Birth and death processes with neutral mutations

Abstract : In this paper, we review recent results of ours concerning branching processes with general lifetimes and neutral mutations, under the infinitely many alleles model, where mutations can occur either at birth of individuals or at a constant rate during their lives. In both models, we study the allelic partition of the population at time t. We give closed formulae for the expected frequency spectrum at t and prove pathwise convergence to an explicit limit, as t goes to infinity, of the relative numbers of types younger than some given age and carried by a given number of individuals (small families). We also provide convergences in distribution of the sizes or ages of the largest families and of the oldest families. In the case of exponential lifetimes, population dynamics are given by linear birth and death processes, and we can most of the time provide general formulations of our results unifying both models.
Type de document :
Article dans une revue
International Journal of Stochastic Analysis, Hindawi, 2012, 2012, Article ID 569081, 20 p. <10.1155/2012/569081>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00736036
Contributeur : Mathieu Richard <>
Soumis le : mercredi 28 novembre 2012 - 14:23:31
Dernière modification le : jeudi 9 février 2017 - 15:10:22
Document(s) archivé(s) le : samedi 17 décembre 2016 - 16:14:31

Fichier

mutations_version_finale.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Nicolas Champagnat, Amaury Lambert, Mathieu Richard. Birth and death processes with neutral mutations. International Journal of Stochastic Analysis, Hindawi, 2012, 2012, Article ID 569081, 20 p. <10.1155/2012/569081>. <hal-00736036v2>

Partager

Métriques

Consultations de
la notice

513

Téléchargements du document

108