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Abstract

Let X be a compact connected Abelian group. It is well-known

that then there exist topological automorphisms αj , βj of X and inde-

pendent random variables ξ1 and ξ2 with values in X and distributions

µ1, µ2 such that the linear forms L1 = α1ξ1+α2ξ2 and L2 = β1ξ1+β2ξ2
are independent, but µ1 and µ2 are not represented as convolutions of

Gaussian and idempotent distributions. To put this in other words in

this case even a weak analogue of the Skitovich-Darmois theorem does

not hold. We prove that there exists a compact connected Abelian

group such that if we consider three linear forms of three indepen-

dent random variables taking values in X and the linear forms are

independent, then at least one of the distributions is idempotent.

1 Introduction

The classical Skitovich-Darmois theorem states ([7],[1]): let ξi, i = 1, 2, . . . , n,
n ≥ 2, be independent random variables, and αi, βi be nonzero constants.
Suppose that the linear forms L1 = α1ξ1+· · ·+αnξn and L2 = β1ξ1+· · ·+βnξn
are independent. Then all random variables ξi are Gaussian.

This theorem was generalized to various classes of locally compact Abelian
groups (see for example [2], where one can find references). In these re-
searches random variables take values in a locally compact Abelian group X,
and coefficients of the linear forms are topological automorphisms of X.

In particular, Feldman and Graczyk showed ([3]), that there not ex-
ists even a weak analogue of the Skitovich-Darmois theorem for compact
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connected Abelian groups. They proved the following: let X be an ar-
bitrary compact connected Abelian group. Then there exist topological
automorphisms αi, βi, i = 1, 2, of X and independent random variables
ξi, i = 1, 2, with values in X, such that the linear forms L1 = α1ξ1 + α2ξ2
and L2 = β1ξ1 + β2ξ2 are independent. Whereas distributions of ξi are not
convolutions of the Gaussian and idempotent distributions.

We show in this work that if we consider three linear forms of three
random variables, then there exist compact connected Abelian groups, for
which the weak analogue of the Skitovich-Darmois theorem holds. Namely,
we will construct examples of compact connected Abelian groups, for which
the independence of the three linear forms of independent random variables
implies, that at least one random variable has idempotent distribution.

2 Definitions and designations

Let X be a second countable locally compact Abelian group. Let Λ be a
set. If X = Xλ for all λ ∈ Λ, then the direct product of the groups Xλ

we denote by Xn, where n is a cardinal number of the set Λ. Denote by
ℵ0 the cardinal number of a countable set. Denote by Aut(X) the group of
the topological automorphisms of X. Let k be an integer. Denote by fk the
mapping fk : X → X defined by the equality fkx = kx. Put X(k) = fk(X).

Let Y = X∗ be the character group of X. The value of a character y ∈ Y
at x ∈ X denote by (x, y). Let B a nonempty subset of X. Put

A(Y,B) = {y ∈ Y : (x, y) = 1, x ∈ B}.

The set A(Y,B) is called the annihilator of B in Y . The annihilator A(Y,B)
ia a closed subgroup in Y . Let α be a topological endomorphism of X. For
each α ∈ Aut(X) define the mapping α̃ : Y → Y by the equality (αx, y) =
(x, α̃y) for all x ∈ X, y ∈ Y . The mapping α̃ is a topological endomorphism
of Y . It is called an adjoint of α. The identity automorphism of a group
denote by I.

In the paper we will use standard facts of Abstract harmonic analysis
(see [6]). Let µ be a distribution on X. Put x ∈ X. Put µ̄(M) = µ(−M),
where M is a Borel subset of X. The characteristic function of µ denote by
equation

µ̂(y) =

∫

X

(x, y)dµ(y), y ∈ Y.

2



Put Fµ = {y ∈ Y : µ̂(y) = 1}. Then Fµ is a subgroup of Y , function µ̂(y) is
Fµ - invariant, i.e. µ̂(y + h) = µ̂(y), y ∈ Y, h ∈ Fµ.

Denote by Ex the degenerate distribution, concentrated in x. Let K be a
compact subgroup of X. Denote by mK the Haar distribution on K. Denote
by I(X) the set of shifts of such distributions, i.e. the distributions of the
form mK∗Ex, where K is a compact subgroup of X, x ∈ X. The distributions
of the class I(X) are called idempotent. The characteristic function of mK

has the form:

m̂K(y) =

{

1, y ∈ A(Y,K),

0, y 6∈ A(Y,K).
(1)

A distribution µ on the group X is called Gaussian if its characteristic
function can be represented in the form

µ̂(y) = (x, y) exp{−ϕ(y)}, y ∈ Y,

where ϕ(y) is a continuous nonnegative function satisfying equation

ϕ(u+ v) + ϕ(u− v) = 2(ϕ(u) + ϕ(v)), u, v ∈ Y.

Denote by Γ(X) the set of Gaussian distributions on X.

3 Lemmas

In order to prove the main result we need some lemmas.

Lemma 3.1 ([5]). Let X be a second countable locally compact Abelian
group, ξi, i = 1, 2, . . . , n, be independent random variables with values in X,
and with distributions µi. Consider the linear forms Lj =

∑n

i=1 αijξi, where
αij ∈ Aut(X). The linear forms Lj, j = 1, 2, . . . , n, are independent if and
only if the following equation holds

n
∏

i=1

µ̂i(
n

∑

j=1

α̃ijuj) =
n
∏

i=1

n
∏

j=1

µ̂i(α̃ijuj), (2)

where uj ∈ Y, α̃ij ∈ Aut(Y ).

The following lemma states that there exists the analogue of the Skitovich-
Darmois theorem for finite Abelian groups, i.e. the independence of n linear
forms implies, that all random variables have idempotent distributions.
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Lemma 3.2 ([5]). Let X be a finite Abelian group. Let ξi, i = 1, 2, . . . , n,
be independent random variables with values in X, and with distributions
µi. Consider the linear forms Lj =

∑n

i=1 αijξi, where αij ∈ Aut(X), i, j =
1, 2, . . . , n. The independence of the linear forms Lj implies that µi = Exi

∗
mK, where K is a subgroup of X, xi ∈ X, i = 1, 2, . . . , n.

From lemmas 3.1 and 3.2 we obtain

Corollary 3.3 . Let Y be a finite Abelian group. Let µ̂i(y), i = 1, 2, . . . , n,
n ≥ 2, be characteristic functions on Y , satisfying equation (2), where α̃ij ∈
Aut(Y ), α̃1j = α̃i1 = I, i, j = 1, 2, . . . , n. Then µ̂i(y), i = 1, 2, . . . , n, are the
characteristic functions of the degenerate distributions.

Below we will need some new notions. Denote by Z the infinite cyclic
group, by R the additive group of real numbers, by Z(m) the group of residue
modulo m, by T the circle group, by Q the group of rational numbers, by ∆a

the group of a-addic numbers.
Let a = (a0, a1, . . . , an, . . .) be a fixed but arbitrary infinite sequence

of natural numbers, where all ai > 1. Consider the group R × ∆a. Let
B be a subgroup of R × ∆a of the form B = {(n, nu)}∞n=−∞

, where
u = (1, 0, . . . , 0, . . .). The factor-group Σa = (R × ∆a)/B is called an a-
addic solenoid. The group Σa is a compact connected Abelian group with
dimension 1. The character group of Σa is some subgroup of Q.

The following lemma states that there exists the weak analogue of the
Skitovich-Darmois theorem for the circle group. We assume that the charac-
teristic functions of the random variables do not vanish.

Lemma 3.4 [4]. Assume that X = T, αij ∈ Aut(X), i, j = 1, 2, 3. Let
ξi, i = 1, 2, 3, be independent random variables with values in X and with
distributions µi, such that their characteristic functions do not vanish. Sup-
pose that Lj =

∑3
i=1 αijξi = 1, 2, 3 are independent. Then µi are degenerate

distributions.

From lemmas 3.1 and 3.4 we obtain

Corollary 3.5 . Assume that Y = Z. Let µ̂i(y), i = 1, 2, 3, n ≥ 2, be
nonnegative characteristic functions on Y satisfying equation

µ̂1(u1 + u2 + u3)µ̂2(u1 − u2 − u3)µ̂3(u1 + u2 − u3) =
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= µ̂1(u1)µ̂1(u2)µ̂1(u3)µ̂2(u1)µ̂2(−u2)µ̂2(−u3)µ̂3(u1)µ̂3(u2)µ̂3(−u3), ui ∈ Y, i = 1, 2, 3.
(3)

Then µ̂i(y), i = 1, 2, 3, are characteristic functions of the degenerate distri-
butions.

Lemma 3.6 [2]. Let X be a compact Abelian group. Suppose that there
exists an automorphism δ ∈ Aut(X) and an element ỹ ∈ Y , such that the
following conditions are satisfied:

i)Ker(I − δ̃) = {0};
ii)(I − δ̃)Y ∩ {0;±ỹ,±2ỹ} = {0};
iii) δ̃ỹ 6= −ỹ.
Then for any n ≥ 2 there exist identically distributed random variables

ξi, i = 1, 2, . . . , n, with values in X and with distribution µ 6∈ Γ(X) ∗ I(X),
such that the linear forms Lj = ξ1 +

∑n

i=2 δijξi, j = 1, 2, . . . , n, where δij =
I, i 6= j, δii = δ, are independent.

Note that compact connected Abelian groups satisfying the relation fp ∈
Aut(X) for any p are topologically isomorphic to a group of the form:

(Σa)
n, a = (2, 3, 4, . . .), n ≤ ℵ0. (4)

The following lemma for n = 2 was proved in the [3].

Lemma 3.7 . Let X be a compact Abelian group, such that f2 ∈ Aut(X).
Then there exist independent random variables ξi, i = 1, 2, . . . , n, with distri-
butions µi 6∈ I(X) ∗ Γ(X), and automorphisms αij ∈ Aut(X), such that the
linear forms Lj =

∑n

i=1 αijξi, j = 1, 2, . . . , n, are independent.

Proof. Two cases are possible: inclusion fp ∈ Aut(X) holds for any prime
number p, and there is some prime number p such that fp 6∈ Aut(X)

1. Consider the first case. By the note made above the group X is
topologically isomorphic to the group of form (4). It is obvious that it suffices
to prove the theorem for a group of the form X = Σa, a = (2, 3, 4, . . .). Then
group Y is topologically isomorphic to the group Q. Let p and q be different
prime numbers. Let H be a subgroup of Y of the form H = {m

qk
}m,k∈Z. Put

G = H∗, K = A(G,H(p)). Note that since numbers p and q are relatively
prime, then H 6= H(p). Let λ be an arbitrary not-idempotent distribution on
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G with support K. It is easy to see that the characteristic function λ̂ is of
the form

λ̂(y) =

{

1, y ∈ H(p),

c, y 6∈ H(p),
(5)

where −1 < c < 1.
Consider a function on Y

g(y) =

{

λ̂(y), y ∈ H,

0, y 6∈ H.
(6)

From the theorem 2.12 it follows that g(y) is a positive-defined function. The
Bohner theorem implies that there exist a distribution µ ∈ M1(X) such that
µ̂(u) = g(y). It is obvious that µ 6∈ I(X) ∗D(X).

From (5) it follows that

g(y + pt) = g(y), y, t ∈ H. (7)

Let ξi be independent random variables with distribution µ.
Put s = p2 + q. From the conditions of the theorem it follows that

s ∈ Aut(X). Let us show that the linear forms

L1 = ξ1 + pξ2 + pξ3 + ...+ pξn

L2 = pξ1 + sξ2 + p2ξ3...+ p2ξn

L3 = pξ1 + p2ξ2 + sξ3...+ p2ξn

.................................

Ln = pξ1 + p2ξ2 + p2ξ3 + ...+ sξn

are independent. By the lemma 3.1 it is enough to show that the following
equation holds:

µ̂(u1+pu2+pu3+· · ·+pun)µ̂(pu1+su2+p2u3+· · ·+p2un) · · · µ̂(pu1+p2u2+· · ·+sun) =

= µ̂(u1)µ̂(pu2)µ̂(pu3) · · · . (8)

Using (7) it is easy to show that if ui ∈ H, then equation (8) becomes a
equality. So it is enough to consider the case when ui 6∈ H for some i. It is
easy to see that in this case the right-hand side of equation (8) vanishes.

6



Let us show that the left-hand side of equation (8) vanishes too. Assume
the converse, i.e. that the left-hand side of equation (8) does not vanish.
Then the following system of equations holds:



















u1 + pu2 + pu3...+ pun = h1,

pu1 + su2 + p2u3...+ p2un = h2,

..............

pu1 + p2u2 + p2u3...+ sun = hn,

(9)

where hi ∈ H.
Add the first equation of the system (9) multiplied by (−p) to the each

equation of the system (9) starting from the second. We obtain that qui =
hi − h1, i = 2, 3, . . . , n. Thus ui ∈ H, i = 2, 3, . . . , n. From this and from the
first equation of the system (9) we have that u1 ∈ H. Finally we obtain that
ui ∈ H, i = 1, 2, . . . , n. This contradicts the assumption.

2. Assume that for some prime p the following inclusion holds

fp 6∈ Aut(X) (10)

Suppose that p is the smallest from the prime numbers satisfying condi-
tion (10). Since X is a connected group then X(n) = X for all natural n.
Hence if fp 6∈ Aut(X), then Kerfp 6= {0}.

From the condition of the theorem it follows that p ≥ 3. Put a =
1 − p. Since p is a smallest natural number satisfying condition (10),
then f−a ∈ Aut(X). Hence fa ∈ Aut(X). By the well-known theorem
Kerfp = A(X, Y (p)). It implies that Y (p) 6= Y . Put ỹ ∈ Y (p) and verify
that the automorphism δ = fa and the element ỹ satisfy to conditions of
lemma 3.6. We have f̃a = fa and I − f̃a = f̃p. Since Y is torsion-free then
Ker(I − f̃a) = {0}, i.e. condition (i) holds. Thus (I − f̃a)Y = Y (p). Since
p ≥ 3, then numbers 2 and p are relatively prime. Hence there are integers
m and n such that 2m + pn = 1. Thus y = 2my + pny. So if ỹ 6∈ Y (p),
then 2ỹ 6∈ Y (p) too. It implies that condition (ii) holds. Since the group Y
is torsion-free, then it is obvious that condition (iii) holds. We use 3.6 and
obtain the needed result.�

4 Main theorem

The proof of the main theorem is bulky. So it is divided into two parts. In
the first part we use corollaries 3.3 and 3.5, in the second part we use lemma
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3.7.

Theorem 4.1 . Assume that X = Σa. Then there are two cases:
1) For any prime number p the relation fp 6∈ Aut(X) holds. Let

ξi, i = 1, 2, 3, be independent random variables with values in X and with
distributions µi. Then the independence of the linear forms Lj =

∑3
i=1 αijξi,

αij ∈ Aut(X), i, j = 1, 2, 3, implies that at least one distribution µi ∈ I(X).
2) There exists a prime number p such that fp ∈ Aut(X). Then there

are independent random variables ξi, i = 1, 2, 3, with values in X and with
distributions µi 6∈ Γ(X) ∗ I(X), and automorphisms αij ∈ Aut(X), such that
the linear forms Lj =

∑3
i=1 αijξi, j = 1, 2, 3, are independent.

Proof.

1. Suppose that fp 6∈ Aut(X) for any p. It means that Aut(X) = {I,−I}.
It is easy to show that the general problem can be reduced to the case when

L1 = ξ1 + ξ2 + ξ3,

L2 = ξ1 − ξ2 + ξ3, (11)

L3 = ξ1 − ξ2 − ξ3.

From lemma 3.1 the independence of the linear forms (11) implies, that
equation (3), where Y is a subgroup of Q, holds.

Put Ni = {y ∈ Y : µ̂i(y) 6= 0}, N = ∩3
i=1Ni. From (3) we infer, that N is

a subgroup in Y . Moreover, from (3) it is easy to see, that N has a property:
in 2y ∈ N , then y ∈ N . There are two cases: N 6= {0} and N = {0}.

Also note that the following relation holds: Y = Y (2) ∪ (ỹ + Y (2)), where
ỹ 6∈ Y (2).

A. Assume that N 6= {0}. Let us prove an useful equation. Suppose
that t1 and t2 belong to a same coset of the factor-group Y/Y (2). Then the
following equation holds:

|µ̂i1(t1)||µ̂i2(t2)||µ̂i3(t2)| = |µ̂i1(t2)||µ̂i2(t1)||µ̂i3(t1)| (12)

where all ij are pairwise different. Indeed, there exist û1 and û2, such that
û1 + û2 = t1, û1 − û2 = t2. Putting u1 = û1, u2 = û2, u3 = 0 in (3), u1 =
û1, u2 = −û2, u3 = 0 in (3), and equating the results, we obtain:

|µ̂1(t1)||µ̂2(t2)||µ̂3(t1)| = |µ̂1(t2)||µ̂2(t1)||µ̂3(t2)|,
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from what it follows equation (12).
Put νi = µi ∗ µ̄i, i = 1, 2, . . . , n. Then ν̂i(y) = |µ̂i(y)|

2, y ∈ Y , functions
ν̂i(y) are nonnegative and satisfy equation (2). It is suffice to show that
ν̂i(y) are characteristic functions of the idempotent distributions. From this
we will obtain that µ̂i(y) also are characteristic functions of the idempotent
distributions.

First show that for any y ∈ N the equality ν̂i(y) = 1, i = 1, 2, 3, holds.
Put y0 ∈ N . Consider a subgroup H of Y generated by y0. Note that
H ∼= Z. Consider the restriction of equation (3) to the subgroup H. From
corollary 3.5 we obtain, that νi = Exi

, xi ∈ X, i = 1, 2, 3. It means that
ν̂i(y) = 1, i = 1, 2, 3, y ∈ H. Since H = 〈y0〉 and y0 was arbitrarily chosen
from N , then ν̂i(y) = 1, i = 1, 2, 3, y ∈ N .

Now we will show that Ni = N . Assume that Ni, i = 1, 2, 3, do not
coincide. Then there are y1 ∈ N1, y1 6∈ Nj, where j is equal to either 2 or
3. Put t1 = y1, t2 = y2, where y2 ∈ N and y1,y2 belong to the same coset of
the factor-group Y/Y (2), in (12). We can make such choice. Indeed, on the
one hand N ∩ Y (2) 6= {0} because N is a subgroup. From the other hand
N ∩ (ỹ + Y (2)) 6= {0}. It follows from the property of the subgroup N : if
2y ∈ N , then y ∈ N . We infer that the left-hand side of equation (3) is equal
to nonnegative number, and the right-hand side of equation (3) is equal to
zero. This is a contradiction. So we have that Ni = N, i = 1, 2, 3.

Taking in the attention that the characteristic functions ν̂i(y) are N -
invariant, consider the equation induced by the equation (3) on the factor-
group Y/N . Put fi([y]) = ν̂i([y]). Since Y/N is a finite Abelian group
then from corollary 3.3 we infer that fi([y]) are characteristic functions of
some idempotent distributions. Returning to the original equation from the
induced equation, we obtain needed result.

B. Consider the case N = {0}.
Put first u2 = 0, u3 = u1 = y, after u3 = 0, u1 = u2 = y, and finally

u1 = 0, u2 = u3 = y in (3), we infer:

µ̂1(2y) = µ̂2
1(y)|µ̂2(y)|

2|µ̂3(y)|
2, y ∈ Y. (13)

µ̂2(2y) = |µ̂1(y)|
2µ̂2

2(y)|µ̂3(y)|
2, y ∈ Y. (14)

µ̂3(2y) = |µ̂1(y)|
2|µ̂2(y)|

2µ̂2
3(y), y ∈ Y. (15)

Show that
µ̂i(2y) = 0, y ∈ Y, y 6= 0, i = 1, 2, 3. (16)
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Indeed, assume the converse, i.e. there are y0 ∈ Y, y0 6= 0 and i0, such that
µ̂i0(2y0) 6= 0. Then from equalities (13)-(15) it follows that µ̂i(y0) 6= 0, i =
1, 2, 3. Hence N 6= {0}, that contradict the assumption.

Show that at least one distribution µi is idempotent. Assume the contro-
versial. From representation(1) it follows that there exist y1 6= 0, y2 6= 0, y3 6=
0, such that

µ̂1(y1)µ̂2(y2)µ̂3(y3) 6= 0. (17)

From equality (16) it follows that yi ∈ ỹ + Y (2).
Solve the system of equations











u1 + u2 + u3 = y1,

u1 − u2 − u3 = y2,

u1 + u2 − u3 = y3.

(18)

For a element y0 ∈ Y (2) denote by y0
2

such element of Y , that 2y0
2
= y. Note,

that for any elements h1, h2 ∈ ỹ+ Y (2) the following inclusion h1 + h2 ∈ Y (2)

holds. From this and from yi ∈ ỹ + Y (2), i = 1, 2, 3, we infer that there exist
a solutions of the system (18) and they has a form











u1 =
y1+y2

2
,

u2 =
y3−y2

2
,

u3 =
y1−y3

2

(19)

Put the solutions of (19) in equation (3) and taking into the account (17) we
infer that the right-hand side of (3) is not equal to 0, whereas in particular
it follows that

µ̂1(
y1 + y2

2
)µ̂2(

y3 − y2
2

)µ̂3(
y1 − y3

2
) 6= 0. (20)

Reasoning the same way, as from (17) we obtained (20), form (20) we will
obtain that

µ̂1(
y1 + y3

2
)µ̂2(

y1 + y2 − 2y3
2

)µ̂3(
y2 + y3

2
) 6= 0. (21)

It easy to verify that one of the numbers y1+y3
2

,y1−y3
2

,y3−y2
2

,y3+y2
2

belongs to
Y (2) and is not equal to 0. Denote it by 2y0. Then las two relationships
imply that µi0(2y0) 6= 0 for some i0, what contradicts to (16).
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2. Now consider the case fp ∈ Aut(X) for some prime p. If f2 ∈ Aut(X),
then the statement follows from the lemma 3.7. Assume that f2 6∈ Aut(X).
Consider the function ρ(x) on X defined by the equation

ρ(x) = 1 + Re(x, y0).

Let µ be a distribution on X with the density ρ(x) with respect to mX . It is
obvious that µ 6∈ Γ(X)∗I(X). The characteristic function of the distribution
µ has the form:

µ̂(y) =











1, y = 0,
1
2
, y = ±y0,

0, y 6∈ {0, y0,−y0}.

(22)

Let ξi, i = 1, 2, . . . , n, be independent random variables with the distribu-
tion µ. Consider the linear forms L1 = ξ1 + ξ2 + ξ3, L2 = ξ1 + pξ2 + ξ3, L3 =
ξ1+ξ2+pξ3. Let us show that Lj, j = 1, 2, . . . , n, are independent. By lemma
3.1 the linear forms Lj are independent if and only if the following equation
holds:

µ̂(u+ v + t)µ̂(u+ pv + t)µ̂(u+ v + pt) = µ̂3(u)µ̂2(v)µ̂2(t)µ̂(pv)µ̂(pt). (23)

We show that equation (23) holds. It is obvious, that it suffices to consider
the case, when at least two of three elements u, v, t are not equal to 0. It is
easy to see that in this case the right-hand side of equation (23) is equal to
0. Let us show that the left-hand side of equation (23) vanishes too.

Suppose that there are some elements u, v, t such that the left-hand side
of equation (23) does not vanish. Then there exist some hi ∈ {0, y0,−y0}, i =
1, 2, 3, such that u, v, t satisfy the system of equations











u+ v + t = h1,

u+ pv + t = h2,

u+ v + pt = h3.

(24)

It is easy to obtain from (24) that

(p− 1)v, (p− 1)t ∈ {0,±y0,±2y0}. (25)

Relationship (25) can not holds because of (p − 1) = 4k, but y0 6∈ Y (2).
From this it follows that the left-hand side of equation (23) is equal to 0.
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The second case can be considered in the same way. But we have to
consider the linear forms L1 = ξ1+ξ2+ξ3, L2 = ξ1−pξ2+ξ3, L3 = ξ1+ξ2−pξ3.

The theorem is completely proved.
�
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