and Jensen [6]) and v_{11} (mainly degenerate symmetric CH_{3} deformation of the two methyl groups, of $\mathrm{E}_{2 \mathrm{~d}}$ symmetry under the extended molecular group $\mathrm{G}_{36}(\mathrm{EM})$). These two states are coupled by an x, y-Coriolis interaction, like the
corresponding asymmetric modes v_{6} and v_{8} [2]. Later on we realized that an additional $\mathrm{x}, \mathrm{y}-$ Coriolis interaction, between the states v_{11} and $v_{3}+2 v_{4}$, helped to improve the fit.

Small torsional splitting in a given vibrational state was accounted for as usual by the oneparameter expression $[7,8]$

$$
\begin{equation*}
v^{0}\left(\vec{v}, \Gamma_{\mathrm{t}}\right)=v^{0}-2(-1)^{\mathrm{v}_{4}} X_{\mathrm{v}} \cos (\sigma 2 \pi / 6) . \tag{1}
\end{equation*}
$$

where $\overrightarrow{\mathrm{v}}$ represents the ensemble of vibrational quantum numbers, inclusive of the torsionalvibration quantum number $\mathrm{v}_{4}, X_{\mathrm{v}}$ is a generally positive parameter whose value increases rapidly with v_{4}, but depends also on the excitation of the small amplitude vibrational modes, and $\sigma=0,1$, 2,3 for the components of torsional symmetries $\Gamma_{t}=A_{1 s}\left(\right.$ or $\left.A_{3 s}\right), E_{3 d}, E_{3 s}$ and $A_{3 d}\left(o r A_{1 d}\right)$, using A_{s} and E_{d} vibrational basis functions. For larger splittings, a v^{0}-value has to be determined for each of the four torsional components. Note that the components $A_{1 s}$ and $A_{3 d}$ occur with the even values of v_{4}, whereas the components $A_{3 s}$ and $A_{1 d}$ occur with the odd values of v_{4}. The torsional splitting in the v_{2} state is rather anomalous and we had to use four different values v^{0} for the the different torsional components $\mathrm{A}_{1 \mathrm{~s}}, \mathrm{E}_{3 \mathrm{~d}}, \mathrm{E}_{3 \mathrm{~s}}$ and $\mathrm{A}_{3 \mathrm{~d}}$,

Diagonal matrix elements were given as usual by

$$
\begin{align*}
E\left[\left(\overrightarrow{\mathrm{v}}, \Gamma_{\mathrm{t}},(\pm l), J, K\right]=v^{0}\right. & \left(\overrightarrow{\mathrm{v}}, \Gamma_{\mathrm{t}}\right)+(A-B) K^{2}+B J(J+1) \\
& -D_{J} J^{2}(J+1)^{2}-D_{J K} J(J+1) K^{2}-D_{K} K^{4} \\
& \mp\left[2 A \zeta-\eta_{J} J(J+1)-\eta_{K} K^{2}\right] K \tag{2}
\end{align*}
$$

In the off-diagonal matrix elements, the torsional symmetries of interacting states depend on the specific states and on the shifts of quantum numbers. They can be determined following the procedures of Ref. [9].

The l-interaction with $\Delta k=\Delta l= \pm 2$, henceforth referred to as $l(2,2)$, was taken into account within the state v_{11}, with matrix elements

$$
\begin{align*}
\left\langle\overrightarrow{\mathrm{v}}_{\mathrm{s}}, \Gamma_{\mathrm{t}}, l= \pm 1, J, k \pm 1\right| \boldsymbol{H} \mid \overrightarrow{\mathrm{v}}_{\mathrm{s}} & \left.\Gamma_{\mathrm{t}}, l=\mp 1, J, k \mp 1\right\rangle \\
& -2\left(F+k^{2} F_{K}\right)\{[J(J+1)-k(k+1)][J(J+1)-k(k-1)]\}^{1 / 2} \tag{3}
\end{align*}
$$

The x, y-Coriolis interaction was considered in the vibrational pairs v_{2} and v_{11} and $v_{3}+2 v_{4}$ and v_{11}, with matrix elements

$$
\begin{align*}
\left\langle\overrightarrow{\mathrm{v}}_{\mathrm{s}}, \Gamma_{\mathrm{t}}, l=\right. & \pm 1, J, k \pm 1|\boldsymbol{H}|_{\mathrm{v}}^{\mathrm{r}} \\
, & \left.\Gamma_{\mathrm{t}}, l=0, J, k\right\rangle= \tag{4}\\
& \pm 2^{1 / 2}\left[Z_{\mathrm{r}, \mathrm{~s}}+Z_{\mathrm{r}, \mathrm{~s} J} J(J+1)\right][J(J+1)-k(k \pm 1)]^{1 / 2}
\end{align*}
$$

The l-type interactions with $\Delta l= \pm 2$ and $\Delta k=\mp 1$, henceforth referred to as $l(2,-1)$, within the state v_{11} occurs with matrix elements

$$
\begin{gather*}
\left\langle v_{11}, \Gamma_{\mathrm{t}}, l= \pm 1, J, k\right| \boldsymbol{H}\left|v_{11}, \Gamma_{\mathrm{t}} \times \mathrm{A}_{3 \mathrm{~d}}, l=\mp 1, J, k \pm 1\right\rangle= \\
\left(E+k^{2} E_{K}\right)(2 k+1)[J(J+1)-k(k \pm 1)]^{1 / 2} \tag{5}
\end{gather*}
$$

Fig. 3 shows the Coriolis interactions of v_{11} with the parallel vibrational states v_{2} and $v_{3}+2 v_{4}$, in the region of the resonance. We could detect and assign P-transitions from v_{4} to v_{2}, enhanced by the mixing of v_{2} and the $(-l)$-side of v_{11}, in the region near the resonance (K from 10 to 15), see Fig. 4. For K equal to 12 and 13 both stronger and weaker transitions to the split torsional components of v_{2} were observed.

Fig. 3 also shows that the levels of v_{11} which can be coupled by an interaction with $\Delta l= \pm 2$ and Δk $=\mp 1(l(2,-1)$ coupling $)$ are always rather close to each other. Their energy separation is also influenced by the effect of the concomitant x, y-Coriolis interactions.
Some peculiar effects on the spectrum of these Coriolis perturbations are opposite to those described by di Lauro and Mills [10], because of the asymmetry of the lower vibrational state v_{4} with respect to a reflection through a plane σ_{xz} containing the molecular z -axis, and its bearing on selection rules. In fact, if we denote by \pm the symmetrized vibration-rotation functions defined as
the vibration-rotation electric dipole selection rules (asymmetric \leftrightarrow symmetric with respect to σ_{xz}) are $+\leftrightarrow-$ for Q -transitions and $\pm \leftrightarrow \pm$ for P and R -transitions, contrary to what would hold for transitions from a symmetric lower state. As a consequence of this, the above x, y-Coriolis
interactions have no effect on the ${ }^{\mathrm{r}} \mathrm{R}_{0}$ and ${ }^{\mathrm{r}} \mathrm{P}_{0}$ sub-branches of v_{11} and a larger effect than elsewhere (by a factor $\sqrt{2}$ in the matrix elements) on the sub-branch ${ }^{\mathrm{r}} \mathrm{Q}_{0}$, see also Ref. [2].

Fig. 5 shows the l-type interaction mechanisms acting within the v_{11} state. The $l(2,2)$ interaction $(\Delta k=\Delta l= \pm 2)$ is always resonant for the $l=k= \pm 1$ pair, causing its splitting into the symmetrized combinations as in Equation (6). This splitting is transmitted to the $l=\bar{\mp} 1, k= \pm 2$ pair by the $l(2,-1)$ interaction $(\Delta l= \pm 2, \Delta k=\mp 1)$, with the coupling selection rule $+\leftrightarrow-$. Thus the transition lines with $K^{\prime \prime} \Delta K=-3$, ending to the above levels, appear each with four components, owing to the simultaneous effects of torsional and K-splitting, see the ${ }^{\mathrm{p}} \mathrm{Q}_{3}$-transitions in Fig. 6.

This interaction mechanism and the K-doubling of the $K^{\prime \prime} \Delta K=-3$ levels in v_{11} is quite similar to what has been observed in v_{8}, see Ref. [2]. However the effects on the spectrum are different, because in the present case the lower state is v_{4} (asymmetric with respect to the reflection through the mentioned symmetry plane σ_{xz}) instead of the ground state. In fact, in the present case the selection rules in the + and - labels are $\pm \leftrightarrow \pm$ for transitions with even $\Delta K+\Delta J$, and $+\leftrightarrow-$ for transitions with odd $\Delta K+\Delta J$, contrary to what holds for the v_{8} fundamental. The details are discussed in the Appendix of Ref. [2].

The $l(2,2)$-splitting in the $l=k= \pm 1$ pair increases with J, and eventually its - component crosses the + component with $k= \pm 2$ coupled to it by the $l(2,-1)$ interaction, inverting the sign of the level displacements, see Fig. 5. This happens at $J=15$, and the most evident effect is a sudden change of the J-spacing from $J=14$ to $J=15$ (an increase of the spacing in the ${ }^{\mathrm{r}} \mathrm{Q}_{0}$ sub-branch, and a decrease in the $\mathrm{K}+$ components of ${ }^{\mathrm{p}} \mathrm{Q}_{3}$, see Fig. 6). Because of the effect of this crossing, $\mathrm{K}+$ is higher than $\mathrm{K}-$ up to $K=14$ included, and then becomes lower, This can be easily checked in Fig, 6, because the K+ transitions are stronger for odd J and the K- transitions for even J, for each torsional symmetry. The effect of the J-crossing between 14 and 15 is also detectable in the sub-branch ${ }^{\mathrm{r}} \mathrm{Q}_{0}$, where the displacements of the levels with $J=14$ and 15 are obviously opposite to those observed in ${ }^{\mathrm{p}} \mathrm{Q}_{3}$, see Fig. 7. The strong level mixing near resonance can activate transitions with $\Delta K= \pm 2$, an in fact we could observe three ${ }^{\mathrm{s}} \mathrm{Q}_{0}$ transitions $(\Delta K=2)$, at $J=14$ (for the stronger torsional component) and $J=15$ (for both torsional components), also shown in Fig. 7.

5. Analysis and results.

The body of data processed in an iterative least squares calculation, according to the Hamiltonian model of the previous paragraph, consisted of wavenumbers corresponding to 1386 different
rotation-torsion upper states belonging to the v_{11} and v_{2} vibrational states. Namely, we used 1277 wavenumbers of the $v_{11}-v_{4}$ transition (${ }^{\mathrm{P}} \mathrm{P}$-transitions for $K " \Delta K$ from -1 to -17, ${ }^{\mathrm{r}} \mathrm{R}$-transitions for $K " \Delta K$ from 0 to $14,{ }^{\mathrm{r}} \mathrm{Q}_{0}$ transitions, and three ${ }^{\mathrm{s}} \mathrm{Q}_{0}$ transitions, with a maximum J-value of 37) and 109 wawenumbers of the $\mathrm{v}_{2}-\mathrm{v}_{4}$ transition (${ }^{\mathrm{q}} \mathrm{P}$-transitions activated by the x, y-Coriolis resonance of v_{2} with v_{11}, for K from 10 to 15 and a maximum J-value of 28). As mentioned, we considered also the state $v_{3}+2 v_{4}$, as a Coriolis perturber of v_{11}. The account for an anharmonic interaction of v_{2} and $v_{3}+2 v_{4}$ did not improve the fit, and this interaction was disregarded. Eventually the iterative calculations converged to a root mean square (RMS) deviation of $2.52 \times 10^{-3} \mathrm{~cm}^{-1}$, with the parameter values reported in Table 1 .

Due to the lack of data relative to $v_{3}+2 v_{4}$, we could determine only the values of v°, X, A and B for this vibrational state.

The v_{11} state
The values of the parameters for this state (mainly symmetric deformation of the two methyl groups) are rather similar to those found for v_{8} (mainly asymmetric deformation of the two methyl groups) in Ref. [2]. This holds also for the l-type interaction parameters (F and E), and in fact these interactions are quite important in both vibrational states. However, the infrared active fundamental band v_{8} appears much more complex than the difference band $v_{11}-v_{4}$, because of the effect of the combination state $v_{4}+v_{12}$ occurring quite close to v_{8}. Also in v_{11} the torsional splitting is considerably smaller than in non-degenerate states in the torsional lowest state ($X=0.00110 \mathrm{~cm}^{-1}$, against the ground state value of $0.00189 \mathrm{~cm}^{-1}$) as expected from theory, see [11] and references therein. The x, y Coriolis interaction between v_{11} and v_{2} is quite similar to that between v_{8} and v_{6} (v_{2} and v_{6} are mostly symmetric and asymmetric umbrella vibrations of the two methyl groups). The mechanisms generating the K-doubling of the levels $k= \pm 2, l=\mp 1$ in v_{11} and v_{8} [2] are quite similar: In v_{11} too the splitting can be accounted for by the combined effect of the $l(2,2)$ and $l(2,-1)$ interactions, as already discussed, without considering an effective direct interaction $(\Delta K= \pm 4, \Delta l=\mp 2)$ within the vibration-rotation components of the doublet.

The values of the parameters of v_{11} determined by Fernández and Montero from the Raman spectrum [12] $\left(v^{0}=1468.4, A=2.6575, B=0.6666, A \zeta=-0.8886\right.$, all in $\left.\mathrm{cm}^{-1}\right)$, are in reasonable agreement with ours.

Although the observation of transitions to the v_{2} state is limited to the K-range between 10 and 15 , near the Coriolis resonance with v_{11}, the parameters of the v_{2} state could be determined quite well. In fact, it is worth to note that the body of observed ${ }^{\mathrm{P}}$ P-transitions to v_{11} brings information on v_{2} even beyond the mentioned K-range, because of the interaction of the two states.

The torsional splitting of v_{2} is rather complex, and cannot be accounted for by the simple oneparameter expression of Equation (1). In fact, we had to use four independent vibrational origins for the torsional components, see Table 1. The values determined for these four vibrational origins in v_{2} agree with their displacements predicted for the interaction with the torsional manifold correlating with $6 v_{4}$, as shown in Fig. 8.

The anomalous torsional pattern in v_{2} is generated by the same mechanism causing a similar effect in v_{3}, and explained by Bermejo et al. [13]. The mechanism involves the linear dependence of the torsional barrier parameter V_{3} on the normal coordinate q_{2}.
Using a simple approximation, we write the torsional Hamiltonian as

$$
\begin{equation*}
\boldsymbol{H}_{\text {tors. }}=\boldsymbol{H}_{0}+\boldsymbol{H}^{\prime} \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\boldsymbol{H}_{0}=A \mathbf{J}_{\tau}^{2}+\frac{1}{2} \mathrm{~V}_{3}^{0}(\cos 3 \tau+1)+\frac{1}{2} \mathrm{~V}_{6}(\cos 6 \tau-1) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{H}^{\prime}=\left(\frac{\partial \mathrm{V}_{3}}{\partial \mathrm{q}_{2}}\right)_{0} \mathbf{q}_{2}(\cos 3 \tau+1) \tag{9}
\end{equation*}
$$

assuming that the torsional angle τ is zero in the conformation of maximum energy (eclipsed).
A term (9) is allowed by symmetry for each totally symmetric normal coordinate ($\mathrm{A}_{1 \mathrm{~s}}$ symmetry under the extended molecular group $\mathrm{G}_{36}(\mathrm{EM})$, that is $\mathrm{q}_{1}, \mathrm{q}_{2}$ and $\left.\mathrm{q}_{3}\right)$. The anomalous torsional pattern in v_{2} is caused by the term (9), therefore we tried to determine the value of the barrier derivative $\left(\frac{\partial \mathrm{V}_{3}}{\partial \mathrm{q}_{2}}\right)_{0}$. Starting with a free internal rotor basis, we calculated the torsional eigenfunctions of \boldsymbol{H}_{0}, for v_{4} up to 8 , with $A=2.674677 \mathrm{~cm}^{-1}, V_{3}=1013.28 \mathrm{~cm}^{-1}$ and $V_{6}=8.798$ cm^{-1}. Using the eigenvectors, we also calculated the matrix elements of $(\cos 3 \tau+1)$, needed in the final calculation, in the basis of the eigenfunctions of \boldsymbol{H}_{0}. Then we built up the final matrix, on the basis of the functions $\left(\mathrm{v}_{2}=0, \mathrm{v}_{4}, \Gamma_{\mathrm{t}}\right),\left(\mathrm{v}_{2}=1, \mathrm{v}_{4}, \Gamma_{\mathrm{t}}\right)$ and $\left(\mathrm{v}_{2}=2, \mathrm{v}_{4}, \Gamma_{\mathrm{t}}\right)$, with v_{4} varying from 0 to 8 .

We assumed that the eigenvectors of these basis functions, in terms of the free internal rotor functions, were independent of the value of v_{2}. The matrix factors into four blocks, corresponding to the different symmetry species Γ_{t}, that is $\mathrm{E}_{3 \mathrm{~s}}, \mathrm{E}_{3 \mathrm{~d}}, \mathrm{~A}_{1 \mathrm{~s}}$ or $\mathrm{A}_{1 \mathrm{~d}}$, and $\mathrm{A}_{3 \mathrm{~d}}$ or $\mathrm{A}_{3 \mathrm{~s}}$ ($A_{1 s}$ and $A_{3 d}$ occur for even v_{4} and $\mathrm{A}_{1 \mathrm{~d}}$ and $\mathrm{A}_{3 \mathrm{~s}}$ occur for odd v_{4}). Owing to the operator \mathbf{q}_{2} and its selection rules, the matrix elements of \boldsymbol{H}^{\prime} link the functions with $\mathrm{v}_{2}=1$ to those with $\mathrm{v}_{2}=0$ and $\mathrm{v}_{2}=2$. They contain the value of the derivative $\left(\frac{\partial \mathrm{V}_{3}}{\partial \mathrm{q}_{2}}\right)_{0}$, to be determined. The vibrational origins, $v_{2}\left(\Gamma_{t}\right)-v_{4}\left(\Gamma_{t} \times A_{3 s}\right)$, were calculated by diagonalization of the four matrix blocs, as eigenvalue differences $\mathrm{E}\left(\mathrm{v}_{2}=1, \mathrm{v}_{4}=0, \Gamma_{\mathrm{t}}\right)-\mathrm{E}\left(\mathrm{v}_{2}=0, \mathrm{v}_{4}=1, \Gamma_{\mathrm{t}} \times \mathrm{A}_{3 \mathrm{~s}}\right)$. They were compared to the values determined from the analysis of the spectrum, and the value of the derivative $\left(\frac{\partial \mathrm{V}_{3}}{\partial \mathrm{q}_{2}}\right)_{0}$ was iteratively adjusted by the least squares procedure.
Using a dimensionless normal coordinate q_{2}, we eventually found $\left(\frac{\partial \mathrm{V}_{3}}{\partial \mathrm{q}_{2}}\right)_{0}=127 \pm 10 \mathrm{~cm}^{-1}$, the
large uncertainty being mostly related to the approximations involved in the calculations.
This value is considerably smaller (in the absolute value) than the barrier derivative with respect to q_{3} determined by Bermejo et al. [13], $-276 \mathrm{~cm}^{-1}$, in agreement with the theoretical predictions of Kirtman et al. [14]. We note that the relative shifts of the four components of v_{2} are actually determined by the interaction with the manifold $6 v_{4}$ shown in Fig. 7, owing to the resonance conditions. However a considerable global shift toward the low energy is caused by the interaction with the levels ($\mathrm{v}_{2}=2, \mathrm{v}_{4}=0, \Gamma_{\mathrm{t}}$), because of the large matrix elements.

6. 'Hot" difference bands: $\left(v_{4}+v_{11}\right)-2 v_{4}$.

We could identify transitions from $2 v_{4}$ to $v_{4}+v_{11}$, with $K^{\prime \prime} \Delta K$ from -2 to 9 . The bias of this range, in favour of the positive values, is due to the fact that the origin of the band $\left(v_{4}+v_{11}\right)-2 v_{4}$ is higher than that of $v_{11}-v_{4}$ by about $34 \mathrm{~cm}^{-1}$. Therefore the sub-branches of this "hot" difference band with positive values of $K^{\prime \prime} \Delta K$ move to the high wavenumbers, far from the center of $v_{11}-v_{4}$, as $K^{\prime \prime}$ increases. On the contrary, the sub-branches with negative $K^{\prime \prime} \Delta K$ move to the crowded center of the stronger $v_{11}-v_{4}$, and become hardly detectable. The line assignment, very difficult at the beginning, became easier when the values of the lower state J-structure parameters could be guessed from the line assignments already acquired.

In Table 2 we report the values of the rotational constants for the different torsional components of the $2 v_{4}$ state, eventually determined from the differences of the observed wavenumbers of transitions sharing the same rotation-torsion level of $v_{4}+v_{11}$. Pairs whose calculated and observed differences deviated by more than $0.001 \mathrm{~cm}^{-1}$ were disregarded.

We also calculated values of B, D_{J} and $D_{J K}$ assuming that they were equal in all torsional components. They are reported in the last column of Table 2.

A simple explorative least squares fit calculation of the observed wavenumbers showed that the levels of the stronger torsional component of the $v_{4}+v_{11}$ state with $k= \pm 2, l= \pm 1$ are heavily perturbed. Even excluding transitions to these levels from the body of data, we could obtain a fit of the observed data with a RMS deviation of $0.028 \mathrm{~cm}^{-1}$, showing that a rather sophisticated model would be needed to try to analyze this state. We believe that the $\left(v_{4}+v_{11}\right)-2 v_{4}$ system would be conveniently analyzed together with the $v_{4}+v_{11}$ combination transition, having a common vibrational upper state. The latter has been studied by Susskind [7], but under the resolution of a grating spectrometer.

7. Conclusions.

Although the v_{11} and v_{2} fundamentals of $\mathrm{C}_{2} \mathrm{H}_{6}$ are infrared inactive, a high resolution rotationtorsion analysis of these vibrational states has been performed through the investigation of the relative difference bands from the v_{4} torsional state. The detailed knowledge of these states can be relevant also in the applied research, because they can occur in infrared active combinations perturbing the absorption regions of atmospheric and planetary interest. In particular, the detailed knowledge of the infrared inactive v_{11} and v_{2}, together with the corresponding active modes v_{8} and v_{6}, can be useful for the study of the 7 micron spectral region of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$, expected to be quite similar to that of the main 12,12 isotopomer, but with all these four fundamentals active, because of the lowered symmetry.

The observation of the "hot" difference $\left(v_{4}+v_{11}\right)-2 v_{4}$ provides informations both on the lower state $2 v_{4}$ and on the upper state $v_{4}+v_{11}$.

References

[1] J.R. Cooper, N. Moazzen-Ahmadi, J. Mol. Spectrosc. 239 (2006) 51-58.
[2] F. Lattanzi, C. di Lauro, J. Vander Auwera, Mol. Phys. in press,
[3] C. di Lauro, F. Lattanzi, J. Vander Auwera, J. Mol. Spectrosc. 267 (2011) 71-79.

[4] T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, J. Mol. Spectrosc. 181 (1997) 279 - 286.
[5] V.-M. Horneman, J. Opt. Soc. Am. B 21 (2004) 1050-1064.
[6] P.R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, Second ed., NRC
ResearchPress, Ottawa, 1998.
[7] J. Susskind, J. Mol. Spectrosc. 49 (1974) 1-17.
[8] J. T. Hougen, J. Mol. Spectrosc. 82 (1980) 92-116.
[9] C. di Lauro, F. Lattanzi, A. Valentin, Mol. Phys. 89 (1996) 663-676
[10] C. di Lauro, I.M. Mills, J. Mol. Spectrosc. 21 (1966) 386-413.
[11] C. di Lauro, F. Lattanzi, Mol. Phys. 103 (2005) 697-708.
[12] J.M. Fernández-Sánchez, S. Montero, J. Chem. Phys. 118 (2003) 2657-2672.
[13] D. Bermejo, J. Santos, P. Cancio, J.M. Fernández-Sánchez, S. Montero, J. Chem. Phys. 97 (1992) 7055-7063.
[14] B. Kirtman, W.E. Palke, C S. Ewig, J. Chem. Phys. 64 (1976) 1883-1890.

Legends of Tables

Table 1

Vibration-rotation-torsion parameters in cm^{-1} determined for the vibrational states v_{11}, v_{2} and $v_{3}+2 v_{4}$. Numbers in parentheses are standard deviations in units of the last quoted digit.

Table 2

Values in cm^{-1} of the rotational constants B, D_{J} and $D_{J K}$ determined for the torsional components of $2 v_{4}$, See text.

Table 1

	v_{11}	v_{2}	$v_{3}+2 v_{4}$	V_{4}
v°	1467.99167 (22)		1541.403 (690)	$289{ }^{\text {a }}$
X	0.00110 (5)		1.2530 (585)	$0.07870{ }^{\text {a }}$
$v^{\circ}\left(\mathrm{A}_{1 \mathrm{~s}}\right)$		1396.53269 (710)		
$v^{\circ}\left(\mathrm{E}_{3 \mathrm{~s}}\right)$		1396.51036 (791)		
$v^{\circ}\left(\mathrm{E}_{3 \mathrm{~d}}\right)$		1396.54163 (751)		
$v^{\circ}\left(\mathrm{A}_{3 \mathrm{~d}}\right)$		1396.51334 (820)		
A	2.6594550 (515)	2.6756371 (827)	2.64684 (506)	$2.669693{ }^{\text {b }}$
B	0.66451488 (126)	0.6612137 (115)	0.652705 (236)	$0.6604969{ }^{\text {b }}$
$10^{5} \times D_{J}$	0.106149 (199)	0.104302 (762)	$0.103174{ }^{\text {c }}$	$0.10231{ }^{\text {b }}$
$10^{5} \times D_{J K}$	0.23273 (100)	0.25602 (651)	$0.26604{ }^{\text {c }}$	$0.2726^{\text {b }}$
$10^{5} \times D_{K}$	0.89205 (233)	0.9178 (243)	$0.885^{\text {c }}$	$0.885{ }^{\text {b }}$
$A \bar{\zeta}$	-0.8956103 (198)			
$10^{6} \times \eta_{J}$	0.691 (102)			
$10^{4} \times \eta_{K}$	-0.50880 (279)			
$10^{3} \times F$	0.203976 (366)			
$10^{5} \times F_{K}$	0.1081 (98)			
$10^{2} \times E$	0.173046 (633)			
$10^{6} \times E_{K}$	-0.4134 (359)			
$Z_{2,11}=0.3320924(309), \quad 10^{5} \times Z_{J 2,11}=-0.2186(99), Z_{344,11}=0.011287(121)$				

${ }^{\text {a }}$ Assumed
b Ref. [2]
c As in the vibrational ground state, Ref. [2]

Table 2

	$\mathrm{A}_{1 \mathrm{~s}}$	$\mathrm{E}_{3 \mathrm{~d}}$	$\mathrm{E}_{3 \mathrm{~s}}$	$\mathrm{~A}_{3 \mathrm{~d}}$	All
n. data $^{\mathrm{a}}$	14	47	58	44	77
$K^{\prime \prime} \Delta K$	6	$1,3,5,7$	$-2,2,4,8$	$-3,1,3,9$	-3 to 9
$J_{\text {max }}$	20	19	22	21	22
B	0.65810	0.658106	0.658187	0.658225	0.658179
$10^{5} \times D_{J}$	0.1364	0.1021	0.1019	0.1010	0.1006
$10^{5} \times D_{J K}$		0.2651	0.2770	0.2784	0.3050
a number of combination differences used in the calculation.					

Legends of Figures

Fig. 1

${ }^{\mathrm{r}} \mathrm{Q}_{3}$ sub-branch of $v_{11}-v_{4}$, showing the J-structure and the splitting into the two components with torsional symmetries $\mathrm{A}_{1 \mathrm{~d}}$ (stronger) and $\mathrm{E}_{3 \mathrm{~d}}$ (weaker) in the lower state. Transmittance in arbitrary units is reported on the ordinates.

Fig. 2
Component of torsional symmetry $\mathrm{A}_{3 \mathrm{~d}}$ in the lower state (stronger torsional component) of the ${ }^{\mathrm{r}} \mathrm{Q}_{3}$ sub-branch of $\left(v_{4}+v_{11}\right)-2 v_{4}$. The weaker torsional component, $\mathrm{E}_{3 \mathrm{~d}}$, occurs about $4 \mathrm{~cm}^{-1}$ at the higher wavenumbers.

Fig. 3
Coriolis interactions about the x, y axes of v_{11} with the parallel vibrational states v_{2} and $v_{3}+2 v_{4}$, shown as solid lines connecting interacting pairs of levels. Resonance occurs at K between 12 and 13 in v_{2} (with the $(-l)$-side of v_{11}) and between 11 and 12 in $v_{3}+2 v_{4}$ (with the $(+l)$-side of $\left.v_{11}\right)$. Dotted lines connect pairs of levels of v_{11} interacting by $l(2,-1)$ coupling, with $\Delta l= \pm 2$ and $\Delta k=\mp 1$. The energy levels have been calculated for $J=15$ at several values $\pm K$, with disregard of these Coriolis interactions (zero-order energies).

Fig. 4

P-transitions from v_{4} to v_{2} with torsional splitting, identified as K_{J} (quantum numbers of the lower state), for $K=11,12,13$. They are made observable by intensity stealing from the stronger transitions from v_{4} to v_{11}, in the region of near Coriolis resonance of v_{2} and v_{11}. See text.

Fig. 5
l-type interactions in the v_{11} vibrational state of ethane. The $l(2,2)$ interaction causes the splitting of the $l=k= \pm 1$ pair, which is transmitted to the $l=\mp 1, k= \pm 2$ pair by the $l(2,-1)$ coupling, see text.

Fig. 6
${ }^{\mathrm{p}} \mathrm{Q}_{3}$ sub-branch, showing the effects of torsional and K -splitting. The split K_{+}and K_{-} components are defined according to Equation (6), applied to the upper state wavefunctions, see text and Fig. 5. The torsional splitting ($\mathrm{A}_{1 \mathrm{~d}}$ and $\mathrm{E}_{3 \mathrm{~d}}$ components in the lower state) is almost constant, whereas the K -splitting increases with the total angular momentum quantum number J. The K+ and K- components show opposite intensity alternations with the parity of J, the former being stronger at the odd values and the latter at the even values. Note the small separation of the lines with J equal to 14 and 15 in $\mathrm{K}+$, and the inversion of the relative positions of $\mathrm{K}+$ and K starting at $J=15$. See text, and Fig. 5 and 6.

Fig. 7
${ }^{r} Q_{0}$ sub-branch of $v_{11}-v_{4}$, showing the torsional splitting ($A_{3 s}$ and $E_{3 s}$ torsional symmetries in the lower state) and the typical intensity alternation with the parity of J. These transitions occur to the components - of the l-doublets with $k=l= \pm 1$. Note the large separation between the lines with J equal to 14 and 15 , caused by the J-crossing in a $l(2,-1)$ resonance, and the s-type transitions $(\Delta K=2)$, marked by a prime, activated by this resonance at $J=14$ and 15 . See text and Fig. 5 and 7.

Fig. 8
Splitting induced in the v_{2} state by the interaction with the nominal $6 v_{4}$ state, exhibiting large torsional splittings. The interaction matrix elements are represented by dotted lines, and the relative displacements induced on the torsional components of v_{2} (much exaggerated) are qualitatively represented by arrowed lines. The pattern of the torsional components of v_{2}, in the order of increasing energies, becomes $\mathrm{E}_{3 \mathrm{~s}}, \mathrm{~A}_{3 \mathrm{~d}}, \mathrm{~A}_{1 \mathrm{~s}}, \mathrm{E}_{3 \mathrm{~d}}$. See text.

Fig. 1

Fig. 2

Fig. 3
1600

Fig. 4

Fig. 5

URL: http://mc.manuscriptcentral.com/tandf/tmph

Fig. 6

Fig. 7
${ }^{\mathrm{r}} \mathrm{Q}_{0} \quad * \mathrm{~A}_{3 \mathrm{~s}} \quad \mid \mathrm{E}_{3 \mathrm{~s}}$

Fig. 8

