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Abstract:  

This paper is focused on the identification of elasto-plastic behaviour parameters of aluminium 

alloy 2024-T3 using full-field measurements. An orthotropic Hill criterion including an 

isotropic hardening is considered. Standard tensile tests provide a first set of parameters. Some 

of these parameters are optimised thanks to an inverse modelling including finite element 

analysis and experimental full-field displacement measurements. This so-called Finite Element 

Model Updated (FEMU) process is based on different specimen geometries which induced 

heterogeneous strain fields. Full-field measurements are provided by Digital Image Correlation 

(DIC) technique. The aim of this work is to study the impact of the specimen shape that gives 

the heterogeneous strain fields on the identification of isotropic hardening parameters. Results 

are compared and discussed. 
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1  INTRODUCTION 

This paper is focused on the elasto-plastic behaviour parameters identification of 

aluminium sheet that are commonly used in many industrial forming processes like stamping 

or deep drawing. For that purpose, a methodology was developed to determine multiaxial 

material properties. It is based on a mixed numerical and experimental approach using Finite 

Element Model (FEM) results and optical full-field measurements. Today, full-field 

measurements methods are increasingly used in experimental mechanics [1-3]. They allow to 

measure kinematic fields (displacement or strain) and provide extended possibilities to identify 

multiaxial behaviour models from a single more complex mechanical test. Indeed the number 

of unknown parameters which characterises anisotropic elasto-plastic materials is quite large 

and their identification leads to several mechanical tests. For instance, at least three uniaxial 

tensile tests at different angles from the rolling direction (0°, 45° and 90°) are needed to 

identify the parameters of the most common anisotropic criterion [4]. A bulge test is also 

needed for more accurate criterion [5,6]. It is worth pointing out that this kind of identification 

approach based on full-field kinematic measurements allows releasing some experimental 

constraints of the standard mechanical tests (e.g. necessity of homogeneous test, perfect 

geometries, controlled boundary conditions, etc.). 

 

Several behaviour parameters identification strategies based on full-field measurements 

have been developed recently [7], namely the equilibrium gap method [8], the constitutive 

equation error method [9], the virtual field method [10-12] and the Finite Element Model 

Updated (FEMU) method [13-19] considered in this work. The finite element method is 

generally used to obtain the numerical solution of the direct problem by providing 

displacement/strain/stress fields knowing loading conditions, specimen geometry and 

constitutive equations. It can be also used as a tool for solving iteratively the inverse problem, 

leading to the so-called mixed experimental/numerical methods. In this case, a first calculation 

is performed with an initial set of constitutive parameters. Nodal displacements are collected 

and compared to their experimental counterparts. The difference is quantified with an objective 
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function, which is often the sum of the squared differences between numerical and 

experimental data. The idea is then to minimise iteratively this estimator with respect to the 

constitutive parameters. Many optimisation algorithms are available for minimising this 

objective function. They are often based on the numerical calculation of a sensitivity matrix 

[18], which allows the step-by-step determination of new sets of constitutive parameters. The 

procedure stops when the objective function is lower than a given threshold value. Such 

procedures have been successfully applied in the field of elasto-plastic behaviour of sheet for 

instance by Meuwissen et al. [13], Kajberg and Lindkvist [14], Haddadi et al. [15], Velay et al. 

[16], Dournaux et al. [17] and Lecompte et al. [18,19] on biaxial tests. Note that FEMU 

method using full-field measurements has been also introduced in other fields, e.g. for 

composite materials [20-22] or for structural dynamics [23,24]. 

 

The main purpose of the paper is to present and discuss a Finite Element Model Updated 

(FEMU) procedure for the identification of the elasto-plastic parameters of a 2024-T3 

aluminium alloy. In the present purpose, an orthotropic Hill criteria [4] including an isotropic 

hardening is considered. On the one hand, standard tensile tests have provided a first set of 

parameters as a global response of the material. On the other hand, some of these parameters 

are optimised from the proposed FEMU procedure, as local responses of the material. These 

inverse identifications are based on different geometries from the literature which induce 

heterogeneous strain fields that can be measured thanks to Digital Image Correlation (DIC) 

technique. The aim of the work is to present in details the FEMU inverse identification 

procedure and to study the influence of the specimen shape providing various heterogeneous 

strain fields on the parameter identification of the isotropic hardening evolution. It is 

considered here only plane strain models and 2-D modified tensile test specimen geometries.  

 

The outline of the paper is the following. First, the methodology is presented including the 

behaviour model and the full-field measurements method used. Next, the FEMU identification 

procedure is described. Last, results of the identification of the isotropic hardening parameters 

are presented and discussed depending on the specimen shapes.  
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2 ELASTOPLASTIC CONSTITUTIVE MODEL 

2.1 Behaviour Model 

In the present paper, an elasto-plastic model in plane stress conditions is considered. It 

includes a Hill’s yield criterion [4] and an isotropic hardening law defined as
†
: 



f  H (
11
 

22
)

2
 F (

22
)

2
 G (
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)

2
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12
)

2
 R    (2.1) 

where 




ij
 are the components of the Cauchy stress tensor, {F,G,H,N} the Hill’s coefficients 

and R the isotropic hardening. R is defined by the following Ludwig equation: 



R = R
0
 K (

eq

P
)

n       (2.2) 

where R0 is the yield stress, K and n are material parameters and 




eq

P  is the equivalent plastic 

strain. This formulation is chosen because it allows to characterise the isotropic hardening 

evolution with only two parameters (K and n) independently of the yield stress.  

2.2 Identification from standard tensile tests 

The elastic parameters (E, ), the isotropic hardening parameters (K, n, R0) and the plane 

anisotropy are first identified classically from standard tensile tests at three different angles  

from the rolling direction (0°, 45°, 90°). 

 

Tensile tests are carried out on an Instron 5800 servo-electric tensile testing machine with 

specimens machined by water jet cutter from a 2024-T3 aluminium sheet. Strains are measured 

by Digital Image Correlation (DIC) technique, described in detail in section 3.2. This technique 

allows to measure the longitudinal (




yy

) and transversal (




xx

) strains along with the time. About 

130 images are acquired for each test (area of interest 12 x 30 mm
2
, magnification factors 26 

pixels/mm). DIC parameters are (see section 3.2): subset size 31 pixels, step size 10 pixels, and 

gauge length (N = 5 neighbouring matched points used for the strain computation, see section 

3.2) 10*(5-1) = 40 pixels (1.5 mm). The global strain value is computed as the mean spatial 

                                                 
†
 It has been reported that the plastic anisotropy of a 2024 aluminium thin sheet was not well described by the 

yield functions of Hill48 potential [4], and other yield functions could be more suitable [5,6,26]. However the 

identification of their parameters is delicate and is not the subject of this study.  
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strain value over all the calculated points in the area of interest. As standard tensile tests are 

assumed to provide homogeneous strain fields, the spatial standard deviation of the strain can 

characterise the uncertainty of the measurement. Note that it includes all the measurement 

errors coming from the shape of the specimen, the testing machine that can introduce bending, 

the DIC method, etc. Standard deviation of the strain was calculated, it increases with the strain 

magnitude and reaches a maximum value of about 0.2% for 10% of strain in the y direction. 

The global strain values are used to calculate the anisotropy coefficients (or Lankford’s 

coefficients) r and to determine the yield stresses  in different directions. Lankford’s 

coefficients r are obtained from the ratio between the plastic strain rate in the width (x) and in 

the thickness (z) directions, assuming an isochoric plasticity 




zz

p
 1  

xx

p
 

yy

p . 

 

Figure 1 presents the experimental tensile curves for the three angles 0°, 45° and 90° from 

the rolling direction. These curves show a relatively weak anisotropic criterion and a hardening 

independent of the angles from the rolling direction.  

 

[Fig. 1 about here.] 

 

The yield stress values are taken as the conventional 0.2% offset yield stress values 

(Rp0.2). Then the identification of K and n is done from the overall three true stress / plastic 

strain curves, as presented in the sub-figure inserted in Fig. 1. The values of the identified 

parameters are reported in Table 1. 

 

[Tab. 1 about here.] 

 

Hill’s coefficients are determined thanks to r and  coefficients. The Hill48 criterion 

[4] can be expressed as 


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
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4
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p
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leading to the flow stress for 



f  0  
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The expression of the Lankford’s coefficients is deduced from the flow rule 
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according to the normality assumption, with 



ij
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  are the components of the plastic strain 

tensor and 



  the plastic multiplier. It is given by 


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
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2
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(G cos(  )  F sin(  ))
   (2.5) 

The set of Hill’s parameters F, G, H and N are identified using Eq. (2.4) and (2.5). Four 

independent equations are needed. In this study as proposed in [6] we use the three measured 

values of the yield stresses 0, 45 and 90 given in Table 1 with respect to Eq. (2.4) and the 

value of r45 = 0.904 with respect to Eq. (2.5).The set of identified Hill’s parameters are 

presented in Table 2. 

 

[Tab. 2 about here.] 

 

3 IDENTIFICATION FROM FULL-FIELD MEASUREMENTS  

3.1 Methodology 

The procedure describes hereafter leads to obtain the optimised values of the behaviour 

parameters P in the case which the strain field resulting from the mechanical test is downright 

heterogeneous. It is based on the comparison between the FEM numerical solutions and the 

measurement results of both the nodal displacements and the global force. The procedure is 

resumed in Fig. 2.  

 

[Fig. 2 about here.] 
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The specimen geometry is first defined by measuring its 3-D shape in the concerned 

area (called area of interest, AOI) with the 3-D DIC method (or stereo-correlation method, see 

section 3.2). It is verified that the out-of-plane displacements are always negligible so that the 

hypothesis of plane stress conditions is relevant. The FEM meshing (nodes Nk) is then built 

from this 2-D contour (see section 3.3). The first calculation is performed with an initial set of 

constitutive parameters P0. They could be provided by simple tensile tests as previously 

presented (see section 2), but not necessarily. Imposed boundary conditions are directly set to 

the measured node displacements. After the calculation, the Nk nodal displacements 



U
k
 U

1
x U

2
y 

k

 of the AOI are collected and compared to their experimental counterparts. A 

specific procedure allows to catch the correct DIC grid nodes corresponding to the Nk FEM 

mesh nodes (see section 3.3). The difference is then quantified with a cost function (P) which 

is the sum of the squared differences between numerical and experimental data (nodal 

displacements inside the AOI and global force). Moreover, it is considered in this work that an 

identification test can be done from many tensile steps (or “deformation maps”) Ni: at each step 

i corresponds a state of deformation under a tensile loading (typically, an imposed 

displacement step of the crosshead of the testing machine), leading to the measurement of the 

displacement field by 3-D DIC (by recording a stereo pair of images) and the total tensile force 

by the force sensor of the machine.  

 

Thus the overall cost function is defined with a uniform repartition of weighting 

between displacements and force, as proposed for example in [14,15]:  



 (P )  
F

(P )  
U

(P )  / 2     (3.1)  

The first term is the mean, over each considered steps i, of the normalised Euclidian distance 

between the calculated (superscript sim) and measured (superscript exp) total force F: 
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F
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1

N
i

F
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 F
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N i


i        (3.2) 
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The second term is the mean, over each considered steps i, of the normalised Euclidian 

distance between the calculated (sim) and measured (exp) displacement 
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Two important remarks can be done about the cost function. First, the displacement cost 

function U(P) is not normalised as usual by the experimental displacement 



U
i,k

exp  as proposed 

e.g. in [17] or by the experimental maximum displacement [21]. It is normalised by the 

standard deviation of the experimental displacements in the AOI, because as large rigid body 

motion can be observed for the considered AOI of the specimen which can be a reduced part of 

the specimen, the displacement cost function is underestimated with respect to F(P). Note that 

Kajberg and Lindkvist [14] have proposed a displacement cost function normalised by 



U
i

exp, max
 U

i

exp, mean
 that also takes into account rigid body motions. U(P) and F(P) have thus 

the same weight. Second, in the literature, instead of displacement fields, strain fields are often 

considered directly in the cost function [15,18-20]. In such a case, it is thus implicitly assumed 

that (i) the formulations to calculate strains and (ii) the strain spatial resolution (or gauge 

length) are the same for both the DIC algorithm and the FEM post-processor. These two points 

are generally impossible to ensure because softwares are different. Furthermore, it is known 

that signal-to-noise ratio of measured displacement fields is larger than the one of the strain 

fields. Thus the introduction of the displacement field in the cost function avoids to add further 

errors in the identification procedure.  

 

The overall cost function is then minimised iteratively with respect to the behaviour 

parameter set P. In this work, a zero-order optimisation method (Nelder-Mead simplex 

method) is used instead of a first-order gradient method. As there is no analytical solution for 

the cost function, whatever the gradient method the Jacobean or Hessian matrixes would be 
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evaluated by finite differences schemes, which would add numerical errors. By using a direct 

optimisation method, numerical errors are minimised to the possible detriment of an increase in 

the computation time. The convergence criterion (difference between overall cost function 

values of two successive iterations) is set to 10
-3

. 

3.2 Digital Image Correlation 

In this work, 3-D Digital Image Correlation (3-D DIC) is used for the displacement field 

measurements. It should be noted that 3-D DIC is used instead of standard 2-D DIC for planar 

specimen, for three main reasons: (a) in 2-D DIC, the specimen must be positioned parallel to 

the camera sensor and must undergo a planar deformation without any out-of-plane 

displacement, which is difficult to guarantee in practice particularly when large displacement 

are expected (an apparent strain could be added to the real strain undergone by the specimen), 

(b) due to the calibration requirements of the stereo rig, lens distortions are also corrected for 

better accuracy measurements and (c) the 3-D DIC gives directly the shape of the specimen 

and the displacement fields in metric unit because the magnification factor is known after 

calibration. The (planar) shape of the specimen is used to define the right geometry and the 

AOI to be considered for the FEM. During the experiments, as previously discussed, a 

negligible out-of-plane displacement has been measured, so only the in-plane displacement is 

taking into account in this work. 

 

The 3-D DIC method is based on both digital image correlation and stereovision [26]. This 

technique uses a DIC algorithm to determine point correspondences between two images of a 

specimen acquired from two rigidly bounded cameras. The correlation score is computed by 

measuring the similarity of a fixed subset window in the first image to a shifting subset 

window in the second one. A first-order two-dimensional shape function in the subset and a 

zero normalised sum of square difference (ZNSSD) correlation criterion are used. Sub-pixel 

correlation is performed using 6-tap spline grey level interpolation. After determining the 

calibration parameters for each camera as well as the 3-D relative position/orientation of the 

two cameras (pinhole model and radial distortion of 2nd order), the 3-D specimen shape can be 

reconstructed from the point correspondences using triangulation. To determine the 3-D 
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displacement field, DIC is also used to determine point correspondences between the stereo 

pairs acquired before and after deformation. A complete description of the 3-D DIC technique 

can be found in the literature [26-28].  

 

The stereo-rig is composed of two 8-bit digital AVT Dolphin F-145B cameras with a CCD 

resolution of 1,392 x 1,040 pixels. They are equipped with Tamron 28-200 mm f3.8-5.6 

telephoto lens. The numerical image processing is carried out with the assistance of the Vic-

3D
®
 commercial software [29]. In order to capture identifiable images, a randomly distributed 

paint pattern is laid on the side of the specimen. For the measurements on geometries which 

induced heterogeneous strain fields, typical magnification factors are about 25 pixels/mm and 

planar dimensions of the AOI are typically 24 x 30 mm
2
. The square subset size which defines 

the displacement spatial resolution is chosen equal to 19 pixels, corresponding to about 0.76 

mm. The step size, which defines the pitch of the square grid of the measured points by DIC in 

the left image, is chosen equal to 5 pixels (0.2 mm). It is a compromise for obtaining a 

sufficiently dense displacement field without using an excessive amount of computer time. 

Eventually, strains can be computed as follow: at each matched point, an affine displacement 

function is fitted using a set of N by N neighbouring matched points chosen in a square surface. 

The Henky 2-D strain tensor is then computed using the estimated terms of the displacement 

function. These computations are done in a local coordinate system (aligned with a local 

tangent plane to the undeformed surface) obtained by a least-square plane fitting of this square 

surface. N = 5 points (separated by a step of 5 pixels) is chosen because it is the smallest value 

permitted by the software, so the gauge length is equal to 5*(5-1) = 20 pixels (0.8 mm). 

 

A brief performance analysis of the measurement errors in the same configuration as the 

experiment (same camera positions, lighting, speckle, DIC parameters, etc.) was performed by 

analysing results of a no-motion experiment (errors from image noise) and a no-strain 

experiment (errors from a rigid body motion (RBM) of the specimen), as proposed in [30]. 

Results are summarized in Table 3 (U is the horizontal displacement, V the vertical 

displacement). Note that a computation was also done to remove the RBM from the measured 

displacement field, giving a mean displacement equal to zero (see the third line in Table 3). 
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Note also that this kind of analyses gives a lower bound of the standard displacement 

uncertainties. The maximum value that could be associated to the displacement standard 

uncertainty is 1.7 m (lower than 0.07 pixel), which is the standard deviation of the vertical 

displacement. This value is within the same range as reported in [30]. 

3.3 Finite Element Model 

The FEM simulations are performed with ABAQUS
TM

 software. An elasto-plastic model 

is considered corresponding to the constitutive equations (Eq. (2.1) and (2.2)) previously 

presented. Quadrangular shell elements are considered. The FEM meshing (nodes Nk) is built 

from the 2-D contour of the (quasi) planar shape of the specimen measured by 3-D DIC, so the 

investigation area meshed for the model corresponds to the AOI determined by the 3-D DIC 

measurement. To calculate the cost function and to impose the displacement boundary 

conditions, the knowledge of the x and y components of the measured displacement by 3-D 

DIC is needed at each node of the FEM meshing. As the DIC experimental grid (step 0.2 mm) 

is obviously more refined than the FEM meshing, a bicubic interpolation of the measured 

displacement field is performed, giving for each FEM mesh node a precise evaluation of the 

experimental displacement vector. Finally, as previously presented, the displacement boundary 

conditions applied to the top and the bottom nodes of the meshed AOI are provided by the DIC 

measurement values. It should be noted that, because the discrete measurement points provided 

by the 3-D DIC are very close together, the data is highly redundant and only a part of the 

experimental data are used in the FEMU procedure itself by the mean of interpolation onto the 

FE mesh. This approach may not be optimum e.g. in term of noise measurement sensitivity. 

Some interesting approaches were proposed in the literature to reduce the dimensional 

representation of such measurements, by using shape feature vectors decomposed on Zerkine 

polynomials [23,24] or proper orthogonal decomposition [31]. 

4 RESULTS  

In the following, our FEMU identification procedure is applied to some of the specimen 

geometries from the literature [13,14]. These geometries inducing heterogeneous strain fields 
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were tested in order to investigate the influence of the sample shape and of the strain field 

induced on the identification results. 

4.1 Case of Meuwissen specimen geometry 

The FEMU identification is first based on the specimen geometry proposed by Meuwissen 

et al. in 1998 [13]. This geometry, presented in Fig. 3, was designed by the authors to induce 

heterogeneous strain fields in a tensile test configuration.  

 

[Fig. 3 about here.] 

 

The test is carried out on an Instron servo-electric tensile testing machine. The 

specimen is machining by water jet cutter on a 2024-T3 aluminium sheet with the rolling 

direction perpendicular to the length of the specimen. During the test, images are acquired and 

global force values are recorded. After processing of the pairs of images, the experimental 

planar displacement fields are deduced. As an illustration, Fig. 4(a) presents the vertical 

experimental displacement field obtained by Vic-3D
®
 for the last tensile step, superimposed on 

the black and white speckle pattern. For the same solicitation, Fig. 4(b) presents the FEM 

simulated vertical displacement field based on the same AOI and the measured displacements 

as boundary conditions, allowing to take into account rigid body motions.  

 

[Fig. 4 about here.] 

 

In the following only the isotropic hardening parameters K and n have been considered 

as variable parameters, and the other material parameters needed for the FEM simulations are 

set to the values provided by the 1D identification (see section 2.2 and Table 1 and 2). In a first 

step, many direct FE simulations are done with different couples of K and n parameters. For 

each simulation, the cost function is computed using the experimental measurements. Hence, 

the cost function map can be plotted versus K and n which gives an easy-to-read representation 

of the sensitivity of the procedure to the hardening parameters. 
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To describe the whole range of the elasto-plastic domain, Ni = 20 displacement fields / force 

measurements are used both in the direct FEM simulations (for plotting the sensitivity map) 

and in the FEMU procedure itself. These twenty load steps are shown in the experimental 

tensile curve formulated in terms of force – longitudinal mean strain and presented in Fig. 5. 

The mean strain calculation is performed over all the AOI.  

 

[Fig. 5 about here.] 

 

Figure 6 presents the results for K in the range [200; 1500] MPa with a step of 100 MPa 

and n in the range [0.16; 1.06] with a step of 0.1.  It is observed a large valley-like region of 

minima for parameter values included in [0.25; 0.45] for n and in [400; 900] MPa for K. 

 

[Fig. 6 about here.] 

 

In a second step, the optimisation procedure is performed until convergence. In order to 

investigate the influence of the initial parameter set, the optimisation procedure is performed 

by using several initial parameter sets Pa, Pb and Pc defined in Table 4.  

 

[Tab. 4 about here.] 

 

For one of them, the cost function evolution is analysed. Figure 7 presents the force, 

displacement and overall cost function versus the iteration number (see Eq. (3.1)-(3.3)). For the 

twenty-five first iterations their values decrease. Then for the following iterations the force cost 

function goes on decreasing whereas the displacement cost function increases, until the 

convergence criteria are satisfied (79 iterations).  

 

[Fig. 7 about here.] 

 

This observation can be explained by the fact that, one the one hand, for the FEM 

simulations both the sample shape and the boundary conditions are provided by the 
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experimental DIC measurements (position and displacement). Thus simulated displacement 

fields used in the displacement cost function formulation are always consistent with their 

experimental counterparts. On the other hand, simulated reaction forces induced by the 

displacement fields have to accommodate at each iteration considering the behaviour model 

and the measured force used in the force cost function formulation. The optimised parameter 

values result from a compromise between both forces and displacement fields. The associated 

parameter evolution is illustrated in Fig. 8.  

 

[Fig. 8 about here.] 

 

Results for the three initial parameter sets Pa, Pb and Pc are presented in Table 4 and 

Fig. 6. Whatever the initial parameter set considered, the optimisation results are very close, 

with the following obtained mean values: about K = 989 MPa and n = 0.5. The inverse 

procedure is thus not sensitive to the initial conditions, and the optimised parameter set is 

situated at the lower position in the valley of minima (see Fig. 6). The parameter values found 

will be discussed further.  

 

The influence of the number of experimental load steps taken into account in the FEMU 

procedure is now investigated. In the present study the total strain range is kept constant, as for 

all the cases at least the first and the last load step are included in the procedure, as it can be 

seen in Fig. 5. More precisely, five combinations have been studied: 5, 10 (first and second 

set), 15 and 20 load steps. It has been verified that all the FEMU computations converge 

properly (for various initial parameter sets), even for the former combination of only 5 load 

steps. In Fig. 5 are described in detail the load steps corresponding to the five combinations, 

showing that the load steps of the first combination (5 load steps) are always included in the 

other combinations. Results of cost function values before and after optimisations as well as 

optimised parameters are presented in Table 5, only for the initial parameter set Pb, as it has 

been shown previously that (in case of convergence) the choice of the initial parameter set 

presents a very small impact on the results.  
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[Tab. 5 about here.] 

 

On the contrary, the choice of the images / load steps influences in a relatively 

important way the results of the material parameter identification. For the parameter K the 

mean value found is equal to about 981 MPa with a standard deviation of 24 MPa, and a 

difference between max and min values upper than 64 MPa, namely 6.5% of the mean value. 

For the parameter n the mean value found is equal to about 0.5 with no real significant 

variations.  However these differences are not negligible and can be explained by the a priori 

choice of the load steps in the global tensile curve that can favour a region of the elasto-plastic 

curve. It is worth noting that this is not so trivial as at each step corresponds a heterogeneous 

strain field. Nevertheless, for instance, the first combination of the 10 load steps selected takes 

into account more steps in the region between the end of the elastic regime and the beginning 

of the plastic regime than the second combination (see Fig. 5), and the provided results are 

widely different. On the contrary, considering the 15 load steps combination, the five steps 

added to the second combination are steps located in the fully developed plasticity part, and the 

results found are very close. To summarize, it is likely that a lot of data (load steps) with an 

uniform distribution all over the loading range will allow to obtain a more realistic parameter 

set. Thus the final parameter set obtained for the 20 load steps combination (K = 990 MPa, n = 

0.5) seems to be the more accurate. But there is clearly an important effect of the choice of the 

steps (experimental displacement fields and loads) as an input in the identification procedure, 

giving in our case more than 6.5% in discrepancy on one of the identified parameters.  

 

Finally, it is observed in such a geometry under tensile loading that the large part of the 

experimental displacement field is provided by a global tensile (e.g. homogeneous) strain field 

with a relatively small level of strain, excepted near the edges of the notches. This is shown in 

Fig. 9 (a) which depicts the experimental longitudinal strain field for the last load step (DIC 

parameters are the same as presented in section 3.2: subset size 19 pixels, subset separation 5 

pixels, and gauge length 5*(5-1) = 20 pixels, magnification factor 24 pixels/mm): a large part 

of the strain field is less than 2.6 % while maximum values are close to 17%. It is expected that 

better or more realistic results of the inverse parameter identification may be obtained if we 
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consider mainly areas where the strain field is highly heterogeneous and the strain values are 

uniformly distributed all over the strain range. To test the sensitivity to the choice of the area of 

the displacement field used for the evaluation of the displacement cost function, a new limited 

area has been designed (see Fig. 9 (b)) and only the displacement field within this area has 

been used in the FEMU procedure. The same twenty load steps have been used.  

 

[Fig. 9 about here.] 

 

Whatever the initial parameter set considered, the optimisation results are as expected very 

close, with the following mean values: about K = 936 MPa and n = 0.49. We observe an almost 

unchanged value for the latter parameter but a decrease of more than 5% for the parameter K 

which was 990 MPa. This discrepancy which depends on the choice of the area of the 

displacement field used in the FEMU procedure is of the same order of magnitude as the one 

relating to the choice of the load steps used in the FEMU procedure. Nevertheless, the final 

parameter set obtained for this specimen geometry (K = 936 MPa, n = 0.49) seems to be the 

more accurate, because whatever the load step the area used in the FEMU procedure displays a 

more uniform and larger distribution of strain level. But it should be reminded that there is a 

relatively important effect of the choice of this area as an input in the identification procedure. 

Note also that the strain range provided by each load step is probably an important task and it 

will be discussed in the section 5.  

4.2 Case of Haddadi specimen geometry 

The identification procedure is now applied on the geometry proposed more recently by 

Haddadi et al. [15,32]. As we have seen that the load step and the area of the displacement 

field impact the parameter identification result, it is also supposed that the geometry plays a 

crucial role on it. The geometry of the specimen is presented in Fig. 10.  

 

[Fig. 10 about here.] 
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The test is also carried out on the Instron servo-electric tensile testing machine with a 

water jet cutter 2024-T3 specimen. Figure 11(a) presents the AOI and the major strain field 

obtained by Vic-3D
®
 for the last tensile step, superimposed on the black and white speckle 

pattern (DIC parameters: subset size 19 pixels, subset separation 5 pixels, and gauge length 20 

pixels, magnification factor 26 pixels/mm). Figure 11(b) presents the FEM mesh. Ten 

displacement fields / load steps have been extracted from the experiment and used both in the 

direct FEM simulations (900 nodes) and in the FEMU procedure itself. For this geometry too, 

the displacement field used in the displacement cost function is restricted to the sub-area 

illustrated in Fig. 11 where significant strain level occurs.  

 

[Fig. 11 about here.] 

 

For this experiment, the sensitivity map has also been calculated in the same ranges for 

the (K,n) parameters, as shown in Fig. 12.  

 

[Fig. 12 about here.] 

 

This sensitivity map still presents a valley-like region of minima for parameter values 

included in [0.3; 0.6] for n and in [500; 1500] MPa for K. The optimisation procedure is then 

performed until convergence, by using the same initial three parameter sets Pa, Pb and Pc as 

before. Results are presented in Table 6. All initial parameter sets converge to the same couple: 

about K = 636 MPa and n = 0.37, for a cost function value close to 3.1x10
-2

.  

 

[Tab. 6 about here.] 

 

The procedure is, as for the Meuwissen experiment, not sensitive to the initial 

conditions, and the optimised parameter set is situated at the lower position in the valley of 

minima.  
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It should be noted that until this point, noiseless data were assumed. This case is not 

representative of actual data of kinematic measurement by DIC, and therefore it is relevant to 

analyse the effect of noise level on the identification results. This sensitivity study is done by 

directly adding a Gaussian noise to both measured displacement components. In fact, it has 

been observed in our DIC measurement results (e.g. rigid body motion experiments) an almost 

Gaussian distribution of the displacement field. In section 3.2, the displacement standard 

uncertainty was estimated to 1.7 m (0.066 pixel). So three representative noise magnitudes of 

the actual measurement uncertainties are chosen: 0.033, 0.066 and 0.1 pixel, respectively 

corresponding to 0.86, 1.7 and 2.6 m knowing the magnification factor. Results of the FEMU 

procedure using noisy full-field displacement fields are inserted in Fig. 12. A single random 

draw for the noisy displacement field is done for noise levels corresponding to standard 

deviations of 0.86 and 1.7 m. Eight random draws are performed for the larger noise level 

(standard deviation of 2.6 m). As illustrated in Fig. 12, optimised parameter sets depend both 

on the noise magnitude and on the random draw. All the results appear to be on a line inside 

the valley of minima. For the smaller noise level the result is very close to the result without 

noise, then the parameter values decrease as the noise level increases. These simulations can 

also give an idea of parameter uncertainties from the results of the eight random draws for the 

larger noise magnitude. For the parameter K the mean value found is equal to 611 MPa with a 

difference between max and min values upper than 25 MPa, namely 4% of the mean value. For 

the parameter n the mean value found is equal to about 0.35 with a difference between max and 

min values equal to 0.013, also about 4% of the mean value. K decreases from 636 to 611 MPa 

(4%) and n from 0.37 to 0.35 (5%). To summarise, adding an uncertainty in the DIC 

displacement fields of 0.1 pixel decreases both parameters of about 4 percent (bias) with a 

parameter uncertainty also about 4 percent. Note that the noisy displacement fields modify not 

only the displacement objective function but also the force objective function because 

boundary conditions of the FE model are also impacted. The parameter values found will be 

discussed in the next section.  

5 DISCUSSION 
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In this study, the identification methodology was conducted on various geometries. Both 

of them consider a global uniaxial loading but with a heterogeneous strain field due to the 

particular shape of the specimen (e.g. Meuwissen and Haddadi specimens).  

 

Focusing on results presented in Fig. 6 and Table 4 related to the Meuwissen experimental 

mechanical test, four comments emerge. First, a unique optimised solution is found. It shows 

that the inverse procedure is not sensitive to the initial conditions, even if a large valley-like 

area of minima is observed. Moreover, it is shown (see Table 5) that the choice of the steps 

(experimental displacement fields and loads) influences the identification procedure results, 

leading to more than 6.5% in discrepancy on the parameter K. The third important point is 

relative to the area of the displacement field which should be used for the evaluation of the 

displacement cost function. We show that it induces a decrease of the parameter K of more that 

5% (K varies from 990 MPa to 936 MPa). Finally, the optimised parameter set (K = 936 MPa 

and n = 0.49) is quite different to the one (K = 769 MPa and n = 0.62) identified from the 

simple tensile tests. 

 

Focusing now on results presented in Fig. 12 and Table 6 related to the Haddadi 

experimental mechanical test, three comments can be done. First, a unique optimised solution 

is also found. It shows that the inverse procedure is not anymore sensitive to the initial 

conditions, even if a large valley-like area of minima is also observed. Secondly, it is noticed 

(see the plot inserted in Fig. 12) that the inverse method is noise sensitive. By adding a noise of 

0.1 pixel in the input displacement fields, it is shown that systematic and random errors 

associated to the parameters K and n are about 4% of their magnitudes. Finally, the optimised 

parameter set (K = 636 MPa and n = 0.37) is quite different to the one identified from the 

simple tensile tests. 

 

To summarise, the FEMU procedure is obviously sensitive to the experimental input data: 

(i) number of load steps, (ii) area of interest to be considered for computing the displacement 

cost function and (iii) noise related to the measured displacement fields. All these factors 

impairs the optimised parameter results, but the dispersion of the results remain all the same 
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acceptable: each factor has an effect of more or less 5% of the magnitude of the parameters. 

We are going to show that the effect of the specimen geometry is much more important. 

 

The influence of the specimen geometry is analysed by comparing results of the 

identifications based on the Meuwissen and the Haddadi geometries (see Fig. 6 and 12 and 

Table 4 and 6). Sensitivity maps present both a valley of minima but not exactly in the same 

zone. For the Haddadi geometry, the optimised parameter set (K = 636 MPa and n = 0.37) is 

clearly different to the one identified from the Meuwissen geometry (K = 936 MPa and n = 

0.49) and to the one identified from a standard simple tensile test (K = 769 MPa and n = 0.62). 

However, for both non-standard geometries, the strain heterogeneities and the strain levels are 

also clearly not the same. This is illustrated in Fig. 13 where histograms of the experimental 

major strain levels are plotted for both geometries. Plot of the major strain versus minor strain 

is also inserted in Fig. 13.  

 

[Fig. 13 about here.] 

 

In both cases, only strain values in the limited areas previously defined (areas of large 

strain heterogeneities used in the FEMU procedures) and (for simplicity) only five load steps 

regularly distributed from the first to the last load step are analysed. Both histograms can be 

compared because frequencies are normalized. As it can be seen in Fig. 15, both geometries 

present almost the same major strain range, from 0.3% to 16% for Meuwissen and 18% for 

Haddadi. It is also observed that the Meuwissen geometry exhibits mainly strains in the 0.3% - 

7% range because the large major strains induced by this geometry are very spatially localised 

near the notches: only a few physical points in the material are fully strained plastically. On the 

contrary, the Haddadi geometry presents a more uniform strain distribution in the whole 0.3% - 

18% range. This spatially distributed heterogeneity of the strain in the gauge area seems to 

have an important impact on the inverse identification. This leads to obtain from these two 

sample shapes different identified parameter sets. Concerning the strain paths diversity, it can 

be noted that both geometries exhibit in a same manner strains between uniaxial tensile and 

plane strain, as it can be seen in the plot of the major vs. minor strain inserted in Fig. 15. This 
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zone described by all strain paths remains far from the plane strain conditions. Their strain 

levels, as previously discussed, are clearly different, confirming large differences between 

Meuwissen and Haddadi geometries. Furthermore, it is worth pointing out that a simple tensile 

test explores a unique strain path whereas a heterogeneous tensile test ensures a diversity of 

strain paths. As a consequence, identification results show a noticeable difference between the 

standard tensile test and the heterogeneous tensile tests. 

 

To summarize, it is believed that both strain ranges and differences in the geometry of the 

specimens that induce heterogeneities of the strain fields and diversities of the strain paths 

explain the differences in the optimised hardening parameters. In such a context, the choice of 

relevant specimen geometries and tests will be an issue to investigate. The second issue that 

would be interesting to investigate is a systematic estimation of the uncertainty in the 

optimised parameters, that could be achieved by providing robust development of error 

propagation calculus or by using some Monte Carlo approaches. 

6 CONCLUSION 

The present study has shown that it is possible to identify isotropic hardening parameters 

from full-field displacement measurements for aluminium sheet 2024-T3. For that, an 

identification procedure based on FEM simulations and displacement fields measured by 3-D 

DIC is developed. The identification capability is studied through several specimen geometries 

from the literature. These geometries were selected because they generate heterogeneous strain 

fields and various strain paths under tensile loading. We have shown that (i) the choice of the 

steps (experimental displacement fields and loads) as an input in the FEMU procedure, (ii) the 

choice of the area of the displacement field used for the evaluation of the cost function and (iii) 

noise related to the measured displacement fields have an impact on the identified parameters 

of more or less 5%. The influence of the specimen geometry seems to be more crucial and 

identified parameters are clearly dependent of it. We have shown that both strain ranges and 

differences in the specimen shape that induce heterogeneities of the strain fields and diversities 

of the strain paths can explain the differences in the optimised hardening parameters. In our 
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opinion, the Haddadi geometry seems to be the more relevant because it exhibits a more 

uniform heterogeneous strain distribution in the whole strain range than the Meuwissen 

geometry for which high strain gradients are very spatially localised. The identification of 

material parameters using full-field measurements and total force may a priori provide a more 

accurate behaviour model and therefore may improve the prediction given by FEM simulation. 

But this identification technique will need a relevant choice of the identification strategy that 

includes the definition of relevant specimen geometries and tests. This will be the challenge for 

future works.  
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Tables 

 

 

Table 1  Values of elastic properties, yield stresses and isotropic hardening parameters from 

standard tensile tests. 

 

Elasticity E = 71 GPa  = 0.33 

Yield stresses (Rp0.2) 0 = 325 MPa 45 = 297 MPa 90 = 296 MPa 

Isotropic hardening K = 769 MPa n = 0,62 

 

 

 

 

Table 2  Values of Hill’s coefficients. 

 

F G H N 

0.728 0.528 0.472 1.769 

 

 

 

 

 

 

Table 3  Measurement errors estimated from no-motion and no-strain (rigid body motion 

(RBM) of the specimen) experiments.  

 

 Mean U Standard dev. U Mean V Standard dev. V 

No motion (noise) 0.38 m 0.44 m -0.66 m 0.44 m 

Unstrained specimen 7.2 m 1.5 m 13.4 m 1.7 m 
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(RBM of the specimen) 

Unstrained specimen with 

removing RBM 

0 m 0.7 m 0 m 1.6 m 

 

 

 

 

 

 

 

Table 4  Results of the FEMU identification for three initial parameter sets (Meuwissen 

geometry, 20 experimental load steps considered in the identification procedure). 

 

 

Initial Optimised 

Parameters 
Cost function 

values 
Parameters 

Cost function 

values 

Pa 
K = 800 MPa 

6.949E-02 
K = 988.4 MPa 

1.515E-02 
n = 0.66 n = 0.4986 

Pb 
K = 200 MPa 

4.944E-02 
K = 989.6 MPa 

1.515E-02 
n = 0.2 n = 0.4989 

Pc 
K = 1500 MPa 

9.438E-02 
K = 989.6 MPa 

1.515E-02 
n = 1 n = 0.4989 

 

 

 

 

 

Table 5  Results of the FEMU identification for various experimental load steps considered in 

the identification procedure (Meuwissen geometry, initial parameter set Pb). 
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Combinations 
Initial cost 

function values 

Optimised 

parameters 

Optimised Cost 

function values 

5 load steps 5.116E-02 
K = 953.8 MPa 

1.345E-02 
n = 0.4931 

10 load steps (1
st
 

combination) 
3.859E-02 

K = 1017.9 MPa 
1.259E-02 

n = 0.5111 

10 load steps (2
nd

 

combination) 
5.051E-02 

K = 966.6 MPa 
1.499E-02 

n = 0.4939 

15 load steps 5.698E-02 
K = 976.6 MPa 

1.556E-02 
n = 0.4956 

20 load steps 4.944E-02 
K = 989.6 MPa 

1.515E-02 
n = 0.4989 

 

 

 

 

 

Table 6  Results of the FEMU identification for three initial parameter sets (Haddadi geometry, 

10 experimental load steps considered in the identification procedure). 

 

 

Initial Optimised 

Parameters 
Cost function 

values 
Parameters 

Cost function 

values 

Pa 
K = 800 MPa 

1.123E-01 
K = 635 MPa 

3.087E-02 
n = 0.66 n = 0.370 

Pb 
K = 200 MPa 

1.8599E-01 
K = 637 MPa 

3.087E-02 
n = 0.2 n = 0.371 

Pc 
K = 1500 MPa 

1.4426E-01 
K = 636 MPa 

3.087E-02 
n = 1 n = 0.370 
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Table caption 

 

Table 1  Values of elastic properties, yield stresses and isotropic hardening parameters from 

standard tensile tests. 

Table 2  Values of Hill’s coefficients. 

Table 3  Measurement errors estimated from no-motion and no-strain (rigid body motion 

(RBM) of the specimen) experiments. 

Table 4  Results of the FEMU identification for three initial parameter sets (Meuwissen 

geometry, 20 experimental load steps considered in the identification procedure). 

Table 5  Results of the FEMU identification for various experimental load steps considered in 

the identification procedure (Meuwissen geometry, initial parameter set Pb). 

Table 6  Results of the FEMU identification for three initial parameter sets (Haddadi geometry, 

10 experimental load steps considered in the identification procedure). 
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Figure captions 

 

Fig. 1  Experimental tensile curves for three angles (0°, 45° and 90°) from the rolling direction. 

The sub-figure (true stress vs. plastic strain) shows the experimental dots measured by DIC 

and the fitted Ludwig isotropic hardening in solid lines. 

Fig. 2  Flow-chart of the Finite Element Method Updated (FEMU) identification procedure. 

Fig. 3 Geometry of the Meuwissen specimen.  

Fig. 4  Meuwissen specimen vertical displacement fields for the last experimental load step. (a) 

Measured by 3-D DIC. (b) FEM simulation result taking into account the measured 

displacement as boundary conditions. 

Fig. 5  Experimental tensile curve (force – mean longitudinal strain) obtained for the 

Meuwissen specimen in solid line. The number of load steps considered in the 

identification procedure are superimposed in the curve (markers). 

Fig. 6  Sensitivity map calculated using direct FEM simulations and experimental displacement 

fields (20 experimental load steps) for the Meuwissen specimen geometry: overall cost 

function evolution versus K and n. Results of the FEMU identification for the three initial 

parameter sets Pa, Pb and Pc are superimposed in the figure (20 experimental load steps 

included in the identification procedure, see Fig. 5). 

Fig. 7  Evolution of the force, displacement and overall cost functions during the FEMU 

optimisation process (initial parameter set Pb). 

Fig. 8  Evolution of the parameters K and n during the FEMU optimisation process (initial 

parameter set Pb). 

Fig. 9  Meuwissen geometry. (a) Strain field (major strain) measured by DIC for the last 

experimental load step. The sub-area (white frame) corresponds to the area of the 

displacement field used for the evaluation of the displacement cost function. (b) FEM 

mesh. The filled points correspond to the FEM nodes used for the evaluation of the 

displacement cost function. 

Fig. 10  Geometry of the Haddadi specimen. 

Fig. 11  Haddadi geometry. (a) Strain field (major strain) measured by DIC for the last 

experimental load step. The sub-area (white frame) corresponds to the area of the 
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displacement field used for the evaluation of the displacement cost function. (b) FEM 

mesh. The filled points correspond to the FEM nodes used for the evaluation of the 

displacement cost function. 

Fig. 12  Sensitivity map calculated using direct FEM simulations and experimental 

displacement fields (ten experimental load steps) for the Haddadi specimen geometry: 

overall cost function evolution versus K and n. Results of the FEMU identification for the 

three initial parameter sets Pa, Pb and Pc are superimposed in the figure (ten experimental 

load steps included in the identification procedure). A zoom showing the effect of noisy 

kinematic fields is inserted. 

Fig. 13  Histogram of the experimental major strain levels measured by DIC for both 

Meuwissen and Haddadi geometries. Inserted is the plot of the experimental major strain 

versus minor strain. Each strain fields investigated corresponds to the sum of five load 

steps regularly distributed between the first and the last load step. 
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Figure 1. Experimental tensile curves for three angles (0°, 45° and 90°) from the rolling 

direction. The sub-figure (true stress vs. plastic strain) shows the experimental dots measured 

by DIC and the fitted Ludwig isotropic hardening in solid lines. 
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Figure 2. Flow-chart of the Finite Element Method Updated (FEMU) identification procedure. 
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Figure 3. Geometry of the Meuwissen specimen. 
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Figure 4. Meuwissen specimen vertical displacement fields for the last experimental load step. 

(a) Measured by 3-D DIC. (b) FEM simulation result taking into account the measured 

displacement as boundary conditions. 
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Figure 5. Experimental tensile curve (force – mean longitudinal strain) obtained for the 

Meuwissen specimen in solid line. The number of load steps considered in the identification 

procedure are superimposed in the curve (markers). 
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Figure 6. Sensitivity map calculated using direct FEM simulations and experimental 

displacement fields (20 experimental load steps) for the Meuwissen specimen geometry: 

overall cost function evolution versus K and n. Results of the FEMU identification for the three 

initial parameter sets Pa, Pb and Pc are superimposed in the figure (20 experimental load 

steps included in the identification procedure, see Fig. 5). 
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Figure 7. Evolution of the force, displacement and overall cost functions during the FEMU 

optimisation process (initial parameter set Pb). 
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Figure 8. Evolution of the parameters K and n during the FEMU optimisation process (initial 

parameter set Pb). 
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Figure 9. Meuwissen geometry. (a) Strain field (major strain) measured by DIC for the last 

experimental load step. The sub-area (white frame) corresponds to the area of the 

displacement field used for the evaluation of the displacement cost function. (b) FEM mesh. 

The filled points correspond to the FEM nodes used for the evaluation of the displacement cost 

function. 
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Figure 10. Geometry of the Haddadi specimen. 
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Figure 11. Haddadi geometry. (a) Strain field (major strain) measured by DIC for the last 

experimental load step. The sub-area (white frame) corresponds to the area of the 

displacement field used for the evaluation of the displacement cost function. (b) FEM mesh. 

The filled points correspond to the FEM nodes used for the evaluation of the displacement cost 

function. 
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Figure 12. Sensitivity map calculated using direct FEM simulations and experimental 

displacement fields (ten experimental load steps) for the Haddadi specimen geometry: overall 

cost function evolution versus K and n. Results of the FEMU identification for the three initial 

parameter sets Pa, Pb and Pc are superimposed in the figure (ten experimental load steps 

included in the identification procedure). A zoom showing the effect of noisy kinematic fields is 

inserted. 
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Figure 13. Histogram of the experimental major strain levels measured by DIC for both 

Meuwissen and Haddadi geometries. Inserted is the plot of the experimental major strain 

versus minor strain. Each strain fields investigated corresponds to the sum of five load steps 

regularly distributed between the first and the last load step. 

 

 

 


