L. Ambrosio and V. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Communications on Pure and Applied Mathematics, vol.17, issue.8, pp.999-1036, 1990.
DOI : 10.1002/cpa.3160430805

A. Benallal and J. Marigo, Bifurcation and stability issues in gradient theories with softening'. Modelling and Simulation in, Materials Science and Engineering, vol.15, pp.283-295, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00551073

B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture'. Interfaces and Free Boundaries 9, pp.411-430, 2007.

B. Bourdin, The variational formulation of brittle fracture: numerical implementation and extensions, IUTAM Symposium on Discretization Methods for Evolving Discontinuities, pp.381-393, 2007.
DOI : 10.1007/978-1-4020-6530-9_22

B. Bourdin, G. Francfort, and J. Marigo, The Variational Approach to Fracture, Journal of Elasticity, vol.125, issue.8, pp.5-148, 2008.
DOI : 10.1007/s10659-007-9107-3

URL : https://hal.archives-ouvertes.fr/hal-00551079

A. Braides, ? -convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22, 2002.

C. Comi, Computational modelling of gradient???enhanced damage in quasi???brittle materials, Mechanics of Cohesive???frictional Materials, vol.4, issue.1, pp.17-36, 1999.
DOI : 10.1002/(SICI)1099-1484(199901)4:1<17::AID-CFM55>3.0.CO;2-6

G. A. Francfort, N. Q. Le, and S. Serfaty, Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case'. ESAIM-Control Optimisation and Calculus of Variations, pp.576-598, 2009.

J. Leblond, Mécanique de la rupture fragile et ductile, CollectionÉtudesCollection´CollectionÉtudes en mécanique des matériaux et des structures, 2000.

E. Lorentz and S. Andrieux, A variational formulation for nonlocal damage models, International Journal of Plasticity, vol.15, issue.2, pp.119-138, 1999.
DOI : 10.1016/S0749-6419(98)00057-6

K. Pham and J. Marigo, Approche variationnelle de l'endommagement : I. Les concepts fondamentaux, Comptes Rendus M??canique, vol.338, issue.4, pp.191-198, 2010.
DOI : 10.1016/j.crme.2010.03.009

URL : https://hal.archives-ouvertes.fr/hal-00490518

K. Pham and J. Marigo, Approche variationnelle de l'endommagement : II. Les mod??les ?? gradient, Comptes Rendus M??canique, vol.338, issue.4, pp.199-206, 2010.
DOI : 10.1016/j.crme.2010.03.012

URL : https://hal.archives-ouvertes.fr/hal-00490520

K. Pham and J. Marigo, From the onset of damage up to the rupture: construction of the responses with damage localization for a general class of gradient damage models, Continuum Mech. Thermodyn. Doi : 10.1007, pp.161-172, 2012.

K. Pham and J. Marigo, Stability of Homogeneous States with Gradient Damage Models: Size Effects and Shape Effects in the Three-Dimensional Setting, Journal of Elasticity, vol.30, issue.13, pp.10659-10671, 2012.
DOI : 10.1007/s10659-012-9382-5

URL : https://hal.archives-ouvertes.fr/hal-00655488

K. Pham, J. Marigo, and C. Maurini, The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, Journal of the Mechanics and Physics of Solids, vol.59, issue.6, pp.1163-1190, 2011.
DOI : 10.1016/j.jmps.2011.03.010

URL : https://hal.archives-ouvertes.fr/hal-00578995