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Abstract

Proper orthogonal decomposition (POD) is an inénggyg popular way to analyze data, and to obtathegia low-
dimensional approximated description of a high-disienal process, or useful information for damaggeasment.
In the case of a dynamic system witdegrees of freedom, the purpose of POD is toenadrthe modal properties
from the measured response. Until now, POD has bsed for systems with a diagonal mass matrix. aitmeof
this presentation is double: first, to demonstthég POD can also be used for a non-diagonal synomaass
matrix; and second, to present sufficient condgion the response sampling, in order to retriegeribdal
characteristics with a prescribed accuracy.

The conditions to obtain this approximation withigen accuracy are first explicitly given for thase without
damping. Then the case of proportional dampingliFessed and similar conditions are shown. Thizakitase of
two modal frequencies close together is also stlidjeren that it requires particular conditions.

The obtained conditions show that the expectedracgus explicitly limited by the damping ratio. '8e numerical
tests illustrate the accuracy evolution of the agjgnated normal modes obtained by this method, wisipect to
the variation of the observation time and the damgpatio. This careful analysis can be useful fiedihg the cause
of poor approximation properties in more complegesa such as analysis of variation in nonlineamabmodes.

Keywords:dynamic system; POD; normal modes; accuracy ofppnoximation;

1. Introduction

Studying the behavior of structures in various camrsituations such as earthquakes, high wind, istwery
important for civil engineering. These studieslaased on the mode shapes and modal frequencilks sfructures,
explaining why the development of new efficient haahatical techniques to retrieve this informatienso
important in the scientific field.

In this paper, we study a mathematically basednigcie that allows one to find the mode shapes aodain
frequencies of a structure depending on the typeitidl data. This method uses Proper Orthogoreddnposition
(POD) in order to determine the modal charactesstif a second-order free linear discrete dynaystesn withn
degrees of freedom (DoF). While several previouske/thave proven the accuracy of this method whemthass
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matrix is proportional to the identity matrix, ihi¢ paper we will prove its efficiency for all syratric, definite and
positive mass matrices, and even in the case laf figoportional damping.

Two problem types will be studied in this papée direct problem andthe indirect problem.

In the direct problem, the mass matkix the damping matri and the stiffness matrik are known, and are
used to determine the displacement vextdhe eigenvectors and eigenvalues of the systehthesir properties.

In the indirect problem, the displacement makixs used to retrieve the modal characteristics efracture.
Engineers very often have to deal with this typgmblem. Indeed, when working on real structutles, matrices
M, C andK remain unknown. Determining the modal charactesstf the system thus cannot be completed with
the methods used for a direct problem. Therefaris, valuable to develop methods that use onlydisplacement
matrix X, which can be easily obtained through experimedtds.

To find the best approximation of a system’s chmatics, one relies on the POD: the eigenvectdrthe
correlation matrixR approach the eigenmodes of the system wHeis a scalar matrix. When using this method,
scientists found severe limitations of the POD. fitg problem is that the eigenmodes of the systeenorthogonal
with respect to the mass mathk, whereas the eigenvectors of the system are arttadgo each other. In fact, the
approximations of the eigenmodes are the eigenkeabthe matrixR * M. Studies in [1] and [2] showed that
when the mass matrix of a structure is proportidoahe identity matrix, the eigenvectors Rfconverge to the
modes of vibration. The accuracy of the methodb®en verified by a large number of numerical tdstsas been
proven numerically that, using the matix* M, the eigenmodes can be retrieved even when the masgixM is
not proportional to the identity, but to a knowragibnal matrix [1]. A second problem appears wheo tw
frequencies are close to each other [1(p.1-7)tesPOD cannot distinguish between them.

The purpose of this work is to extend the use efR®OD method in order to retrieve the modal charastics of
a structure for indirect problems, in the case wtien mass matrix is symmetric and positive defjniiat not
necessarily diagonal. Moreover, quantitative caodg on the total observation time are given ineordo
approximate the eigenmodes with a given accuradg. dlso shown how these conditions are modifiégmwthe
system has frequencies that are very close togéthese conditions are also given for a low prdapogily damped
system.

Researchers have recently developed this methodliffarent domains. POD was successfully adapted fo
discrete linear symmetric undamped systems [2] fandight damping systems [3]. This approach alszame
useful for the case of nonlinear systems [4,5]créi®ly sampled continuous systems (uniform samgplifs] and
even (with a modified version of POD) for a nonfanin discretization with homogenous structures.

In the literature, one can find three closely medlatnethods that can be considered to be POD methivels
Karhunene-Loéve decomposition (KLD) (for continudinse), the principal component analysis (PCA) ¢fmndom
discrete variables), and the singular value decaitipa (SVD) (which is originally a mere algebraic
decomposition) [7].

This presentation is divided into five main secsioim section two, the direct problem is studi¢ds shown how
one can retrieve the modal characteristics ofwctitre in a rather simple way. In section three aneeinterested in
solving indirect problems. A POD-based method isvpn to be accurate for all symmetric positive miefi mass
matrices. Conditions on the sampling frequency #émel total observation time are developed in order t
approximate the eigenmodes and the eigenvectoitheofsystem, with a given accuraey Both damped and
undamped systems are studied. Numerical resultgrasented in section four, and a conclusion i€liped in the
last section.

2. Direct problem

This dynamic system considered here is governdtidfollowing second-order differential equation:
M X(t)+C x (t)+K x (t)=0 1)
withx(0) = x, and x(0)=x, and withM the mass matrixC the damping matrix ani the stiffness matrix. The

matricesM, C and K are symmetric and positive definite. The purpo$ethis section is to determine the
eigenmodeg of the system. Therefore, the system given bys(ffansformed into a systemmwfincoupled ordinary

equations (7). Applying the coordinate transforamtias shown in [1,6] and in [5(p.67)] :

_2-
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1

x() =M Zq(t) o
to the equation (1) yields to:
Mgd(t)+CMféq(t)+KMéq(t):o a)

_1
Multiplying by M 2 recasts the system as:
S S
gt)+M 2CM 2q(t)+M 2KM 2q(t)=0 (4)
Since the matricell, K andC are symmetric and positive definite, the matrigeskm : and M 2c m :are, too.
It should be noted that a symmetric matrix is alsvdiagonalizable over an orthogonal basis of eigetors. For
proportional (Rayleigh) damping, the matriqw’éKM’é and M’éc M”i have the same eigenvectgrs so these two

matrices can be diagonalized by the same changasig. Only the proportionally damped case is cemed in the
following. LetP be the matrix the columns of which are the ortmagwectors, .

By setting,
q(t) = Pr(t) %)
and multiplying bye™, the system yields:
P(t) + diag(u, )i (t) + diag(A,)r (t) = 0 (6)

. . 11 EER
where, and; are respectively the eigenvaluesypfac v zandp kv 2.

Since M’%KM% and M’éc M’é are positive definite, their eigenvalues are pasiand non null. Hence, one can
define », >oands >o by:
A= andy = W
Thus, the system (6) becomes:
F(t) +diag(2w,{, )r (t) + diag(w?)r (t) = 0 (7)
Since this above system is completely uncouplei, [itossible to solve an ordinary differential etiprafor each
io,....n} - The characteristic equation fpy) is given by:

s+ (2w, )s+tw’=0 (8)
If the damping is low, i.ez, <1, the equation (8) admits two complex roots defiasdollows:

s=-q ¢ + i 1-¢7 9)
By setting&@ = cq\/l—iii2 , the system response due to initial conditions b&gxpressed as:

rt) = e {n (0)cos@t )+ %[r; Oy @ (0] singt (10)
Let 5 be defined by: |

8’ ={n2(0)+d)ilz(r; O+@dr (0))2] D

In the undamped casg,is twice the energy?.
By introducing the angle < ¢, < ~, i.€.,
1
10+ &4 (0)
il |

tang = 0 (12)

one can expresst) as follows:
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[t) =e '3 cos@t-4 ) (13)

_1 _1
Sincex(t) =M 2q(t) =M 2Pr(t), introducingg, such that:
1
@=M 2P (14)
the responsg ) becomes:

X() = () = 1. (D9, (15)

i=1
1
where the, are the columns @f. These are the eigenmodes of the system. Theredeig =M 2p,, and as the

p, form an orthonormal base of eigenvectors,\fﬁr%KM’éand forM’ic M’é (case of proportional damping), then:
S
M 2KM ?p,=w’p;, = M7Ke =w’e and,
N
M 2CM 2p, =2w{p, = M7Ce =2wiq
This emphasizes that, () form a basis of eigenvectors far -k and also form -ic . Although this basis is not
orthonormal with respect to the norm, it is worth pointing out that as seen irp[86)], one has:

O'Mo=1, @'Ko=diag(w?) and @'Ce=diag (2, ) In

_1
addition, from (14), one hag" =P™™ 2, and so:

1
2

¢'=P"M2=¢'M (16)

3. Indirect problem

In practice, the mass, stiffness and damping negtréace unknown, the only given information aboetdtructure
is the displacements (eventually the acceleratjarg) the data are usually discretized in time. M@ purpose of
the POD is to find the eigenmodes of the initidfedtiential system by finding the eigenmodes of drinaR called
the correlation matrix.

Form samples in time of the n-dimensional vectpthe 6 x m) data matrixX is given by:

X () o xy(ty)

X=| oo 17
X, (t) o x, ()
and the correlation matrix is defined by:
R =EXXT
m
As seen in equation (15):
x(t) = @r(t) = Y ()9, hence,
i=1

x(t,) = Zn: r.(t. )¢, » and therefore, the data matkxcan be written as:

i=l

n(t) ... n(t,)
X=¢ : : (18)

ro(t) ... r.(t.)

ConsequentlyR =iXXT is expressed by:
m
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R= %q,[r” It (19)
with

n(t) ... n() ) r(t) ... r(t)
: .. : : . . (20)

[n]=| ¢ ~ & || &
ro(t) oot oor(ty
where, for1 < i, j < n, the general term, of thei-th row and-th column has the following expression :

1 m
i =_Zri(tk)rj([k) (21)
m k=1
When the mass matriM is proportional to the identity, numerous studie®] have numerically shown that the

eigenvectors of the correlation matrix="xxare a good approximation of the system's eigenvectowill be
m

proved in the following section that this resulalso verified even whel is no longer proportional to the identity
and not even necessarily diagonal.
The main step is to show that under certain coomiiti the matrix (] is close to the matrix

2
diag(s? ) With o—f:a‘—z' . Hence, the following approximation can be written
R = ¢ diag((,—i2 ) @' ASq)‘1 =@'M , (16) |mp||es that
RM = g@diag(c/) @' M = ¢diag(e’) ¢"
This shows that the columns gf are close to the eigenvectors of the maRix M.
We will give sufficient conditions to ensure thlalatmatrix[r ] is close to the matrixiag(s?2 ) -

In the following sections, we first recall the ddasl condition for the sampling rate and then we study the
&

sufficient conditions concerning the total obseivatime 1 = m 4t for the case of an undamped system. Finally,
we generalize these conditions for the case oftesywith light proportional damping.
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3.1.Choice of the sampling rate

We recall that the average of a continuous functjoon an interval [0,T] is the limit for m - +« oOf the
average values takenat with ¢ = x 4t andm 4t = T . This can be expressed as follows:

ﬁ |:i g(tk ):| At O Qﬂgc_’ %J‘; g(t) dt with mAt=T (22)

The necessary condition fok zm: g(t,) to be reasonably approximated by the average \algeon [0, T] is the
m =

verification of the Nyquist-Shannon sampling theoyé.e., the sampling raté should be higher than twice the
&

maximum frequency of the signgl

For the discrete dynamic system presented in (@uencies are given by, = ;"—' Therefore, one must
T

choosest such that:

1.1
— s _ 23
e (23)
Then, fort = m 4t , whereT is the observation time amdthe number of samples, the approximation is devic:
1 ~ 1,7
ry = ) = ry = e o (24)

3.2.Choice of total observation time T

In this section, we study the limit of the matfix; whenT increases. We will first consider the undampea cas
(3.2.1), and then the case with proportional lidganping (3.2.2).

3.2.1.Undamped system

Equation (13), used in the undamped case, givesoltmving expression of the temporal evolution edch
mode:

r(t) =a, cost-86,) (25)

2
We will prove that when certain conditions are fred, the matrix(r | tends tmiag{a‘_éj ,whenm - +w , with:

- 17
F :?jo e, ¢) dt.
In greater detail, for whepand 5 are nonzero, we will show that:

Fij

aa

&1

8 2

si and
2

€
<> (26)

withe = T?M where the constant, is function of the analyzed signal aidis the time of observation. By

increasing T emight arbitrarily become small. In the followingewvill consider the case where j , and then the
case wherg z j .

e The diagonal terms are:

P :%ﬂaf cog (@t-8 )t 27)
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As
lfTCOsz @t-9,)dt= 1,7sin(2@T =6, )+ sin(2€8, ))
T Jo 2 40, T
the following estimates hold:
12 <lcos @t-8,)dts 2+ —2 (28)
2 40T " T 2 AT
Therefore,
fi 4.1 1 1 (29)
a®> 2|” 20T~ 2T minw,
By introducing 1, the time period for each mode and
1 _ max() (30)

max

- 2minw, 4n
This shows that the first part of (26) is verifiiéd% <eg.
* The non-diagonal terms are:

i :@j;cos(wit -0, )cost -6 dt

For the sake of simplicity, we assume that the lzengles are zero. Therefore:

T 1 1 . .
IO cos(ut )cos@t )t =§[w, 0 Sing +w T+(Jq _ sig -w 7
which leads to:
T 1 1 1
cos(t ) cos@t )dt‘ <= +— (31)
i F 2w e -
Sincew, + w, 2 2min(w, ), ONe has:
1 < 1 _ max(l;) _ T (32)

(W +w) 2min(w ) T am
Defining 1, by:
_ 1 _ 1
- min|w, —ooj| - 21'tmin|fi —fj|

(33)

gap
wheres, are the modal frequencies, we obtain:
|| 2T Tom
sl 2 T
When two frequencies are close to each other,can be quite large in respectio, . Thus, in order to have a

2
good approximation of the matri; ag(%] , one should make up for this by increasing theeplaion timeT.
2
» To concludein the undamped case, the coefficients of therimﬁ;j] are equal to those of the matixag (%]

with a relative error of ordeﬁ;E for e = T?“" , Where

TM = Tmax + Tgap (34)

Finally, let us note that if for a certain, q}is null, f, . and fio , are also null, which means that the t,

o

mode is not activated, thus it is not necessatgke it into account in the previous inequalities.

-7-
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3.2.2.Proportionally damped system

We recall that for a system with proportional damgpir ¢) is given by equation (13).

As for the undamped system, we simplify the prestéort by assuming that all phase angles are nsihdJthe
same procedure as in section (3.2.1), the aim &htw that, under certain conditions, the maftiy approaches

2
diag{a‘_éj , whenT is large enough. In greater detail, wheand 5 are nonzero, conditions are set in order to insure

. i
iiz—i <& and|—
@ 22" |ag

» The diagonal terms are:

that

532 for carbitrarily small. The cases- j and; # j will be studied.

= _ a12 T 2wt
= [, €% cos Gt )t (35)

As the Taylor series of is an alternating series far> 0, one hags - x < e* < 1. Thus, foro < t < T we have:
1- 20T =1-20{t < €% < 1

Since the function given byos® @;t) is positive, we deduce that:

~ 1,7 17 1,7 ~
(1—2m,ZiT)?J'O cod (t )dt < ?jo 94t cos @t Mt < ?jo csf t b
Using the inequality (28) one has:

1 -1 r 1 1
1-2600.T) = < < =
( @, )[2+ Tr] < af < —+

which yields to:

QL T-(1- 29 Ty < -2 < 2
40T a 2 AT
_QZiT_;_ZiE < le_—l < N—l
40T 2 a 2 4T
Using the following notations
T-max = maX(Ti): l ~. ’ ~min :; nd 0< Z| = r]
4m 2min@; ) maxg )
one has
-n :r _Tmax_ﬂ < _d)iZiT_ ~_1 _Zil S r|_|2_1- = ~1 = Tmax (36)
2T, 2T 2 4T 27 a> 27 &T a

If Tis large enough and if the damping raties low enough to satisfy the following inequaliie

—

max

T

<S¢ , n—=

<¢ and n<e¢ (37)
T
T,

min

then the estimation (36) allows one to prove thatihequalityn +T$7ax+n < 3 is verified, and so:

3e i 1 &
<

= oz < Z

2 a2 2
» The non-diagonal terms are:

LY,

T (cag-ag,
My = e cosot -6, )cospt -6, Yt

0
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The functiong(t) = cos@,t - 6, ) cos@,t - 8, ) is continuous but of either sign afidt) = g9 is a positive
decreasing function. It is thus possible to usesttmond mean value theorem arbl:

OcOja §  such that jb )t @)t dt (f)£ 9t
As previously in (31):

J.Occos@o,t—ei)cos@t—ej )dt‘ < %{ 1 +| _1 |]

then:

aa
which is the same result found in the undamped. daswder to hav}aa% < % withe set in advance, it is
sufficient to choose:

T?M <e  with T, =T+ Tee (38)

In conclusion, the conditions (37) and (38) ardisiegit for the coefficients of the matrix to be

2
approximations, of orde%, of those of the matrig; ag{a’_éj . It is important to note that for a given damping

ratio, , one cannot expect to have an approximation ofesizgsmaller than/nh .

min

4. Numerical results and conclusion
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To illustrate this theoretical study of the nornmabdes approximation accuracy by the POD, some rinater
tests are presented in the following.

The relative error is calculated for different ettary initial data and for different observatiomes. The
figures present the evolution of the mean relativrers with respect to T{Ex

To begin, we consider a diagonal mathNk. The example presented was previously chosen leypyand
Kappagantu in [1 section(2.2)]. They used a tobelepvation timd equal to four fundamental periods:

max(T; )

T= max(T) = 4*4m* = 16m*T,,, = 50T,

Figure (1) illustrates the mean relative error atioh of the approximated normal modes, all the way
T = 100 T,, - ONe can notice that the error is less than 10%mhs greater thano 1, (which is about the same

T considered in [1 section(2.2)], and that the amcyris equal to 0.01589 and is coherent with Feergsults.
Figure (1) proves that, for systems with distincbdal frequencies { = 0.06, f, = 0.15 andf, = 0.20, Where

2
T...=1.188sand T =1.4703s, the error is acceptable (lower than 10%) whervary T/Ty and do not consider
T,., (Since the gap between the frequencies is large).

The next example concerns a non-diagonal, symmairit positive definite mass matii#, and two different
matrices K, such that the modal pulsations of ttetesn are respectivety=[1, 2, 3] andw=1[1, 2, 2.05]:

3 2/3 o
M=|2J3 7 0
0 0 16

In both casesmin(wi) =1, hencer _ -o0.5s. However, in the last onemin(wi —wj):0.05, which is much

smaller thanmin(wi) =1. Figure (2) shows the poor accuracy obtained énsitcond case for the same [T In
the first case,r _ -o0.5sand Ty =15 but in the second one, since it has two simitardal frequencies

T, =05s and T =20s,T,=T,, +T,.,=205s. One can easily deduce from figure (2) that: when

max

min(wi —wj) are of the same order aﬂlsin(wi ) in order to have a relative error of order epsilib is sufficient to

have an observation timeless thare 1 . But when two frequencies are too close to eabarotn order to obtain

an accuracy of order epsilon, it is necessaryke tato accountr . and to havd less thare= (1, +T ) -

Finally, figure (3) considers the evolution of ttedative error when T/} increases for different damping ratios
¢ . When 1 > 1, , one should examine the values of the relativerefior three different values of proportional

damping ¢ . The comparison leads one to deduce that the piopal dampingz must be low. Otherwise, the

relative error becomes large and thus unacceptable.

To conclude, it is now numerically and theoretiggfiroven that the POD, under the sufficient coodisi
discussed in this paper, can be used for dynandealdamping systems with non-diagondl, even when two
modal frequencies are close together. This caeafalysis can be useful for finding the cause ofr agpproximation
properties in more complex cases, such as anafsisnlinear normal modes in vibrating systems.

-10 -
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Fig. 2.The evolution of the relative error as adtion of 1 /T, for system with a non-diagonil
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INRed =0, InBleu¢=0.05 & InGreen=0.1 withw=[1 2 3]
0.5 T T T T T

&
0.45| +, .

0.4 i
0.35} i
0.3} §

0250 ]

Relative error
-

02l 4 ]
0151 i

0.1 *\ kS .

\\‘V\O O x

0 + o & :

0.05 & * *\@\@“@ g?:él —®©o 000
¥ * |

0 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

T/ ™

Fig. 3.The evolution of the relative error as action of T 1T for system with a non-diagonil
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