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Equatorially asymmetric convection1

inducing a hemispherical magnetic field in rotating spheres2

and implications for the past martian dynamo3

Maylis Landeaua,1 and Julien Auberta4

a Dynamique des Fluides Géologiques, Institut de Physique du Globe de Paris, Université5

Paris-Diderot, INSU/CNRS, 1 rue Jussieu, 75238, Paris cedex 05, France.6

Abstract7

The convective instability in a rapidly rotating, self-graviting sphere sets up in
the form of equatorially symmetric, non-axisymmetric columnar vortices aligned
with the rotation axis, carrying heat away in the cylindrical radial direction. In
this study, we present numerical simulations of thermal convection and dynamo
action driven by internal heating (intended to model a planetary core subject
to uniform secular cooling) in a rotating sphere where, from the classical columnar
convection regime, we find a spontaneous transition towards an unexpected and
previously unobserved flow regime in which an equatorially antisymmetric, ax-
isymmetric (EAA) mode strongly influences the flow. This EAA mode carries
heat away along the rotation axis and is the nonlinear manifestation
of the first linearly unstable axisymmetric mode. When the amplitude
of the EAA mode reaches high enough values, we obtain hemispherical
dynamos with one single hemisphere bearing more than 75 percent of
the total magnetic energy at the surface of the rotating sphere. We per-
form the linear analysis of the involved convective modes and the nonlinear study
of this hydrodynamic transition, with and without dynamo action, to obtain
scaling laws for the regime boundaries. As secular cooling in a full sphere (i.e.
without inner core) is a configuration which has probably been widespread in
the early solar system in planetary cores, including the core of Mars, we discuss
the possible implications of our results for the past martian dynamo.

Keywords: rotating convection, secular cooling, dynamo, antisymmetric,8

hemispherical, Mars.9

1. Introduction10

Convection in rotating systems has been widely studied because of its numerous11

geophysical and astrophysical applications. For instance, dynamo processes sus-12

1Corresponding author. Tel.: +33(0)183957414; Fax: +33(0)183957702. Email address:
landeau@ipgp.fr
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tained by convection are an attractive explanation not only for the Sun’s magnetic13

field but also for the magnetic field of the Earth and other planets. Rotationally14

dominated convection is typically organized into vortices aligned with the rota-15

tion axis. These columnar structures tend not to violate the Taylor-Proudman16

constraint which requires the velocity field to be invariant along any line paral-17

lel to the rotation axis and which is approximately valid when the main balance18

is between the Coriolis force and the pressure gradient force. In the particular19

case of rotating spheres, the idea of a columnar convection appeared gradually.20

The first attempts to solve the onset of thermal convection focused on21

axisymmetric modes. Scaling laws for the threshold of instability of22

these modes could be extracted from Chandrasekhar (1961), but the23

asymptotic behavior in the limit of small Ekman numbers was obtained24

by Roberts (1965) and Bisshopp and Niiler (1965) with two different25

analytical approaches. Roberts (1968) was the first to recognize that the im-26

portant modes at the onset of thermal convection in rapidly rotating spheres are27

non-axisymmetric. However, Roberts concentrated his efforts on equatorially an-28

tisymmetric modes, in the wake of his 1965 study (Roberts, 1965) where he found29

that the linearly most unstable axisymmetric mode of convection has this parity.30

Busse (1970) subsequently showed that the dominant structures at onset are not31

only non-axisymmetric but also equatorially symmetric, corresponding to the fa-32

mous illustration of vortices parallel to the axis of rotation and localized in the33

vicinity of a fixed radius in cylindrical coordinates. The first correct linear34

asymptotic solution for rapidly rotating full spheres was given by Jones35

et al. (2000). Nonlinear numerical simulations of convection and dynamo action36

in spherical shells have subsequently confirmed this columnar flow structure and37

the secondary influence of equatorially antisymmetric modes (e.g. Olson et al.,38

1999).39

40

Among the different driving mechanisms which can be imposed in41

such numerical simulations, secular cooling in full spheres (i.e. with-42

out inner core) has been studied little until now. This configuration is43

appropriate for modeling convection and dynamo action in the Earth’s44

core prior to inner core nucleation (Gubbins et al., 2003; Aubert et al.,45

2009). Besides, an early dynamo in a convective core subject to secular46

cooling is the most plausible hypothesis to explain the strong magneti-47

zations measured on Mars’ crust by the Mars Global Surveyor mission.48

The timing of the martian dynamo is debated but can be estimated using ages49

of the different crust regions. Indeed, some large impact basins, believed to be50

∼ 4 Gyr old, are not magnetized (Acuna et al., 1999). Thus, the dynamo would51

have been active in the early history of Mars, between 4.5 Gyr and 4 Gyr. Several52
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published studies (Lodders and Fegley, 1997; Sanloup et al., 1999) compared sul-53

phur contents of martian meteorites with those of other primitive meteorites and54

estimated a high sulphur content in Mars’ core: from 10.6% to 16.2%. Stewart55

et al. (2007) performed experiments on iron-sulfur and iron-nickel-sulfur systems56

at high pressure and obtained the corresponding phase diagrams at fixed pressure.57

They showed that, considering such high sulphur contents, Mars’ core is likely58

to be presently entirely liquid.59

60

The Mars Global Surveyor mission also revealed a very surprising feature61

for Mars’ crust: intense crustal magnetizations were measured in the Southern62

hemisphere whereas the Northern hemisphere contains only weak fields. Dynamo63

models do not easily explain this hemispherical crustal magnetic field. Since64

Mars is a terrestrial planet with a size comparable to that of the Earth,65

we could have expected a dipole dominated dynamo regime with similar magnetic66

field strength in both hemispheres. For this reason it has long been thought that67

post-dynamo events, such as resurfacing processes or giant impacts, were respon-68

sible for the magnetic field asymmetry of the martian crust. It is however possible69

(Stanley et al., 2008) that hemispherical magnetizations of Mars’ surface have70

been caused by a dynamo process, influenced by a hemispherical pattern in the71

heat flux extracted by the mantle at the core-mantle boundary (CMB).72

73

Here, we use numerical simulations to model thermal convection and dynamo74

action driven by secular cooling in rotating full spheres. We find that, in this75

geometry and with this driving mechanism, an unexpected and previously unob-76

served flow regime spontaneously emerges through a hydrodynamic bifurcation:77

from the classical columnar flow regime to a flow regime which is strongly in-78

fluenced by an equatorially antisymmetric, axisymmetric (EAA) mode79

and which apparently violates the Taylor-Proudman constraint. This unexpected80

flow regime, which we will refer to as the asymmetric regime, has never been81

observed before. The aim of the present study is to investigate the following ques-82

tions: What is the dynamics of this EAA mode and why does it appear in the83

particular case of convection driven by secular cooling in rotating spheres?84

What impact does the EAA mode have on the pattern of magnetic field which85

can be seen on the planetary surface? In section 2 we present the model and the86

equations solved by the numerical code. In section 3 we introduce the results re-87

lated to the hydrodynamics of the system. In section 4 we analyze the effect of88

the emergence of the EAA mode on magnetic field generation and we show that89

hemispherical dynamos can be spontaneously induced. Finally, in section 5, we90

discuss our numerical results and the possible implications for the past martian91

dynamo.92

3
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2. Model94
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Figure 1: Schematic representation of the system. ri/ro = 0.01.

Fig.1 illustrates the configuration of the system. We use spherical coordinates95

(r, θ, φ) and cylindrical coordinates (s, φ, z). A sphere of radius ro, which contains96

a conductive fluid, is rotating at rate Ω around an axis parallel to ẑ. Because of97

numerical considerations, for the calculations performed in this study we retained98

a very small inner sphere of radius ri = 0.01ro at the center of the system. It99

has already been argued (Aubert et al., 2009) that the presence of the small inner100

sphere has a negligible impact on the solution. After implementation of a more re-101

cent version of our code where the inner sphere is completely removed (ri/ro = 0),102

we were able to confirm that this is indeed the case for the results presented here.103

For this reason, the system will be referred to as a rotating full sphere.104

105

Within the magnetohydrodynamic approximation, the non-dimensionalized gov-106

erning Boussinesq equations for the velocity field u, the magnetic field B, and the107

temperature field T , are given by:108

∂u

∂t
+ u.∇u + 2ẑ × u = −∇P +RaQ

r

r0
T + (∇×B)×B + E∆u (1)

∂T

∂t
+ (u.∇)T =

E

Pr
∆T + ST (2)

4
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109

∂B

∂t
= ∇× (u×B) +

E

Pm
∆B (3)

110

∇·B = 0 (4)

∇·u = 0 (5)

where ST is a positive source term. The equations have been non-dimensionalized111

using the following scales: D = ro − ri for length scale (D ≈ ro), Ω−1 for time, ΩD112

for velocity, ρD2Ω2 for pressure where ρ is the fluid density,
√
ρµΩD for magnetic113

field where µ is the magnetic permeability of the fluid and Q/4πρCpΩD
3 for tem-114

perature where Q is the total heat flux at the external boundary, or CMB and Cp115

the specific heat capacity.116

117

Our numerical code solves the Boussinesq equations (1)-(5) for a118

system which corresponds to fluctuations with respect to an adiabatic119

reference state. In this framework, we model secular cooling in plan-120

etary systems using internal heating in the Boussinesq system. The121

decrease in the adiabatic (reference) temperature on geological time122

scales is modeled by a uniform distribution of internal heat sources123

(ST ) in equation (2). As T has to be statistically stationary, ST is determined124

such that the heat budget of the sphere vanishes (Aubert et al., 2009).125

126

The mantle dynamics evolves on much longer time scales than the core dynam-127

ics and thus, the core provides an isothermal boundary condition for the mantle.128

The resulting heat flux at the CMB, either related to thermal boundary layers in129

a convective mantle or to a conductive heat flux in a stagnant mantle, provides130

the thermal boundary condition for core convection. Thus, we impose a uniform131

heat flux Q at the surface of the sphere which represents the CMB. The heat flux132

is equal to zero at ri. The velocity vanishes on the rigid boundaries. We133

study hydrodynamic simulations (in which the initial magnetic field is134

set to zero) and dynamo simulations (in which the initial magnetic field135

corresponds to a dipole of infinitesimal amplitude).136

137

Non-dimensional control parameters are:138

• the modified Rayleigh number139

RaQ =
αg0Q

4πρCpΩ3D4
, (6)

which has the advantage of being independent of the thermal and viscous140

diffusivities (Christensen and Aubert, 2006; Aubert et al., 2009),141

5
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• the Ekman number142

E =
ν

ΩD2
, (7)

• the Prandtl number143

Pr =
ν

κ
, (8)

• the magnetic Prandtl number144

Pm =
ν

η
, (9)

where α is the thermal expansion coefficient, go is the acceleration due145

to gravity at the outer radius, ν the kinematic viscosity, κ the thermal diffusivity146

and η the magnetic diffusivity. Using this choice of non-dimensional numbers, the147

canonical Rayleigh number Ra is given by Ra = RaQE
−3Pr2.148

149

The numerical code PARODY is used to solve the entire set of nonlinear equa-150

tions (1-5). More details about this code can be found in Aubert et al. (2008).151

The parameters of all the nonlinear simulations used in this study are contained in152

Table 1 (hydrodynamic simulations) and Table 2 (dynamo simulations):153

we vary the values of E and RaQ and set Pr to 1 and Pm to 5 in most simu-154

lations. Linear stability results are obtained using a linear version of PARODY.155

The equations (1-5) are linearized in order to get the corresponding perturbation156

equations. The basic state corresponds to a stagnant fluid in which heat is trans-157

ferred by diffusive processes. The algorithm used here is the same as in Dormy158

et al. (2004): it does not solve an eigenvalue problem but, for each value of the159

modified Rayleigh number, it integrates the equations in time until the system160

converges towards a given eigenfunction of the form F (r) exp(σt) exp i(mφ− ωt)161

for each azimuthal wavenumber m. Then, we increase the Rayleigh number162

until the growth rate of a particular mode with azimuthal wavenumber163

mc becomes positive. As for the nonlinear analysis, we set Pr = 1 and we vary164

the Ekman and modified Rayleigh numbers.165

As the results presented in this study are rather unexpected, special care has been166

devoted to testing our numerical implementation PARODY against at least an-167

other implementation (the Christensen, Wicht, Glatzmaier MAG/MAGIC code,168

Christensen et al., 2001) in a case where antisymmetric convection arises in the169

presence of an inner core, with the following parameters: E = 10−4, RaQ = 2·10−4,170

Pr = 1, Pm = 7, and an aspect ratio ri/ro = 0.35. We have checked that after171

equilibration, both codes yield the same results, with an equatorially asymmetric172

6
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0.0001 1.5 · 10−5 2.56 · 10−5 3.10 · 10−15 6.86 · 10−16 Sym

0.0001 1.7 · 10−5 3.01 · 10−5 1.13 · 10−12 1.65 · 10−13 Sym

0.0001 1.8 · 10−5 3.24 · 10−5 1.46 · 10−9 1.67 · 10−10 Sym

0.0001 2 · 10−5 3.61 · 10−5 1.45 · 10−6 2.16 · 10−7 Asym

0.0001 2.2 · 10−5 3.90 · 10−5 3.98 · 10−6 7.38 · 10−7 Asym

0.0001 2.5 · 10−5 4.40 · 10−5 6.44 · 10−6 1.23 · 10−6 Asym

0.0001 4 · 10−5 6.49 · 10−5 2.63 · 10−5 6.81 · 10−6 Asym

0.0001 4.5 · 10−5 7.11 · 10−5 3.25 · 10−5 8.48 · 10−6 Asym

0.0001 5 · 10−5 7.76 · 10−5 3.88 · 10−5 1.02 · 10−5 Asym

0.0001 6 · 10−5 9.27 · 10−5 5.15 · 10−5 1.33 · 10−5 Asym

0.0001 7 · 10−5 1.08 · 10−4 6.13 · 10−5 1.52 · 10−5 Asym

0.0003 1.8 · 10−5 6.40 · 10−7 9.28 · 10−18 9.20 · 10−18 Sym

0.0003 4.5 · 10−5 3.22 · 10−5 3.13 · 10−16 2.55 · 10−16 Sym

0.0003 7.2 · 10−5 6.99 · 10−5 9.22 · 10−12 9.80 · 10−13 Sym

A 0.0003 9 · 10−5 9.11 · 10−5 3.69 · 10−11 7.79 · 10−12 Sym

0.0003 1.08 · 10−4 1.15 · 10−4 1.41 · 10−10 1.00 · 10−11 Asym

0.0003 1.26 · 10−4 1.28 · 10−4 2.07 · 10−5 6.29 · 10−6 Asym

0.0003 1.35 · 10−4 1.38 · 10−4 2.30 · 10−5 6.33 · 10−6 Asym

0.0003 1.575·10−4 1.49 · 10−4 4.93 · 10−5 1.78 · 10−5 Asym

0.0003 1.8 · 10−4 1.66 · 10−4 7.20 · 10−5 2.81 · 10−5 Asym

0.0003 1.98 · 10−4 1.73 · 10−4 9.04 · 10−5 3.59 · 10−5 Asym

0.0003 2.25 · 10−4 1.92 · 10−4 1.14 · 10−4 4.56 · 10−5 Asym

0.0003 2.475·10−4 2.02 · 10−4 1.35 · 10−4 5.37 · 10−5 Asym

0.0003 2.7 · 10−4 2.15 · 10−4 1.58 · 10−4 6.36 · 10−5 Asym

0.0003 3.15 · 10−4 2.45 · 10−4 1.94 · 10−4 7.56 · 10−5 Asym

B 0.0003 3.6 · 10−4 2.76 · 10−4 2.34 · 10−4 9.00 · 10−5 Asym

0.001 6.5 · 10−4 3.70 · 10−4 1.88 · 10−7 7.60 · 10−8 Asym

0.001 7 · 10−4 3.58 · 10−4 5.98 · 10−5 3.68 · 10−5 Asym

0.01 1.25 · 10−2 3.40 · 10−5 0 0 Sym

0.01 1.3 · 10−2 8.48 · 10−5 0 0 Sym

0.01 1.4 · 10−2 2.25 · 10−4 0 0 Sym

0.01 1.55 · 10−2 6.00 · 10−5 2.08 · 10−4 2.02 · 10−4 Asym

0.01 1.57 · 10−2 1.29 · 10−6 2.83 · 10−4 2.83 · 10−4 Asym

0.01 1.6 · 10−2 1.47 · 10−6 3.35 · 10−4 3.35 · 10−4 Asym

0.01 1.61 · 10−2 1.60 · 10−6 3.52 · 10−4 3.52 · 10−4 Asym

0.01 1.62 · 10−2 1.75 · 10−6 3.69 · 10−4 3.69 · 10−4 Asym

0.01 1.63 · 10−2 1.92 · 10−6 3.87 · 10−4 3.87 · 10−4 Asym

0.01 1.65 · 10−2 2.32 · 10−6 4.21 · 10−4 4.21 · 10−4 Asym

0.01 1.7 · 10−2 3.30 · 10−6 5.08 · 10−4 5.08 · 10−4 Asym

0.01 1.8 · 10−2 5.93 · 10−6 6.80 · 10−4 6.80 · 10−4 Asym

0.01 1.9 · 10−2 9.30 · 10−6 8.52 · 10−4 8.52 · 10−4 Asym

Table 1: Numerical models and results for hydrodynamic simulations. See text for the definitions
of input parameters and output quantities. In all simulations we impose Pr = 1 and
Pm = 5. The first column labels A and B tag runs which are specifically referred to in the
text. The last column characterizes the resulting flow regime: ’Sym’ and ’Asym’
for simulations which are in a symmetric and asymmetric regime respectively (see
section 3.2 for definitions).
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H 3·10−5 4.5 · 10−5 1.46 · 10−4 6.07 · 10−5 8.86 · 10−6 1.94 · 10−7 2.16 · 10−7 Asym

0.0001 2 · 10−5 1.79 · 10−5 3.61 · 10−6 2.18 · 10−7 1.65 · 10−5 9.39 · 10−6 Os

0.0001 4 · 10−5 3.67 · 10−5 1.03 · 10−5 6.05 · 10−7 2.35 · 10−5 1.66 · 10−5 Os

0.0001 6 · 10−5 5.81 · 10−5 1.84 · 10−5 1.43 · 10−6 2.43 · 10−5 1.92 · 10−5 Os

0.0001 6.5 · 10−5 6.16 · 10−5 1.97 · 10−5 1.47 · 10−6 2.88 · 10−5 2.25 · 10−5 Os

0.0001 7 · 10−5 6.61 · 10−5 2.26 · 10−5 2.22 · 10−6 2.85 · 10−5 2.29 · 10−5 Os

0.0001 7.5 · 10−5 7.26 · 10−5 2.59 · 10−5 3.17 · 10−6 2.69 · 10−5 2.23 · 10−5 Os

0.0001 8 · 10−5 7.30 · 10−5 3.44 · 10−5 7.68 · 10−6 2.72 · 10−5 2.43 · 10−5 Os

G 0.0001 9 · 10−5 7.79 · 10−5 5.19 · 10−5 2.08 · 10−5 2.54 · 10−5 2.41 · 10−5 Os

0.0001 9.5 · 10−5 8.11 · 10−5 6.13 · 10−5 2.75 · 10−5 2.23 · 10−5 2.16 · 10−5 Asym

0.0001 1.5 · 10−4 1.32 · 10−4 1.27 · 10−4 5.50 · 10−5 1.37 · 10−5 1.40 · 10−5 Asym

0.0003 1.8 · 10−5 6.40 · 10−7 5.62 · 10−22 5.57 · 10−22 7.07 · 10−16 1.13 · 10−22 Sym

0.0003 4.5 · 10−5 3.26 · 10−5 1.53 · 10−13 1.26 · 10−13 3.30 · 10−10 7.48 · 10−17 Sym

0.0003 7.2 · 10−5 6.85 · 10−5 3.56 · 10−11 1.48 · 10−11 1.44 · 10−10 5.17 · 10−14 Sym

C 0.0003 9 · 10−5 7.67 · 10−5 2.33 · 10−6 1.79 · 10−7 1.59 · 10−5 3.13 · 10−6 Sym

0.0003 1.08 · 10−4 8.33 · 10−5 7.16 · 10−6 8.03 · 10−7 2.65 · 10−5 1.00 · 10−5 Os

0.0003 1.35 · 10−4 1.14 · 10−4 1.15 · 10−5 1.27 · 10−6 3.86 · 10−5 2.00 · 10−5 Os

0.0003 1.8 · 10−4 1.38 · 10−4 2.40 · 10−5 3.11 · 10−6 2.97 · 10−5 1.88 · 10−5 Os

0.0003 1.98 · 10−4 1.38 · 10−4 2.90 · 10−5 3.73 · 10−6 4.33 · 10−5 2.72 · 10−5 Os

F 0.0003 2.25 · 10−4 1.58 · 10−4 4.52 · 10−5 1.23 · 10−5 3.84 · 10−5 2.80 · 10−5 Os

0.0003 2.48 · 10−4 1.58 · 10−4 4.74 · 10−5 1.06 · 10−5 5.59 · 10−5 4.07 · 10−5 Os

0.0003 2.7 · 10−4 1.48 · 10−4 8.69 · 10−5 4.42 · 10−5 5.88 · 10−5 5.12 · 10−5 Os

0.0003 2.925·10−4 1.49 · 10−4 1.31 · 10−4 8.36 · 10−5 5.05 · 10−5 4.94 · 10−5 Asym

0.0003 3.15 · 10−4 1.53 · 10−4 1.65 · 10−4 1.13 · 10−4 4.76 · 10−5 4.89 · 10−5 Asym

D 0.0003 3.6 · 10−4 1.75 · 10−4 2.14 · 10−4 1.51 · 10−4 4.28 · 10−5 4.37 · 10−5 Asym

0.0003 4.05 · 10−4 1.92 · 10−4 2.83 · 10−4 2.05 · 10−4 4.25 · 10−5 4.43 · 10−5 Asym

0.0003 4.5 · 10−4 2.15 · 10−4 3.37 · 10−4 2.40 · 10−4 3.97 · 10−5 4.12 · 10−5 Asym

0.001 6 · 10−4 3.25 · 10−4 2.50 · 10−8 1.16 · 10−8 3.34 · 10−11 4.48 · 10−14 Sym

0.001 7 · 10−4 3.88 · 10−4 1.95 · 10−5 9.15 · 10−6 3.59 · 10−11 8.83 · 10−12 Asym

0.001 7.5 · 10−4 3.02 · 10−4 9.33 · 10−5 6.51 · 10−5 1.23 · 10−5 1.00 · 10−5 Asym

0.001 7.6 · 10−4 3.11 · 10−4 9.44 · 10−5 6.56 · 10−5 1.40 · 10−5 1.12 · 10−5 Asym

0.001 7.7 · 10−4 3.14 · 10−4 1.10 · 10−4 7.87 · 10−5 1.09 · 10−5 9.27 · 10−6 Asym

0.001 8 · 10−4 3.17 · 10−4 1.30 · 10−4 9.29 · 10−5 1.01 · 10−5 9.02 · 10−6 Asym

0.001 8.2 · 10−4 3.17 · 10−4 1.39 · 10−4 1.00 · 10−4 1.35 · 10−5 1.16 · 10−5 Asym

0.001 8.5 · 10−4 3.27 · 10−4 1.48 · 10−4 1.05 · 10−4 1.48 · 10−5 1.31 · 10−5 Asym

0.001 8.7 · 10−4 3.23 · 10−4 1.63 · 10−4 1.18 · 10−4 1.65 · 10−5 1.49 · 10−5 Asym

0.001 9 · 10−4 3.25 · 10−4 1.93 · 10−4 1.41 · 10−4 1.48 · 10−5 1.37 · 10−5 Asym

0.001 9.5 · 10−4 3.29 · 10−4 2.16 · 10−4 1.60 · 10−4 2.15 · 10−5 1.98 · 10−5 Asym

0.001 1 · 10−3 3.29 · 10−4 2.24 · 10−4 1.66 · 10−4 3.69 · 10−5 3.41 · 10−5 Asym

0.001 3 · 10−3 7.60 · 10−4 1.73 · 10−3 1.34 · 10−3 7.18 · 10−6 7.53 · 10−6 Asym

0.001 5 · 10−3 1.31 · 10−3 2.94 · 10−3 2.21 · 10−3 1.46 · 10−5 1.51 · 10−5 Asym

Table 2: Numerical models and results for dynamo simulations. See text for the definitions of
input parameters and output quantities. In all simulations we impose Pr = 1 and Pm = 5,
except in simulation H in which Pm = 1. The first column labels C to H tag runs
which are specifically referred to in the text. The last column characterizes the flow
regime: ’Sym’, ’Os’ and ’Asym’ for simulations which are in a symmetric, oscillating
and asymmetric regime respectively (see section 3.2 and 4.1 for definitions).
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temperature profile outside the cylinder tangent to the inner core.173

174

The time averaged kinetic energy density K is defined as follows:175

176

K =
1

2VS

〈∫
VS

u2dV

〉
(10)

where VS is the shell volume and the angled brackets indicate a time averaging177

operator. Using this template, we additionally define:178

• the time averaged kinetic energy density contained in the equatorially anti-179

symmetric, axisymmetric (EAA) flow component K0a,180

• the time averaged kinetic energy density contained in equatorially antisym-181

metric modes Ka,182

• the time averaged kinetic energy density contained in equatorially symmetric183

modes Ks.184

In the present study, it is understood that an ’equatorially symmetric’ vector field185

u is left unchanged by the operator Γ which describes mirror-reflection through186

the equatorial plane, i.e. Γu = u, while an ’equatorially antisymmetric’ vector187

field is such that Γu = −u.188

189

We similarly define a time averaged magnetic energy density M at the external190

boundary of the model:191

M =
1

2Scmb

〈∫
Scmb

B2dS

〉
(11)

where Scmb is the surface of the sphere (at the CMB). Using this template, we also192

define:193

• the time averaged CMB magnetic energy related to modes of dipole parity194

(odd l +m in spherical harmonics) Mdip,195

• the time averaged CMB magnetic energy related to modes of quadrupole196

parity (even l +m) Mqua.197

Another output quantity fhem is used to characterize the hemisphericity of the198

magnetic field at the CMB:199

fhem =
max[MS,MN ]

M
, (12)
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E RaQc mc

10−6 1.08 · 10−9 38
3 · 10−6 6.80 · 10−9 26

10−5 5.18 · 10−8 17
3 · 10−5 3.34 · 10−7 12
5 · 10−5 7.98 · 10−7 10

10−4 2.61 · 10−6 7
3 · 10−4 1.72 · 10−5 5

Table 3: Critical Rayleigh number RaQc and azimuthal wavenumber mc for the most linearly
unstable equatorially symmetric convection mode.

where MS and MN are the time averaged magnetic energy densities contained in200

the Southern and Northern hemispheres. The hemisphericity factor fhem is equal201

to 0.5 for a purely dipolar field and has the value 1 for a purely hemispherical field.202

203

3. Results for convection without dynamo action204

In this section we introduce the results for secular cooling-driven convection in205

a rotating sphere without dynamo action. Starting from a non-convective stable206

state at low Rayleigh number, we introduce the main hydrodynamic transitions207

found when we progressively increase the forcing.208

3.1. Linear stability results: the onset of convection209

The first hydrodynamic transition corresponds to the onset of convection and210

occurs when the modified Rayleigh number reaches a first critical value RaQc.211

We start introducing the onset of convection in our system because it gives the212

framework for the nonlinear simulations presented in the following parts.213

214

For each value of the azimuthal wavenumber m and each value of the modified215

Rayleigh number, two growth-rates can be calculated using the linear version of216

the code PARODY: one for equatorially symmetric modes and one for equatorially217

antisymmetric modes. Indeed, these two families of modes are not coupled in the218

linearized equations.219

220

We found that the first unstable modes are equatorially symmetric, non-221

axisymmetric modes, as expected from previous theoretical studies (Busse, 1970;222

Jones et al., 2000). Table 3 lists the critical Rayleigh number and azimuthal223

wavenumber for each studied value of the Ekman number. Fig.2 shows that224

RaQc/E
5/3 converges towards an asymptote which is in good agreement with the225

10
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Figure 2: Convection onset. Stars: RaQc/E
5/3 versus 1/E (logarithmic scale). The grey line

is the asymptote predicted by the theory of Jones et al. (2000) with slightly different boundary
conditions (see text).

value 10.3749 (≈ 10.4) obtained by Jones et al. (2000). It must be pointed out226

that Jones et al. (2000) used slightly different boundary conditions (fixed tem-227

perature and stress-free) at the external boundary, while we presently use a228

fixed flux condition for geophysical relevance and we consider rigid bound-229

aries. However, as the temperature gradient in the bulk of the fluid is the same in230

our and their study, we do not expect the asymptote to be shifted by a dramatic231

amount, as confirmed by our numerical results. The asymptotic behavior of the232

critical modified Rayleigh number in the limit E → 0 is thus approximated by:233

RaQc ≈ 10.4 · E5/3 (13)

In terms of critical canonical Rayleigh number Rac, this corresponds to the fol-234

lowing asymptotic behavior: Rac ≈ 10.4 ·E−4/3. The exponent value −4/3 for the235

Ekman number dependence of the critical Rayleigh number is a robust feature of236

the onset of convection in rotating spheres or shells: it is expected from analytical237

consideration (Busse, 1970; Jones et al., 2000) and has subsequently been found238

in numerical studies (Dormy et al., 2004) for other geometries and boundary con-239

ditions.240

241

As illustrated in Fig.3, the velocity structures at onset correspond to quasi-242

geostrophic Rossby waves that vary slowly in z-direction. These waves form a set243

of non-axisymmetric vortices aligned with the rotation axis as predicted by Busse244

11
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Figure 3: Velocity structures at onset for E = 10−5 and Pr = 1. (a), Meridional section of the
z-component of velocity. (b), Meridional section of the azimuthal velocity field. (c), Equatorial
section (θ = π/2) of the z-component of vorticity.

(1970). The azimuthal wavenumber of the first unstable modes mc, is expected245

to vary such that mc ∝ E−1/3 (Busse, 1970; Jones et al., 2000). The values we246

found for mc are reported in Table 3 and are in agreement with the expected trend.247

248

A second important family of convective modes is the axisymmetric family. At249

first sight it can seem of secondary importance to study the linear stability of this250

family into detail since we previously saw that the first unstable modes are non-251

axisymmetric at high rotation rates (Geiger and Busse (1981) have shown that252

axisymmetric modes can be preferred at low rotation rates). However,253

as announced in section 1 and developed in the following section 3.2, the axisym-254

metric modes acquire a crucial importance in our nonlinear simulations. We thus255

compute (Table 4) the linear threshold of instability for the axisymmetric modes256

RaQa0. Indeed, these results will be required in section 3.2 in order to determine257

if the emergence of EAA modes in nonlinear simulations is related to their linear258

instability. Within a margin of error of 20% (which corresponds to the259

misfit between the results of Roberts (1965) and Bisshopp and Niiler260

(1965)), our numerical results are compatible with both the asymptotes261

found by Roberts (1965), which yields:262

RaQa0 ≈ 52.2 · E5/3, (14)

and Bisshopp and Niiler (1965), which yields:263

RaQa0 ≈ 61.3 · E5/3, (15)
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although the thermal boundary conditions are different and a small264

inner sphere is present in our study. Unlike the non-axisymmetric modes,265

the most linearly unstable axisymmetric mode belongs to the equatorially266

antisymmetric family. Its pattern (Fig.4) corresponds to a single convection cell267

carrying heat away in the direction of the rotation axis, whereas the first un-268

stable non-axisymmetric modes convect heat in the cylindrical radial269

direction. As the axial circulation gets close to the upper and lower boundaries,270

the flow is diverted and couples with the Coriolis force to give rise to an equatori-271

ally antisymmetric, zonal circulation. As in the case of non-axisymmetric272

convection (Busse, 1970), viscous forces on short length scales of or-273

der E1/3 are required to overcome the two-dimensional constraint of the274

Taylor-Proudman theorem. Then, the thickness of the axial cell is of275

order E1/3 (Roberts, 1965) and motion in the cell is quasi-geostrophic,276

slowly varying in z-direction.277

278

Figure 4: First unstable axisymmetric convection mode at E = 3 · 10−4 and Pr = 1. (a),
Meridional section of the z-component of velocity. (b), Meridional section of the azimuthal
velocity field.

In summary, the linear stability analysis performed in the case of rotating con-279

vection driven by secular cooling confirms the theoretical results obtained with280

slightly different boundary conditions: equatorially symmetric, non axisymmetric281

vortices are the most linearly unstable modes, and the first linearly unsta-282

ble axisymmetric modes are equatorially antisymmetric. The critical canonical283

Rayleigh numbers for both families vary as E−4/3 when E → 0. Planetary core dy-284

namos are located largely above the onset of convection and nonlinear simulations285

are required to go further.286
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Figure 5: (a), Schematic representation of the two main hydrodynamic transitions found when
increasing the modified Rayleigh number: from a non-convective state to the classical symmetric
regime at RaQc (onset of convection) and then, at RaQt, from the symmetric regime to
the asymmetric regime (characterized by the emergence of an EAA mode). (b)-(c),
Snapshots of azimuthal velocity field at radius r = 0.88 (Hammer projection), hydrodynamic
simulations. (b), Simulation A. (c), Simulation B (parameters reported in Table 1).

E RaQa0 RaQt
10−4 8.37 · 10−6 1.95 · 10−5

3 · 10−4 5.00 · 10−5 1.07 · 10−4

10−3 3.34 · 10−4 6.28 · 10−4

10−2 1.41 · 10−2 1.41 · 10−2

Table 4: Critical Rayleigh numbers RaQa0 for the linear onset of axisymmetric convection (EAA
mode), and RaQt for the nonlinear emergence of the EAA mode (see section 3.2).

3.2. Nonlinear simulation results: transition towards the asymmetric regime287

When we increase the Rayleigh number slightly above onset, we found that288

non-axisymmetric vortices aligned with the rotation axis (equatorially symmetric289

structures) remain the main convective features, even though the flow becomes290

chaotic and small-scale structures appear. This result can be seen in Fig.5(b) which291

shows results obtained with simulation A (with RaQ ≈ 5RaQc, see Table 1). The292

columnar structures tend to satisfy the Taylor-Proudman theorem and the flow is293

said to be in a symmetric regime as indicated in Fig.5(a) which gives a schematic294

representation of the main hydrodynamic transitions found when increasing the295

modified Rayleigh number. Most of the previously studied nonlinear numerical296

simulations are located in this symmetric regime (see for instance Olson et al.,297

1999).298

299

By further increasing the forcing, we found that the flow undertakes an un-300
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Figure 6: Bifurcation diagram showing K0a (stars), Ka (crosses) and Ks (triangles)
versus RaQ at E = 3 · 10−4. Solution branches are identified in (a) since K0a is the
energy contained in the mode which emerges at the transition of interest. Solid
and dashed curves refer to linearly stable and unstable solutions respectively. RaQt

locates the emergence of the asymmetric solution branch. To estimate the value of
RaQt we look for RaQt and the constant a such that K0a is best scaled (in the sense
of the least squares) by a(RaQ −RaQt) on the asymmetric branch.

expected transition when the modified Rayleigh number reaches a second critical301

value RaQt (values reported in Table 4). Fig.5(a) shows a schematic rep-302

resentation of this transition and Fig.6 serves as a bifurcation diagram.303

At the onset of convection (RaQc ≈ 0.17 · 10−4), the symmetric solution304

branch (K0a << Ks) emerges. At RaQt ≈ 1.07 ·10−4, the symmetric branch305

looses stability and a new branch of solutions, which is characterized by306

a rapid increase of K0a, emerges through a supercritical pitchfork bifur-307

cation. This branch of solutions is called asymmetric branch because308
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it characterizes equatorially asymmetric solutions in which the EAA309

kinetic energy density K0a, and the equatorially symmetric kinetic en-310

ergy density Ks, become of the same order of magnitude (Fig. 6). The311

asymmetric regime is unexpected since the amplitude of equatorially312

antisymmetric modes has always been found to be much smaller than313

the amplitude of equatorially symmetric modes in previous numerical314

simulations (Olson et al., 1999; Christensen and Aubert, 2006; Sakuraba315

and Roberts, 2009). The EAA mode is the dominant equatorially an-316

tisymmetric mode since almost half of Ka is contained in this mode317

(K0a ≈ 0.44Ka). Equatorially antisymmetric, non-axisymmetric modes318

also emerge at RaQt, with an energy density equal to Ka − K0a. How-319

ever, we find that these modes do not emerge spontaneously, contrary320

to the EAA mode, but result from nonlinear interactions between the321

EAA mode and equatorially symmetric modes. The spatial structure322

of these modes is indeed strongly correlated with that of equatorially323

symmetric, non-axisymmetric modes. Thus, in the asymmetric regime,324

the dominant (and dynamically important) structures correspond to a325

superposition of columnar, equatorially symmetric modes and an EAA326

mode (Fig. 5(c)).327

328

We found that, at low Ekman numbers (E ≤ 10−3), RaQt is located above the329

linear threshold of instability of EAA modes RaQa0 (Table 4). This result means330

that the emergence of an EAA mode in our nonlinear simulations can not be ex-331

plained by linear stability analysis if E ≤ 10−3. Thus, the asymmetric branch332

emerges from the equatorially symmetric, columnar convection which has to be333

seen as the new basic state. We checked numerically that RaQt corresponds in-334

deed to the threshold of linear instability of EAA modes with respect to a purely335

equatorially symmetric basic state. The bifurcation at E = 10−2 is a very iso-336

lated case since RaQt = RaQa0 (Table 4). In this case the bifurcation can be337

described in terms of interactions between two linearly unstable modes: an equa-338

torially symmetric mode of order m = 1 and an EAA mode. Since we are looking339

for asymptotic behaviors in the limit E → 0, we will not consider the slowly340

rotating cases E ≥ 10−2 for the determination of the regime boundaries.341

342

Fig.7 gives a schematic view of the EAA mode which emerges in the asym-343

metric regime: the azimuthal velocity field is organized into two large equatorially344

antisymmetric vortices, one in each hemisphere. Contrary to the two-cell merid-345

ional circulation of the symmetric regime (Olson et al., 1999), the time-averaged346

meridional circulation induced by the EAA mode is organized in only one cell.347

The fluid goes from one pole to the other passing through the center of the sphere.348
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Figure 7: Arrows: schematic representation of the time-averaged EAA mode (azimuthal and
meridional flows) which emerges in the asymmetric regime. (a), Meridional section (arbi-
trary azimuth) of the time-averaged temperature field in asymmetric simulation B (parameters
reported in Table 1). (b), Same as (a) for the time-averaged azimuthal velocity field.

As a consequence of this equatorially antisymmetric meridional circulation,349

the temperature profile has a considerable equatorially antisymmetric component350

(Fig.7(a)).351

352

The dynamics of the asymmetric regime is strongly influenced by353

rotation since the local Rossby number (Christensen and Aubert, 2006)354

remains inferior to 0.08 in all our asymmetric simulations. We find that355

the equatorially asymmetric azimuthal velocity field results from meridional vari-356

ation of the asymmetric temperature field through a thermal wind mechanism,357

which is characterized by a balance between the Coriolis, pressure gradi-358

ent and buoyancy forces. Taking the φ-component of the curl of the momentum359

equation, and retaining only the above forces, we have:360

∂uφ
∂z

=
RaQ
2r0

∂T

∂θ
(16)

Fig.8 shows a high degree of similarity between the right-hand side and left-hand361

side terms of equation (16), thus confirming that equation (16) captures the flow362

dynamics inside the shell (except near the boundaries where the viscous term in363

equation (1) is not negligible). The term ∂T/∂θ is globally negative in the whole364

shell as a consequence of the equatorially antisymmetric component of the temper-365

ature profile shown in Fig.7(a). Then, according to equation (16), ∂uφ/∂z is also366

negative, and this is coherent with an antisymmetric azimuthal flow organized in367
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Figure 8: Comparison between (a) a snapshot of the φ-average of the left-hand side term of
equation (16), and (b) a snapshot of the φ-average of the right-hand side term of the same
equation. Results obtained using asymmetric simulation B (parameters indicated in Table 1).

two vortices as we find in our asymmetric simulations (Fig.7(b)).368

369

The time-averaged zonal velocity field is also in equilibrium with the time-370

averaged convective axial velocity field. In our nonlinear simulations, we have371

found that this equilibrium arises through Ekman pumping. In the Southern hemi-372

sphere in Fig.7, the fluid is rotating faster than the external boundary, inducing373

a meridional flow that converges towards the center of the vortex. Conversely,374

the time-averaged meridional flow diverges from the center of the vor-375

tex in the Northern hemisphere. The axial velocity vz is then related to the376

vertical vorticity ωz by vz = O(E1/2ωz). To check this hypothesis we computed377

the ratio378

rE =
max |〈〈vz〉〉φ|

E1/2 max |〈〈ωz〉〉φ|
, (17)

where 〈〉φ and 〈〉 denote the azimuthal and time averaging operators.379

Considering only the equatorially antisymmetric part of the velocity and vorticity380

fields, we find a mean value r̄E = 3.52 and a standard deviation 1.6, meaning381

that this ratio remains of order 1, as expected in the case of an Ekman pumping382

mechanism, even though our configuration is far from being the ideal case of a383

unique rotating plate for which the classical Ekman pumping formula is derived.384

385

The equations (1-2) and (5) and the boundary conditions have equatorial re-386
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flection symmetry. Consequently, if A(t) is the amplitude of the EAA mode ua,387

then Aua and −Aua are two dynamically equivalent solutions. This means that388

the solution for the EAA mode which is represented in Fig.7 is dynamically equiv-389

alent to the solution which can be obtained by reversing the arrows in Fig.7. In390

our simulations we indeed found both solutions. The system chooses one of the391

two and does not reverse towards the other. Thus, the EAA mode should emerge392

through a pitchfork bifurcation. As it would be in a canonical supercritical pitch-393

fork bifurcation, K0a is proportional to (RaQ−RaQt) in our numerical simulations394

(Fig.6(a)).395

396

Considering the possible relationship between the emergence of a strong EAA397

mode and the smallness (or absence) of the inner core, we found the same hy-398

drodynamic transition towards the asymmetric regime in a shell with aspect ratio399

ri/ro = 0.35, provided the driving mode is the same (secular cooling with zero heat400

flux at the inner core). The critical value RaQt is larger when ri/ro = 0.35 than401

when ri/ro = 0.01 (results not reported here) but the transition occurs at about402

the same static temperature difference in both cases. However, no transition to403

the EAA state has been found when a non-zero homogeneous heat flux or fixed404

temperature was imposed at the inner core boundary, suggesting that the presence405

of a thermal boundary layer with a positive incoming heat flux at the inner406

core boundary prevents the EAA mode from emerging. We presume that the407

EAA hydrodynamic transition is favored in our numerical simulations because the408

buoyancy driving allows for EAA convection carrying heat away in the direc-409

tion perpendicular to the equatorial plane.410

411

The different transitions found are represented in a (1/E,RaQ) parameter space412

(Fig. 9). The transition between the symmetric and asymmetric regimes413

occurs at RaQt, which is best scaled (in the sense of the least squares)414

by:415

RaQt ≈ 21.2 · E1.51 (18)

4. Results for convective dynamos416

We now turn to the study of the EAA mode in the presence of dynamo action.417

We first introduce the different hydrodynamic transitions found when allowing418

dynamo action and compare them with the transitions found in hydrodynamic419

simulations (section 3). Then we present the changes in magnetic field generation420

which are related to these hydrodynamic transitions.421

19



Page 20 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

10
3

10
410−6

10−5

10−4

10−3

RaQ

1/E

asymmetric

no-convection

symmetric

planetary values

regime

regime

Ra
Q

t ≈ 21.2 · E 1.51

Ra
Q

c ≈
10.4 · E 5/3

Figure 9: Phase diagram of the two main hydrodynamic transitions in the absence of dynamo
action: from a non-convective state to the symmetric regime (light grey curve corresponds to
the asymptotic behavior of RaQc at low Ekman numbers according to equation (13)) and from
the symmetric regime to the asymmetric regime (black curve). Light grey symbols: symmetric
simulations. Black symbols: asymmetric simulations.

Figure 10: (a), Schematic representation of the main hydrodynamic transitions found when in-
creasing the modified Rayleigh number and allowing dynamo action: from a non-convective state
to the classical symmetric regime at RaQc (onset of convection) and then, from the symmetric
regime to the oscillating regime at RaQt and finally from the oscillating regime to the asymmetric
regime. (b)-(c), Snapshots of azimuthal velocity field at radius r = 0.88 (Hammer projections).
(b), Simulation C. (c), Simulation D (parameters reported in Table 2).

4.1. Hydrodynamic transitions422

Fig.10(a) gives a schematic representation of the different hydrodynamic tran-423

sitions found when increasing the modified Rayleigh number and allowing dynamo424
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action. The results for the linear onset of convection at RaQc are identical to what425

we found in section 3.1 (without dynamo action) since the Lorentz force (third426

term in the right-hand side of equation (1)) is a nonlinear term. Increasing the427

modified Rayleigh number above onset we found a symmetric regime dominated428

by columnar, equatorially symmetric vortices as illustrated in Fig.10(b), similarly429

to the non-magnetic case.430

431

By further increasing the forcing, the flow undertakes successive432

changes of regime which can be identified in the bifurcation diagram433

of Fig.11(a). When RaQ reaches the value RaQt (previously computed in434

section 3.2), the symmetric solution branch (K0a << Ks) becomes un-435

stable and the instantaneous value of K0a starts oscillating in a chaotic436

manner between low values much smaller than Ks (symmetric regime),437

and larger values of order Ks (asymmetric regime). The flow is said438

to be in an oscillating regime, illustrated in Fig.12. Finally, when the439

forcing is strong enough (RaQ ≈ 3 · 10−4), the flow reaches the asym-440

metric regime: the instantaneous value of K0a remains large and does441

not reach the symmetric solution branch anymore. Similarly to the hy-442

drodynamic case, the dominant (and dynamically important) modes in443

the asymmetric regime are the columnar, equatorially symmetric modes444

and the EAA mode (Fig.10(c)).445

446

We found a similar bifurcation diagram (with a symmetric, oscillating and447

asymmetric regime) at E = 10−4. However we did not find any oscillating448

simulations at E ≥ 10−3 because the dynamo onset has not been over-449

come when RaQ reaches RaQt at such Ekman numbers. Therefore, the450

bifurcation diagrams are similar to the ones obtained in hydrodynamic451

simulations if E ≥ 10−3. Since we are looking for asymptotic behaviors in the452

limit E → 0, we will not consider cases in which E ≥ 10−3 for the deter-453

mination of the regime boundaries.454

455

The appearance of the oscillating regime when allowing dynamo action can be456

seen as a consequence of Ferraro’s law of corotation (Ferraro, 1937): the axisym-457

metric magnetic field lines tend to follow the isocontours of 〈uφ/s〉φ where s is458

the cylindrical radius. At the beginning of an oscillation towards the asymmet-459

ric regime, the EAA flow component emerges because it is linearly unstable with460

respect to the symmetric regime (because RaQ ≥ RaQt). Then, the EAA mode461

distorts the isocontours of 〈uφ/s〉φ which no longer follow the magnetic field lines.462

Consequently, an axisymmetric azimuthal magnetic field is created from stretch-463

ing of the axisymmetric poloidal magnetic field by the EAA azimuthal464
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Figure 11: Bifurcation diagram at E = 3 ·10−4 (when allowing dynamo action) showing
K0a (stars), Ka (crosses) and Ks (triangles) versus RaQ. Vertical bars in (a) show
the range of values taken by the instantaneous values of K0a. RaQt corresponds
to the emergence of the asymmetric branch introduced in the hydrodynamic study
(computed in section 3.2). Light grey, medium grey and black symbols correspond to
symmetric, oscillating and asymmetric simulations respectively (see text). Note that
K0a is not exactly equal to zero in the symmetric regime but very small compared
to the scale of the figure.

flow through an ω-effect, which increases the magnetic tension along the merid-465

ional field lines. In agreement with Lenz law, the resulting Lorentz force tends to466

oppose the motion that increases the magnetic tension, i.e. reduces the EAA flow467

component. If the Lorentz force becomes strong enough, the flow returns its sym-468
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Figure 12: Instantaneous values for K0a (black curve) and Ks (light grey curve) versus
time for oscillating simulations F ((a), RaQ close to RaQt) and G ((b), RaQ further
away from RaQt) (Table 2).

metric regime. Thus, the closer we get to RaQt in the oscillating regime, the469

smaller the growth-rate value of the EAA flow component becomes and the faster470

the Lorentz force will be able to restore the symmetric state. As a consequence,471

for Rayleigh numbers located just above RaQt, we observe rather bursts towards472

the asymmetric regime than oscillations (Fig.12(a)).473

474

The EAA mode forms one axisymmetric vortex in each hemisphere, one cy-475

clone and one anticyclone. The geometry of the time-averaged EAA mode in476

Fig.7 remains unchanged when dynamo action is present.477

478

Similarly to Fig.9, Fig.13 summarizes the regime boundaries in a (1/E,RaQ)479

parameter space when dynamo action is allowed. We emphasize here again480

that the boundary between symmetric and oscillating regimes is set by481

RaQ = RaQt, where RaQt is the forcing at which the transition from the482

symmetric to the asymmetric regime occurs in the hydrodynamic case.483

Its location is thus given by equation (18).484

485

4.2. Magnetic field structures: effects of the emergence of the EAA mode486

Figure 14 shows the qualitative effects of the transition from the symmetric487

to the asymmetric hydrodynamic regime on the dynamo-generated magnetic field.488

Fig.14(a) shows the results obtained with symmetric simulation C (Table 2): the489

magnetic field is dipole dominated similarly to previously described numerical490
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Figure 13: Phase diagram of the main hydrodynamic regimes when allowing dynamo action.
Each symbol corresponds to one numerical simulation. Light grey, medium grey and black
symbols correspond to symmetric, oscillating and asymmetric simulations respec-
tively. The light grey curve corresponds to the asymptotic behavior of RaQc given by equation
(13). The medium grey curve corresponds to the best fit (in the sense of the least squares) for
RaQt. The black dashed line corresponds to a tentative boundary regime between the oscillating
and asymmetric regime.

dynamos. In contrast, in asymmetric simulation D (Table 2), the magnetic field491

is hemispherical with high intensities in one hemisphere and weaker in the other492

(Fig.14(b)), not only at the CMB (top) but also at the surface of the planet493

(bottom). Thus, the hydrodynamic asymmetric regime can induce hemispherical494

dynamos.495

496

The reason why the radial magnetic field becomes hemispherical497

in the asymmetric hydrodynamic regime can be qualitatively captured498

looking at the corresponding DMFI visualization (Aubert et al., 2008)499

(Fig.15). The surface magnetic flux is collected in the hemisphere where500

the EAA meridional flow converges. Near the pole, the converging EAA501

meridional flow is converted into flow downwellings. The ambient ra-502

dial magnetic field is amplified by stretching within these downwellings,503

forming magnetic downwellings which are similar to the magnetic up-504

wellings described in Aubert et al. (2008). In the other hemisphere,505

magnetic flux is dispersed by the divergent EAA flow and is thus much506

weaker.507
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Figure 14: Snapshots of the radial magnetic field at the CMB (top) and at the surface of a Mars-
like planet (bottom) (Hammer projections). (a), Symmetric simulation C. (b), Asymmetric
simulation D.

Figure 15: DMFI visualization of asymmetric simulation D (Table 2). The outer boundary of
the model is color-coded with the radial magnetic field. In addition, the outer boundary is made
selectively transparent, with a transparency level that is inversely proportional to the local radial
magnetic field. Field lines are displayed in grey, their thickness is proportional to B2 (for details
see Aubert et al., 2008).
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Figure 16: (a), Hemisphericity factor fhem versus Ka/Ks. (b), Magnetic energy parity ratio
Mqua/Mdip versus Ka/Ks. Light grey, medium grey and black symbols correspond to
symmetric, oscillating and asymmetric simulations respectively. The dashed black line
locates the transition from non-hemispherical to hemispherical dynamos at fhem = 0.75. The
symbols C and D indicate the results obtained with simulations C and D respectively, which are
illustrated in Fig.14.

508

In order to quantify this result, we computed the hemisphericity factor fhem509

(Fig.16(a)). A dynamo is said to be hemispherical if fhem ≥ 0.75 which means510

that one hemisphere contains at least 75% of the CMB magnetic energy. The511

ratio Ka/Ks, which measures the equatorial symmetry breaking of the flow, is a512

control parameter of the hemisphericity factor fhem, as shown by the univariate513

behavior in Fig.16(a). In symmetric simulations the flow is dominated by equato-514

rially symmetric modes and Ka/Ks has low values. In these symmetric simulations515

the hemisphericity factor is very close to 0.5 which means that these dynamos516

are not hemispherical, as illustrated with Fig.14(a). In asymmetric and oscillating517

simulations the ratio Ka/Ks increases progressively from low values (∼ 0.2) to518

large values (∼ 2.3) due to the progressive emergence of the EAA mode. Fig.16(a)519

shows that the hemisphericity factor fhem increases almost linearly with Ka/Ks520

and the transition from non-hemispherical to hemispherical dynamos is gradual.521

The hemisphericity factor reaches 0.75 when Ka/Ks ≈ 1 (at Pm = 5). Several522

hemispherical dynamos (fhem ≥ 0.75) are obtained, including the simulation of523

Fig.14(b). The reader may have expected the use of K0a/Ks rather than524

Ka/Ks in Fig.16(a) since the equatorial symmetry breaking of the flow525

is caused by the emergence of the EAA mode in our simulations. How-526

ever, we find a less univariate behavior if we plot fhem as a function527
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of K0a/Ks rather than Ka/Ks. This result suggests that equatorially528

antisymmetric, non-axisymmetric modes play a non-negligible role in529

the transition towards hemispherical dynamos. However, these non-530

axisymmetric modes remain a consequence of the spontaneous emer-531

gence of the EAA mode.532

533

Fig.16(b) shows that the equatorial symmetry breaking of the flow Ka/Ks,534

is also a control parameter of the magnetic field parity Mqua/Mdip at fixed Pm.535

Indeed, all the simulations are aligned on the same curve (with the exception of536

one simulation which has been obtained at a different value of Pm). At fixed537

Pm, Mqua/Mdip increases when Ka/Ks increases (due the emergence of the EAA538

mode in the oscillating and asymmetric regimes). When Ka/Ks reaches ∼ 0.75,539

Mqua/Mdip saturates and remains close to 1: there is equipartition between mag-540

netic energy contained in modes of dipole parity and magnetic energy contained in541

modes of quadrupole parity. We underline that several simulations have reached542

the equipartition of magnetic energy even though they are not hemispherical (for543

instance, multipole-dominated simulations). Note that we use Ka/Ks rather544

than K0a/Ks for the same reasons as in Fig.16(a).545

5. Discussion546

5.1. Discussion of the numerical results547

At onset, convection driven by secular cooling (modeled by internal heating)548

in rapidly rotating spheres is very similar to what has been obtained for other ge-549

ometries and boundary conditions: the first unstable modes are equatorially sym-550

metric, non-axisymmetric vortices aligned with the rotation axis. By increasing551

the modified Rayleigh number above onset we found a flow regime which remains552

dominated by equatorially symmetric modes. These modes are in agreement with553

the Taylor-Proudman constraint. The flow is said to be in a symmetric regime and554

it is very similar to flows already described in previous numerical studies (Olson555

et al., 1999).556

557

By further increasing the forcing, we found a transition towards a new flow558

regime, called the asymmetric regime. We have shown that the asymmetric regime559

is characterized by the emergence of an EAA mode (at RaQ = RaQt), with an am-560

plitude which becomes of the same order of magnitude as those of equatorially561

symmetric modes. This transition is unexpected. First, because the am-562

plitude of equatorially antisymmetric modes has always been found to563

be much smaller than the amplitude of equatorially symmetric modes564

in previous studies (Olson et al., 1999; Christensen and Aubert, 2006;565

Sakuraba and Roberts, 2009). Second, because bifurcations are often566
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related to symmetry breaking. Even though the emergence of the EAA567

mode breaks the equatorial symmetry, this mode has gained axisymme-568

try with respect to the columnar basic state on which it emerges. The569

occurrence of this transition highlights the need to study secondary570

instability mechanisms, especially for planetary systems which are far571

above the onset of primary instability.572

573

The dynamics of the asymmetric regime is strongly influenced by ro-574

tation. The EAA mode comprises strong azimuthal thermal winds which induce575

two large-scale axial vortices: a cyclone in one hemisphere and an anticyclone in576

the other hemisphere. The related time-averaged meridional circulation is or-577

ganized in only one cell. The EAA mode is the nonlinear manifestation of the578

first linearly unstable axisymmetric mode (considering a static basic state) stud-579

ied by Roberts (1965) and Bisshopp and Niiler (1965). We underline that580

the EAA mode is an alternative way of carrying heat away while com-581

plying with the Taylor-Proudman constraint. As shown by equations (14)582

and (15), the critical modified Rayleigh number for axisymmetric convection is583

proportional to E5/3, as is the critical Rayleigh number for non-axisymmetric con-584

vection (equation (13)). The Rayleigh number RaQt for the nonlinear emergence of585

the EAA mode scales with the power 1.51 of the Ekman number (equation (18)),586

which is rather close to 5/3.587

588

For the EAA mode to emerge and become a dynamically meaningful mode,589

two conditions must be met: the buoyancy flux must vanish at the inner590

boundary and RaQ has to exceed RaQt. The reason why the asymmet-591

ric regime has not been previously observed stems from the fact that592

one of these two conditions was not met in earlier studies. The size of593

the inner core appears not to have effect on the transition towards the594

asymmetric regime. However, in a geophysical context, the presence of595

an inner core implies a non-zero buoyancy flux at the inner boundary.596

For that reason, the asymmetric regime is only expected in planetary597

systems that have not nucleated an inner core yet, and where convec-598

tion is thus powered only by secular cooling (or radiogenic heating).599

600

We have shown that the emergence of the EAA mode in the asymmetric hydro-601

dynamic regime breaks the equatorial symmetry which controls the hemisphericity602

of the dynamo. Indeed, if the energy contained in the EAA mode is strong enough603

(i.e. the equatorial symmetry breaking of the flow Ka/Ks is larger than ∼ 1),604

then we obtain hemispherical dynamos in which at least 75% of the total magnetic605

energy at the CMB is contained in one hemisphere. The fact that an equatorial606
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symmetry breaking of the flow can lead to hemispherical dynamos is a universal607

result related to fundamental symmetries in the governing equations, and can be608

captured using simple kinematic α2-dynamo models (Gallet and Petrelis, 2009).609

The equatorial symmetry breaking of the flow, due to the emergence of the EAA610

mode, leads to an equipartition between magnetic energy contained in modes of611

dipole parity and magnetic energy contained in modes of quadrupole parity in612

agreement with the low dimensional model proposed by Gallet and Petrelis (2009).613

614

Hemispherical dynamos have been previously found in numerical615

simulations of convection and dynamo action in rotating shells (Grote616

and Busse, 2000; Simitev and Busse, 2005; Stanley et al., 2008). Fixed617

temperature and stress-free boundary conditions have been imposed in618

Grote and Busse (2000) and in Simitev and Busse (2005). Their hemi-619

spherical dynamos do not result from the same mechanism as ours.620

Indeed, we found that the antisymmetric kinetic energy remains at low621

values in their dynamo simulations (Ka/Ks ≈ 0.01 at Pr = 1, Pm = 2,622

E = 2 · 10−4 and Ra = 6.5 · 105) and it is exactly equal to zero in the cor-623

responding hydrodynamic simulations. In Stanley et al. (2008), hemi-624

spherical dynamos result from the emergence of an EAA mode, as in our625

simulations, but this mode is forced by thermal boundary conditions in626

Stanley et al. (2008) while it spontaneously emerges in our study.627

5.2. Implications for the past martian dynamo628

The EAA mode of convection could be an attractive explanation for the asym-629

metry of Mars’ crustal magnetic field without requiring any post-dynamo mech-630

anism or any heat flux heterogeneity at the CMB. In the following we discuss631

first, whether the past martian dynamo could have been in an asymmetric hy-632

drodynamic regime and, second, whether the asymmetric regime may generate633

hemispherical dynamos at Ekman numbers close to planetary values.634

635

The past martian dynamo may have reached the asymmetric regime if RaQ was636

at least larger than RaQt when the dynamo was active. One may use the scaling637

law (18) to estimate RaQt in Mars’ core: considering plausible parameter values638

given in Table 5, we find that E is roughly within the range 5 ·10−15−8 ·10−15
639

in Mars’ core and RaQt within the range 5 · 10−21− 10−20. The past martian640

CMB heat flux depends on the mechanism of heat transfer which is considered.641

Considering a stagnant lid mantle convection the maximum heat flux is expected642

to be about 60 mW m−2 (Nimmo and Stevenson, 2000; Breuer and Spohn, 2003;643

Stevenson et al., 1983) whereas if we consider an overturn after magma ocean644

crystallization it is about 600 mW m−2 (Elkins-Tanton et al., 2005). Plate tecton-645

ics has been suggested for Mars but is not coherent with little remixing of crust646
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and mantle as indicated by geochemistry. In addition Breuer and Spohn (2003)647

have shown that it is difficult to reconcile crust production required by geological648

constraints and the presence of a core-dynamo using a model that includes plate649

tectonics. We note that, in the case of plate tectonics, the maximum heat flux650

at the CMB would be of the same order as in the case of a stagnant lid regime651

(∼ 100mW m−2, Nimmo and Stevenson (2000)). It is important to underline that652

RaQ has to be estimated using the superadiabatic heat flux (the total heat flux mi-653

nus the adiabatic heat flux). The adiabatic heat flux for Mars’ core is estimated to654

be in the range 5-19 mW m−2 (Nimmo and Stevenson, 2000). Using the parameter

Parameters Plausible values for Mars
Acceleration due to gravity at the CMB, g0 (m s−2) ∼ 3

Core radius, ro (km) 1300− 1700
Density, ρ (kg m−3) 6600− 8300

Thermal expansion coefficient, α (K−1) ∼ 10−5

Heat capacity, Cp (J kg−1K−1) 820− 860
Rotation rate (present), Ω (s−1) 7.1 · 10−5

Kinematic viscosity, ν (m2 s−1) ∼ 10−6

Table 5: Plausible parameter values for Mars’ core, after Nimmo and Stevenson
(2000) and references for the first five parameters. The last parameter value is an
estimation of ν in the terrestrial core.

655

values given in Table 5, one can estimate a plausible range of values for the max-656

imum modified Rayleigh number RaQm, in Mars’ core. Considering convection657

underneath a single plate, RaQm is within the range 2 · 10−13 − 4 · 10−13 whereas658

with a model that supposes an overturn after magma ocean crystallization659

(Elkins-Tanton et al., 2005), RaQm is within the range 3 ·10−12−4.5 ·10−12. These660

values are larger than RaQt. This suggests that Mars’ core could have been in the661

hydrodynamic asymmetric regime.662

663

In the previous section we saw that the CMB magnetic field is hemispherical664

in our simulations if the equatorial symmetry breaking of the flow Ka/Ks is larger665

than 1. The equatorial symmetry breaking which may have been due to the EAA666

flow component of the asymmetric regime can be roughly estimated for the past667

martian dynamo. Considering fixed heat flux boundary conditions, Aubert et al.668

(2009) have obtained a scaling law which gives the non-dimensional mean kinetic669

energy K, as a function of the dimensionless convective power p. In the particular670

case of secular cooling p = 3/5RaQ and their scaling law becomes: K ≈ 0.56Ra0.84
Q .671

Since the EAA mode results from a thermal wind mechanism, we ex-672

pect the kinetic energy density related to the zonal EAA flow to be673
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proportional to RaQ at forcings far above RaQt (Aurnou et al., 2003;674

Aubert, 2005). Supposing that the amplitude of the meridional circu-675

lation is, at most, of the same order of magnitude as the amplitude of676

the zonal circulation (as it is in the first linearly unstable axisymmetric677

mode analytically computed by Roberts (1965) and in our nonlinear678

numerical simulations) then, K0a ∝ RaQ. Considering this scaling law679

(roughly satisfied in our numerical simulations) and the plausible values680

listed above for RaQm, we estimate that the ratio K0a/K induced by the asym-681

metric regime would not have been larger than 0.05 in Mars’ core. This result682

means that the EAA mode was of much weaker amplitude than the equatorially683

symmetric, non-axisymmetric modes and it suggests that the equatorial symmetry684

breaking of the flow due to the EAA mode was not large enough to induce a hemi-685

spherical dynamo in Mars’ core. However such a conclusion may be hasty. First of686

all, we have noticed that the spontaneous emergence of the EAA mode687

gives birth to equatorially antisymmetric, non-axisymmetric modes as688

a consequence of nonlinear interactions between the EAA mode and689

the symmetric columnar structures. These modes might saturate with690

a different scaling law from the EAA mode and become of much higher691

amplitude than the EAA mode at planetary parameters. In such a case,692

the equatorial symmetry breaking might have reached higher values in693

Mars’ core. Second, the transition between non-hemispherical and hemispher-694

ical dynamos occurs at Ka/Ks ≈ 1 in our simulations when Pm = 5. However,695

there is no reason to suppose that the transition would occur at the same Ka/Ks696

value if Pm 6= 5. Indeed, the simulation at Pm = 1 in Fig.16(b) is the only one697

located above the general trend, which suggests that Pm may have a considerable698

impact on the quantitative effects of the equatorial symmetry breaking of the flow699

on magnetic field. Recalling that Pm is expected to be of the order of 10−6 in700

Mars’ core, the transition towards hemispherical dynamos may occur at much701

lower Ka/Ks-values in planetary cores. The results obtained in Gallet and Pe-702

trelis (2009) suggest that this last point is not completely speculative: they show703

that even very weak equatorial symmetry breaking of the flow may lead to hemi-704

spherical dynamos. Thus, the Pm-dependence of fhem could be studied in order705

to determine if the asymmetric regime is able to explain the asymmetry of Mars’706

crustal magnetic field.707

708

A heterogeneous CMB heat flux is plausible for the past martian dynamo (Stan-709

ley et al., 2008) and would make the emergence of hemispherical dynamos710

easier. Indeed, a strong EAA heat flux heterogeneity would directly set the711

amplitude of the EAA temperature contribution to ∂T/∂θ and thus the am-712

plitude of the EAA mode according to equation (16) (which is probably what713

31



Page 32 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

fixes the amplitude of the EAA mode in the simulations of Stanley et al.714

(2008)). Thus, larger Ka/Ks-values could have been reached in Mars’ core due715

to heterogeneous boundary conditions.716
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