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1. Introduction

Radar rainfall estimates are generally computeth fradar measurements using (semi-)theoreticalioaktiips between
the reflectivityZ and the rain rat®. The most classical relationships consist of pdess of the form :

Z = aR® (Eg. 1)

wherea andb are unknown constants. These constants are siroeglendent on the shape of the drop size disimitbut
(DSD). For instance, in the case of a Gamma DS pétrametersN,, U, A), b depends on p aralon Ny, W). More
generally, a strong uncertainty in the estimatibrainfall intensities from (Eq. 1) remains duethe empirical variability of
parameters andb, which vary respectively in the range of valuesl®00 and 0.8-2 (Smith and Krajewski, 1993; Mottin e
al., 2003). Various physical and statistical pheapanare expected to contribute to this variabilitye parametera andb
depend not only of the rainfall type (i.e. conveetys. stratiform) but also on the more subtle @a}processes involved in
rainfall (Rosenfeld and Ulbrich, 2003), such asleseence, breakup, or evaporation. Statisticalcdosetrvational constraints
also affect the empirical-R relationships, which are highly dependent on ndthmgical aspects such as the type of
regression (Campos and Zawadzki, 2000) and on wdutsemal errors (e.g., Ciach and Krajewski, 199®)other possibly
important statistical source of uncertainty is ititeinsically statistical definition of the DSD, wdh is well defined over large
spatial and temporal domains of integration, buttvimay be expected to be largely variable in titerior of such domains.

Due to inhomogeneities in DSD and to the extrenaiapand temporal variability of rain intensitiasd reflectivities, the
Z-R relations are expected to be sensitive to aggmgatver domains of different volumes and duratidvisreover, the
non-linearity of theZ-R equation associated with the (at least approximatearity of aggregation processes prevents the
(a,b) couple of parameters to be strictly conservedrivet al. (2003) have shown empirically the exise of a scale-
dependency of-R law parameters based on the study of collocatedrrand rain gauge data aggregated at differefgssca
(1-5 km, 5-120 min). These authors found a quickdase of with scale as well as a moderate decrease ofataneteb.
They attributed a significant part of the changpanameters to the averaging of observational £frith pixel aggregation.
However, they cannot distinguish the purely statistcontribution of rain inhomogeneities since ithgtudy involved
systematic comparison of radar data and rain ganbeh adds instrumental and methodological errors.

In this paper we consider an alternative approbabed on the measurements of a Dual-Beam Speatiopketer (DBS),
in Palaiseau (France). This instrument, descrilsedere (Verrier et al., 2011), provides measurgsnef diameter, fall
speed and time of arrival of raindrops. The latlata can therefore be used to compute simultaneminsrates and
reflectivity factors that can be compared withimstrument-to-instrument discrepancy. In SectoMe notions of statistical
scaling are quickly recalled and consequenceZ-Brrelations are derived. In Sect. 3, we presenethpirical methodology
and we end with a discussion in Sect. 4.

2. From scaling to scale-dependent Z-R relationships

Rainfall variability is characterized by remarkaldetistical symmetries that can be interpretedhi framework of
(multi)fractals and turbulent-like random cascadedeis (e.g., Tessier et al., 1993; Fraedrich andnexr, 1993; Deidda et
al., 1999; Lilley et al., 2006; Verrier et al., 201 These symmetries can be represented by ayafistochastic models yet
generically result in remarkable power law scalingperties of power spectra, namely

Sw)=w"k (Eq. 2)

As reported in (Molini et al., 2009), different $ing regimes can be distinguished for rainfall meses with different
meteorological interpretations. Scales smaller #néew hours are characterized by a steep scagigie with exponerfi >
1, likely associated with storms and convectionlafgjer timescales up to a few days, a scaling vith0.5 holds and seem
to be representative of large frontal systems. Ifinimescales larger than a few weeks are charaetd by a spectral
plateau with constant power density.
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Moreover, more subtle scaling properties have tawepirically demonstrated for rainfall (de Lima aBdasman, 1999;
Lovejoy et al., 2008; Verrier et al., 2011), i.eultifractal” symmetries which consist of scalingpperties of statistics of

various orders (i.e. not only spectra or autocatiahs). By denoting‘}b: a field (e.g., rain intensity) aggregated oved gri
pixel sizel, the field is said multifractal if there existange of (possibly non-integer) orders such thahalnents of order g
in this range are power law functions of scale:

El#]]oci7®@ o g

The scaling exponent is dependent on the omgleand defines the “moment scaling functioK(q) that entirely
characterizes the statistics of the field. Usualyy) is determined by the knowledge of a reduced $€etuniversal”
parameters (Schertzer and Lovejoy, 1987, She anéique, 1994).

Let us now derive some consequences of the (mmaltiHlity of rain orZ-R relationships. At the spatial (or even temporal)
scalel, suppose that (Eq. 1) is accurately followed:

_ b
Z,=aR, (Eq. 4)
where a and b can now depend on the dadlet are independent @handR).

Now we can use the fact that b@andR follow well-established multifractal propertiesde Lilley et al., 2006; Lovejoy
et al., 2008). By taking thg-th order moment in both sides of (Eq. 4) and fitbe multifractal equation (Eq. 3), we obtain
with trivial notations:

1~Ezla) = F[q9]1-Er(bal (Eq. 5)

The previous equation subtlety constraints theversal” parameterization d€z(q) andKx(q). For simplification, let us
assume that andb are deterministic functions of scale. Since thdirsgaxponent do not depend (by definition) of ecab
should therefore be constant with scale. Let us faows on the special cage= 1, we find:

In the case of linear averagings, the mean ofefieativity should be conserved scale by scalecéBn(1) = 0.
Therefore, if multifractality simultaneously holfts R andZ, the ZR relationships are characterized by:

b = constant
a o [FrLY) (Eq. 7)

The coefficienta should therefore be power-law of scale, with sgplexponent that can be demonstrated (from
multifractal theory) to be positive whéxr1 and negative whdm<1.

3. Empirical study

The measurements of the DBS (drop diameter anddédkity), starting in July 2008 and ending inyJ2010, are used to
estimate rain rates and reflectivities. The ratesaan be estimated from the counting of the drapd from their diameters

and fall speed consistently with the definitioh & [ N(D)D3v(D)dD Similarly, the reflectivity factors are estimdte

from the definitionZ J. N(D)D®dD, This provides time series & and Z at 15-s resolution. These series have been
previously demonstrated to follow multifractal #tits at mesoscale and submesoscale in a detdildg (Verrier et al.,
2011). To illustrate more simply the scaling prdigsr of these series, let us consider the graptesepted on Fig. 1. The
latter represent the power spectrum of the ram saties with logarithmic axes. The two linear jpoit correspond to scaling
regimes with different scaling exponents. Thesdirggaegimes (3 days - 32 min, 32 min — 30 s) avhecent with those
reported by Fraedrich and Lardner (1993) and Madinil. (2009), yet this figure shows that the seboscale regime
extends down to very small scales.



ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN VEOROLOGY AND HYDROLOGY

Power spectrum of rain time series
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Fig. 1 Power spectrum of the DBS rain rate seniepresented in logarithmic coordinates

TheseZ and R high resolution time series can then be degradedarous coarser resolutions by simple averages of
contiguous values. In this study, we are mainlgnested byZ-R relationships at submesoscale, hence mainly falesc
smaller than 0.5-1 h. Since a power-law phenomeyoi® expected, it is pertinent to systematicatipgider logarithmically
regularly spaced averaging factors.

Linear regressions may be performed onRd6g (2) scatterplots in order to estimateandb. However, this leads (at
15 s resolution) to a rather unsatisfactory coefficof determination R2 of about 0.6. In ordefinait the discrepancies due
to the specific properties of individual events smal weather types etc.), we averaged Rpgénd logZ) over
logarithmically equally spaced bins of rain intéiesi. This provides the plot represented on Fi@areThe good linearity of
the graph (in logarithmic scale) demonstrates ttistence of an underlying optim@tR relation for most rainfall events,
with exponentsa = 406 andb =1.54 at 15 s resolution (and R2 = 0.997). Thha,dame kind of regression is applied to
coarse-scale points, namely the rain intensities @aflectivity factors averaged at coarser resohgi (i.e., timescales
comprised between 30 s and 64 min). The graplasarfdb as functions of the log of the scale factor akegion Fig. 2b
and 2c. We notice a slight decreasebofnd a quicker increase afas scale increases (note that the spatial scale ar
represented in logarithmic scale). If we now pleg graph ofa in log-log coordinates (see Fig. 2d), the variagiof a are
rather coherent with a power-law of exponent 0.fa83imescales between 30 s and 64 min.

However, the averagings performed above to estiloategesolution aggregate data did not distinguaihfall and zero-
rainfall data. Then, the coarse-scale estimatesbmasensitive to subscale rainfall zeros. In otdeavoid this problem, we
also selected 15 almost continuous rainfall eveftduration ~ 1 h and containing significant pegks20 mm/h). These
events were degraded fhandR at various coarse resolutions in the interval 18 4 min, thus providing a loBj - log2)
scatterplot at each of the chosen scales. As sliowigs. 3a and 3b, th&-R parameters are also scale-dependent in this
case, withb slowly linearly decaying from 1.53 to 1.37 aadhcreasing like a 0.14-power-law from 270 to 46Qtie scale
range 15 s — 4 min. This tendency seems even b &olarger scales even though a significant najgeears due to
insufficient sample size in linear regression (fegmot shown here). It is not surprising that camtrto Figs. 2, the scaling
holds down to scales as small as 15 s, since we $elected intense rainfall events that are ndiitbem to any instrumental
noise even at such scales.

To sum up, the empiricZR relations are indeed scale-dependent in a wayctrdirms the predictions of the multifractal
theory, even though the paramebeseems to vary also (coherently with the study lyriMmet al. (2003)). These empirical
relations have been confirmed with other compleamnimethodologies not detailed in this paper (sashnonlinear
regressions).
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Fig. 3b Log-log plot of a as a function of scaletta, for

the rain events. The fit line has slope 0.14.

Log2 of scale factor

Fig. 3a Plot of parameter b as a function of thg tf the

scale factor, for 15 selected rainfall events



ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN VEOROLOGY AND HYDROLOGY

4. Discussion

In this paper, a scaling approach was proposedttehscale dependency HR relationships parameters. This approach
predicts that the parameteincreases like a (slow) power law of spatial onperal scale, which is accurately retrieved from
rain intensities and reflectivities computed froisddometer measurements. If the paramieisrconstant, this would lead to
a systematic underestimation of rainfall ratesieger scales. For instance, suppose that a rel&toR0R" is valid at some
place and time for a ground based radar with réisolg00 m. If this relation was applied to a sphoene precipitation
radar with pixel size 4 km, the rain rate will e retrieved accurately since the a parameter dhmumultiplied by
(4000/400% whereo is a scaling factor (say, 0.08, accordingly withyious section). With = 1.5, rain rates estimated from
space-borne radar reflectivities will thereforenbaitiplied by a spurious factor (4000/406)= 0.86, hence -11.5 % of
systematic statistical error.

Furthermore, even with a single radar of fixed hathon a “scale problem” is likely to occur. Withggound based radars,
maps in polar coordinates have pixels whose suifageoportional to the distance. Hence, pixels #na far from the radar
are possibly subject to a systematic underestimatdoain rates (at 100 km of distance and withdtleend b parameters of
the above example, this would lead to a similaorgrr

The “scale problem” could even be more criticatsithe study of rain events in the previous secesms to show that

within rain events, the scaling exponerguch thai % [* would be greater (~ 0.14). In this case, the drroain rate
associated with scale-dependgfR relationships would reach -20%.

An important additional remark is that the scalpetelency described in Sects. 2 and 3 is a puragtital property. In real
radar applications, other artifacts such as thaente of the observational errors that decreagespatial and temporal
integrations, or as the difficulties associatedhwitstrument-to-instrument intercomparison (radanges) also contribute to
an additional scale-dependency. The contributidreaoh artifact need to be estimated and comparetithe addition of all
of them should significantly impact the estimatafirainfall intensities by radar.
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