On the Skitovich-Darmois theorem for a-addic solenoids

Abstract : Let $X$ be a compact connected Abelian group. It is well-known that then there exist topological automorphisms $\alpha_j, \beta_j $ of $X$ and independent random variables $\xi_1$ and $\xi_2$ with values in $X$ and distributions $\mu_1, \mu_2$ such that the linear forms $L_1 = \alpha_1\xi_1 + \alpha_2\xi_2$ and $L_2 = \beta_1\xi_1 + \beta_2\xi_2$ are independent, but $\mu_1$ and $\mu_2$ are not represented as convolutions of Gaussian and idempotent distributions. To put this in other words in this case even a weak analogue of the Skitovich-Darmois theorem does not hold. We prove that there exists a compact connected Abelian group such that if we consider three linear forms of three independent random variables taking values in $X$ and the linear forms are independent, then at least one of the distributions is idempotent.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00735592
Contributeur : Ivan Mazur <>
Soumis le : mercredi 3 octobre 2012 - 05:56:37
Dernière modification le : lundi 5 février 2018 - 15:00:03
Document(s) archivé(s) le : vendredi 4 janvier 2013 - 03:55:38

Fichier

Mazur_Sol.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00735592, version 1

Collections

Citation

Ivan Mazur. On the Skitovich-Darmois theorem for a-addic solenoids. 2012. 〈hal-00735592〉

Partager

Métriques

Consultations de la notice

150

Téléchargements de fichiers

56