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Non-Stationary Kriging For Design Optimization

D.J.J. Toal,a∗ A.J. Keanea
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Traditional surrogate modeling techniques, such as kriging, have been employed
quite effectively within design optimizations. However, such models can fail to
accurately reproduce non-stationary responses. The following paper explores
the application of non-stationary kriging to design optimization and attempts
to determine its applicability with regard to the optimization of both stationary
and non-stationary objective functions. A series of analytical test problems and
an engineering design problem are used to compare the performance of non-
stationary and adaptive partial non-stationary kriging to traditional stationary
kriging.

Keywords: non-stationary kriging; surrogate modeling; optimization;

1. Introduction

The application of surrogate modeling, or metamodeling, techniques within design op-
timization has grown in popularity in recent years. A surrogate model constructed of
an objective function using a relatively small number of initial sample points can be
exhaustively searched in place of the true objective function. Promising designs can then
be evaluated using the true objective function, the surrogate updated and then searched
again. The construction and application of surrogate models is particularly advanta-
geous when the objective function of interest is expensive to evaluate thereby making an
exhaustive search, which directly employs the true objective function, unfeasible.
Kriging, first developed by Krige (1951) and popularized by Sacks et al. (1989) for the

construction of surrogate models of deterministic computational experiments, is a popular
surrogate modeling technique due to its ability to represent objective functions accurately
whilst providing an error estimate of the predictor. While kriging has proved effective in
the optimization of a number of engineering design problems (Jones et al. (1998), Sakata
et al. (2003), D’Angelo and Minisci (2005), Hoyle et al. (2006), Forrester et al. (2006)),
traditional kriging by formulation is stationary in nature and can therefore have difficulty
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accurately representing non-stationary responses. This inadequacy may therefore have
a detrimental effect on the performance of an optimization when the objective function
is non-stationary in nature. Non-stationarity in this case refers to significant changes
in the “smoothness” (Xiong et al. (2007)) of the function throughout the design space
which can only really be captured accurately if the covariance function is permitted to
vary over the design space. A simple example of such a function is that used by Xiong
et al. and is illustrated in Figures 1(b) and 2. Here the function’s “smoothness” can be
observed to vary significantly between x ∈ [0, 0.3] and x ∈ [0.3, 1.0].
Within the literature there are a number of different strategies for the representation

of non-stationary data: the direct formulation of non-stationary covariance functions, the
“moving window approach”, the “divide and conquer” approach and non-linear mapping.
The direct formulation of specific non-stationary covariance functions has been im-

plemented by a number of authors in the creation of non-stationary surrogate models
(Gibbs (1997), Paciorek and Schervish (2004), Pintore and Holmes (2004)). Paciorek and
Schervish, for example, introduced a non-stationary version of the Matérn stationary co-
variance. Pintore and Holmes decomposed a stationary covariance function using Fourier
and Karhunen-Loève expansions to generate a spectrum which evolved over the design
space thereby resulting in a non-stationary model. However, as is usually the case with
such direct formulations they are quite complex and are normally only applied to sample
data with relatively few dimensions.
Moving window approaches approximate non-stationary functions by adopting a sta-

tionary model which moves over the input space. Rather than model the whole non-
stationary function it is assumed that the region of interest within the window is station-
ary and can be modelled as such. Haas (1990) employed both this approach and various
alternative formulations of kriging within a moving window. However, determining the
size of the window is not a trivial operation and additional costs may be introduced when
determining the hyperparameters as the window moves through the space. If employed
within a design optimization framework this may substantially increase the cost of any
exhaustive search of the surrogate. Typically design optimization involves the creation
of a surrogate using a relatively sparse data set, the wisdom of creating a local surrogate
using an even smaller subset of the data could therefore be questioned.
The divide and conquer approach, otherwise know as a mixture of experts, is similar

to the moving window approach in that the non-stationary function is recreated by a
local stationary model. Whereas a moving window uses points on either side of the
region of interest, the divide and conquer approach splits the design space into a series
of fixed subsets within which the response is assumed stationary. The non-stationary
function is therefore represented by a patchwork of stationary models. Fuentes (2001)
for example represents a non-stationary response as the weighted average of a series
of local stationary models. Rasmussen and Ghahramani (2002) and Kim et al. (2005)
divide the design space into a series of regions each with its own stationary model. Such
tiling approaches are adept at reducing the model tuning cost for large datasets as the
data within each tile is independent of others. However, as with a moving window, the
partitioning of the relatively small sample typical of a design optimization in such a
manner may result in poor performance. Depending on the methodology used, such tiled
models may also suffer from discontinuities at their boundaries and the optimal position
of these boundaries may be difficult to determine.
The non-linear mapping approach, introduced by Sampson and Guttorp (1992), at-

tempts to deform the input space in such a way that the non-stationary response can
actually be represented by a stationary model. Sampson and Guttorp proposed the map-
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ping of sample points from one space to another via the minimization of a stress function.
The resultant mapping was then extended to a smooth function via thin plate splines
thereby allowing the entire input space to be mapped. Smith (1996), on the other hand,
approached the fitting of a radial basis function representation of the non-linear map-
ping using a maximization of the likelihood. While perhaps costly when applied to large
datasets the non-linear mapping approach could be considered more appropriate when
constructing models using a relatively sparse sample set, as is the case in design opti-
mization. The non-linear mapping approach also results in a single continuous model of
the non-stationary function which can be readily searched for update points.
Non-stationary modeling techniques, such as those described above, are typically ap-

plied within geostatistics (Atkinson and Lloyd (2007)) and in the modeling of envi-
ronmental processes (Fuentes (2001), Haas (1990, 2002), Smith (1996)). These applica-
tions usually consider models of typically two or three variables and utilize relatively
large amounts of data. Rarely have non-stationary modeling techniques been applied
to problems of the order of those typically encountered during engineering design opti-
mization where problems with tens, or perhaps hundreds of variables, are commonplace.
The techniques described above are typically quite difficult to apply successfully to large
scale problems, extending the non-linear mapping approach (Smith (1996), Sampson and
Guttorp (1992), Gibbs (1997)) to higher dimensions, for example, can result in an over
parameterization of the mapping leading to poor results. Recently Xiong et al. (2007)
proposed a modification of the non-linear mapping approach with the express purpose
of applying it to engineering problems and it is this strategy in particular which forms
the basis of the non-stationary kriging strategies presented within this paper.
While Xiong et al. (2007) considered the suitability of non-stationary kriging with

regard to the representation of both stationary and non-stationary analytical test func-
tions, the application of non-stationary kriging within the overall design optimization
process was not considered. The following paper aims to address this by comparing the
performance of both stationary and non-stationary kriging to the optimization of a series
of 11 analytical test functions and an engineering design problem.
The paper commences by introducing stationary kriging which is then expanded to

non-stationary kriging employing a variation of the scheme presented by Xiong et al.
(2007). An in depth study into the accuracy of the surrogate models produced using
both stationary and non-stationary kriging is then carried out using 11 analytical test
functions with a range of sampling densities. The performance of both modeling strategies
within an optimization framework is then considered using the same analytical functions.
The conclusions drawn from these tests lead to the consideration of an adaptive partial
non-stationary (APNS) kriging model which aims to capture the best features of both
wholly stationary and non-stationary kriging. The performance of this strategy is then
evaluated once again using the analytical test functions. The paper concludes with the
application of the three techniques to a truss design problem.

2. Surrogate Modelling

The formulation of a non-stationary kriging model that employs a non-linear mapping
scheme is directly related to that of traditional stationary kriging. The following sec-
tion therefore presents the formulation of stationary kriging and non-stationary kriging,
focusing in particular, on the non-linear mapping scheme of Xiong et al. (2007).
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2.1. Stationary Kriging

The standard kriging formulation is well documented within the literature (Sacks et al.
(1989), Jones (2001), Simpson et al. (2001), Queipo et al. (2005), Forrester and Keane
(2009)) and the performance of kriging has been extensively compared to other stationary
surrogate modeling techniques (Sakata et al. (2003), Jin et al. (2001), Peter and Marcelet
(2008), Clarke et al. (2005)). The complete derivation of the traditional stationary kriging
model will therefore not be considered within this paper. Instead, focus is given to the
important formulae and those results which are also applicable to non-stationary kriging.
For a more complete derivation of kriging the interested reader may wish to consult the
literature.
The construction of a Kriging model assumes that when the difference between two

design points, xi and xj is small then the difference between the resulting objective
function values, y(xi) and y(xj), will be small. This can be modelled statistically by
assuming that the correlation between two sets of random variables, Y (xi) and Y (xj) is
given by,

Corr [Y (xi), Y (xj)] = exp

(
−

d∑
l=1

10θ
(l)∥x(l)

i − x
(l)
j ∥p(l)

)
. (1)

where θ(l) and p(l) represent the hyperparameters of the lth variable. Values of θ and p are
chosen to maximize the likelihood on the observed dataset, y, which after simplification
(Jones (2001)) becomes,

ϕ = −n

2
ln(σ̂2)− 1

2
ln(|R|), (2)

with the maximum likelihood estimates of variance, σ̂2, and mean, µ̂, given by

σ̂2 =
1

n
(y − 1µ̂)TR−1(y − 1µ̂) (3)

and

µ̂ =
1TR−1y

1TR−11
, (4)

where y is the vector of objective function values. As the concentrated likelihood function,
Eq. 2, is dependent only upon the correlation matrix R, formed from Eq. 1, the kriging
hyperparameters can be optimized in order to maximize Eq. 2.
Depending upon the strategy used, the optimization to maximize the likelihood func-

tion can prove to be rather costly as each likelihood evaluation requires a O(n3) fac-
torization of the correlation matrix. A global optimization technique, such as a genetic
algorithm, will effectively find the global optimum but will require many more evaluations
of the likelihood than, for example, a local gradient descent search. Such local searches
may, however, become trapped and not reliably locate the global optimum. Recently,
efforts have been made to accelerate the likelihood optimization through the application
of a hybridized search scheme. Toal et al. (2011), for example, recently formulated an
adjoint of the likelihood function and employed it within a hybridized particle swarm.
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The adjoint of the correlation matrix,

R̄ =
1

2σ̂2
R−T (y − 1µ̂)T (y − 1µ̂)TR−T − 1

2
R−T , (5)

can be used to calculate the partial derivatives of the hyperparameters,

∂ϕ

∂θ(l)
= ln 10

∑
ij

−10θ
(l) ||x(l)

i − x
(l)
j ||p(l)

RijR̄ij (6)

and

∂ϕ

∂p(l)
=
∑
ij

−10θ
(l) ||x(l)

i − x
(l)
j ||p(l)

ln ||x(l)
i − x

(l)
j ||RijR̄ij . (7)

Once an optimized set of hyperparameters have been determined they can be employed
to predict the response of the kriging model at an unsampled point. The prediction at
an unknown design point, x∗, first requires the calculation of a vector of correlations, r,
between the unknown point and the sample points using the optimized hyperparameters.
With this correlation vector the prediction is given by,

y(x∗) = µ̂+ rTR−1(y − 1µ̂). (8)

Using this predictor the kriging model can be exhaustively searched to find promising
designs. An estimate of the mean square error of the kriging model can also be calculated
at an unknown point,

s2(x∗) = σ2
[
1− rTR−1r

]
, (9)

where, in this case, the small term due to the uncertainty in the estimate of the mean
has been omitted. This error metric can be used to update the kriging model in regions
of highest error thereby resulting in a strategy which attempts to increase the model’s
global accuracy rather than locate an optimal design. Both the mean square error and
the predictor are also used in the calculation of another popular kriging infill criterion,
expected improvement (Jones et al. (1998)) which is calculated via,

E[I(x∗)] =
(ymin − y(x∗))

2

[
1 + erf

(
ymin − y(x∗)

s
√
2

)]
+

s√
2π

exp

[
−(ymin − y(x∗))2

2s2

]
, (10)

where erf() denotes the error function and ymin denotes the minimum true objective
function value found so far. An exhaustive search of the expected improvement over
a design space attempts to locate an update point which is most likely to result in
an improvement over the current best design, ymin. Expected improvement has been
employed in the optimization of a number of engineering problems (Hoyle et al. (2006))
and has been extended for use in multi-objective optimizations (Keane (2006)).

2.2. Non-Stationary Kriging

The non-linear mapping scheme of Xiong et al. (2007) is a considerable simplification
upon the methodologies employed by others within the literature (Smith (1996), Samp-
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Figure 1. Illustration of the piecewise linear representation of the density function (a) and the
resulting non-linear mapping of the Xiong function (b)

son and Guttorp (1992), Gibbs (1997)). Instead of the non-linear mapping being defined
as the integration of a multivariate density function, itself represented by a radial basis
function, a univariate piecewise linear representation of the density function is consid-
ered. This formulation drastically reduces the number of unknown modeling parameters
while simultaneously reducing the cost of the integration required within the non-linear
mapping.
The formulation of Xiong et al. (2007) is similar to that of the stationary model pre-

sented in Eq. 1, however, instead of a direct correlation between xi and xj the correlation
between their respective non-linear mappings is considered,

Corr [Y (xi), Y (xj)] = exp

(
−

d∑
l=1

10θ∥f(x(l)
i )− f(x

(l)
j )∥p(l)

)
, (11)

where

f(x(l)) =

∫ x(l)

0
g(x′)dx′, (12)

defines a non-linear mapping where the density function, g(x), is represented by a piece-
wise linear function of K pieces defined by K+1 knots of density function value 10ηk and
position ζk. The integral of Eq. 12 therefore reduces to a simple analytical expression for
each point.
Figure 1 illustrates both the piecewise linear representation of the density function

and the effect of this density function on the non-linear mapping of the Xiong function.
In Figure 1(a) the density function is represented by four piecewise lines defined by five
equally spaced knots. Integrating accross this density function from x = 0 to x = 1
maps x to f(x) as shown in Figure 1(b). This non-linear mapping deforms the original
Xiong function in such a manner that it can be more easily modelled using a stationary
correlation function.
Figure 1 also illustrates the simplicity of the density function integration using the

method of Xiong et al. (2007). Here, for example, the non-linear mapping of x = 0.3 is
simply the integral of the density function between x = 0 and x = 0.3 which is a simple
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analytical expression. With the area under the ith piecewise section given by,

Ai =
1

2
(ζi+1 − ζi)(10

ηi+1 + 10ηi), (13)

and the gradient and intercept of the ith section given by,

bi =
10ηi+1 − 10ηi

ζi+1 − ζi
and ai = 10ηi+1 − biζi+1, (14)

respectively, the integral of the density function becomes,

f(x) =
1

2
(x− ζj)(10

ηx + 10ηj ) +

j−1∑
l=1

Al, (15)

where j denotes the piecewise section that the x falls within and 10ηx is,

10ηx = bix+ ai. (16)

As per the traditional hyperparameters of a stationary kriging model both the knot
locations and density function values are unknowns and therefore require optimization.
Likelihood maximization can be employed to determine these unknowns using equations
2, 3 and 4 with the stationary correlation function replaced by that of Eq. 11.
The optimization of these non-stationary hyperparameters can be simplified to some

degree by fixing the knot locations, Xiong et al. (2007) for example, equally space the
knots in each direction. Alternatively the knots can be placed according to experience or
prior knowledge of the non-stationary structure of the true function as in, for example,
the prediction of time variant responses (Toal and Keane (2011)).
An adjoint of the hyperparameters of a non-stationary kriging model can also be de-

rived thereby accelerating the optimization process. The calculation of R̄ remains iden-
tical to Eq. 5 while the partial derivatives of the hyperparameters become,

∂ϕ

∂θ
= −10θ ln 10

d∑
l=1

∑
ij

∥f(x(l)
i )− f(x

(l)
j )∥p(l)

RijR̄ij

 , (17)

with

∂ϕ

∂p(l)
=
∑
ij

−10θ∥f(x(l)
i )− f(x

(l)
j )∥p(l)

ln ∥f(x(l)
i )− f(x

(l)
j )∥RijR̄ij , (18)

and

∂ϕ

∂η
(l)
k

=
∑
ij

−10θp(l)∥f(x(l)
i )− f(x

(l)
j )∥(p

(l)−2)
[
f(x

(l)
i )− f(x

(l)
j )
] [∂f(x(l)

i )

∂η
(l)
k

−
∂f(x

(l)
j )

∂η
(l)
k

]
RijR̄ij ,

(19)
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where

∂f(x(l))

∂ηk
=

∂A1

∂ηk
if k = 1 (20)

∂f(x(l))

∂ηk
=

∂Ak

∂ηk
+

∂Ak−1

∂ηk
if k ≤ L− 1 (21)

∂f(x(l))

∂ηk
=

1

2
(x(l) − ζL)(10

ηL ln 10 + x(l) ∂bL

∂η
(l)
k

+
∂aL

∂η
(l)
k

) +
∂AL−1

∂η
(l)
k

if k = L (22)

∂f(x(l))

∂η
(l)
k

=
1

2
(x(l) − ζL)(x

(l) ∂bL

∂η
(l)
k

+
∂aL

∂η
(l)
k

) if k = L+ 1 (23)

∂f(x(l))

∂η
(l)
k

= 0 if k ≥ L+ 2, (24)

and L refers to the Lth piecewise section that x(l) falls within. Given that the density
function is represented by a series of K straight lines of intercept a, gradient b and
integral A then,

∂aL
∂ηL

= −ζL+1
∂bL
∂ηL

and
∂aL
∂ηL+1

= 10ηL+1 ln 10− ζL+1
∂bL

∂ηL+1
, (25)

∂bL
∂ηL

=
10ηL ln 10

ζL+1 − ζL

∂bL
∂ηL+1

=
10ηL+1 ln 10

ζL+1 − ζL
, (26)

and

∂Ak−1

∂ηk
=

1

2
(ζk − ζk−1)10

ηL ln 10
∂Ak−1

∂ηk−1
=

1

2
(ζk − ζk−1)10

ηL+1 ln 10. (27)

The formulation of the predictor of a non-stationary kriging model is identical to that
presented in Eq. 8 with the exception that the new point must undergo the same non-
linear mapping as the sample points before calculating any correlations. Similarly the
formulations of both the mean square error and the expected improvement infill criterion
are identical to that of stationary kriging, Eqs. 9 and 10.
The formulation presented in Eq. 11 is slightly different to that originally presented

by Xiong et al. (2007). Unlike Xiong et al. the hyperparameter governing the degree of
smoothness in the model, p, is permitted to vary and an additional global θ hyperpa-
rameter is included as this was found to help prevent ill-conditioning of the correlation
matrix at higher dimensions.
Figure 2 helps to illustrate the effect of including p within the hyperparameter opti-

mization of a simple kriging model using the one dimensional non-stationary function
of Xiong et al. (2007). As per the results of Xiong et al., a stationary kriging model
with p fixed at two results in an inaccurate surrogate. However, when p is permitted to
vary the additional flexibility that this introduces results in a more accurate model. The
results presented in Table 1 reflect this with the r2 correlation increasing and both the
root mean square error (RMSE) and maximum absolute error (MAE) reducing when p
is permitted to vary.
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Figure 2. A one dimensional demonstration of the accuracy of non-stationary kriging N.B. the
non-stationary kriging model almost exactly represents the true objective function (sampling plan
taken from Xiong et al. (2007))

Table 1. Accuracy of three surrogate models representing the Xiong function.

No. of Tuning
Strategy Parameters r2 RMSE MAE

Stationary Kriging (p = 2) 1 0.9353 0.0858 0.3012
Stationary Kriging (p ̸= 2) 2 0.9930 0.0248 0.1117
Non-Stationary Kriging (5 knots) 7 1.0000 0.0019 0.0097

Based upon this simple demonstration of the importance of the additional flexibility
introduced and evidence to suggest that fixing p = 2 introduces numerical instabilities
into the likelihood calculation (Quttineh and Holmström (2009)), p is permitted to vary
in both the stationary and non-stationary models considered within this paper. Figure 2
also helps to demonstrate the predictive capabilities of a non-stationary kriging model.
The non-stationary kriging model is indiscernible from the true function in Figure 2 while
the results of Table 1 help to demonstrate the increase in accuracy of the stationary
models. The r2 correlation of the non-stationary model is approximately equal to one,
while both the RMSE and MAE are reduced by more than an order of magnitude.
Assuming an identical distribution of knots in each ordinate direction results in an

efficient implementation of the non-linear mapping. The cost of evaluating the resulting
likelihood function is only slightly greater than that for the equivalent stationary kriging
model, typically less than 5%.

3. Stationary Versus Non-stationary Kriging

Given the surrogate modeling strategies presented in Section 2, it is necessary to assess
their performance with regard to both their global accuracy and performance within an
optimization.

3.1. Surrogate Model Accuracy

Although Xiong et al. (2007) presented some comparisons between the accuracy of sta-
tionary and non-stationary kriging models, only test problems with at most two variables
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were considered and, as described previously, p was fixed at two. We therefore compare
the stationary and non-stationary models presented previously using 11 analytical test
problems ranging from one to 10 variables with a variety of sampling densities.
The analytical formula for each test function is presented in Appendix A along with

1D, 2D or 2D section plots of each function. As can be observed from these figures the test
functions exhibit a variety of levels of non-stationarity. The Forrester, Branin, six hump
camelback, Hartmann H3,4, Hartmann H6,4 and Trid functions are all relatively stationary
in nature and exhibit a uniform wavelength over the design space. The Xiong, Mystery,
Paciorek, Shekel and Michalewicz functions however, exhibit a varition in wavelength
and frequency throughout the design space.
Fourier analysis can be used to help indicate the non-stationarity of the responses.

While the Forrester function results in a single important frequency, the Xiong function
results in three important frequencies appearing between 0 ≤ x ≤ 0.5 and only one
between 0.5 ≤ x ≤ 1.0. Figure 1(b) illustrates that the wavelength of the function is
much shorter in the first half of the design space than the other. It is, of course, this
varition which causes the problems shown in Figure 2 when fitting the response using a
stationary model.
The Mystery function is a similar case with the most important frequency of the Fourier

analysis varying across the design space. Moving from x1 = 0 to x1 = 1.0 in Figure 2(b)
sees the frequency of the response vary from 1Hz to 3Hz. Likewise, the response of the
Shekel function, Figure 4(b), varies in frequency from the variable bounds towards the
center of the design space. In the case of the Michalewicz function, Figure 5(b), the upper
and lower bounds have been altered to result in a function akin to a step response. This,
as demonstrated by Toal and Keane (2011), is something which a stationary model can
have great difficulty representing.
In comparing both strategies a total of 50 different design of experiments (DoE) are

generated via a random Latin Hypercube for each test function. This helps to negate
the impact of the sampling plan on the performance of each method and provides a
meaningful average of each performance metric. Identical sampling plans are used for each
of the models thereby comparing like with like. Models are constructed from sampling
plans of three different sampling densities, five, seven and 10. The number of points
within a sampling plan is equal to the number of dimensions multiplied by the sample
density, a sample density of five when applied to a two variable problem will therefore
result in a 10 point random Latin Hypercube.
The hyperparameters of both the stationary and non-stationary models are tuned in an

identical manner. A genetic algorithm (GA) with a population size of 50 points run for 40
generations, is followed by a local terminal search via sequential quadratic programming
(SQP) employing the adjoints of the likelihood.
The accuracy of each surrogate model is evaluated through a comparison of the model’s

prediction of the objective function to the true objective function at a series of test
points. Test points are generated from a random Latin Hypercube with a sampling density
of 200, predictions of the Branin function, for example, are therefore compared to the
true function at 400 points. Given the true and predicted objective function values, three
performance metrics are calculated, the r2 correlation, the RMSE and the MAE. Results
for each of these tests are presented in Tables B2, B3 and B4 of Appendix B, along with
results of the adaptive partial non-stationary (APNS) strategy, see Section 4. Table B1
presents a brief overview of the surrogate modeling strategies tested along with formulae
to calculate the total number of hyperparameters optimized in their construction.
The results of Appendix B indicate that generally for problems of relatively low dimen-
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sionality there is little difference in the accuracy of the models produced via stationary
and non-stationary kriging with two knots. The mean r2 correlations, RMSE and MAE
for the Xiong, Branin, Mystery, six hump camelback and Paciorek functions are all rela-
tively similar with perhaps only a few instances where one model outperforms the other.
The r2 correlation of the non-stationary model for the Paciorek function, for example,
is consistently higher for each of the three sample sizes but the difference in RMSE and
MAE is minimal.
However, things are different when the analytical problems of higher dimensionality

are considered. From the four variable Shekel function to the 10 variable Trid function,
the two knot non-stationary model clearly out performs the stationary kriging model.
Although the RMSE and MAE are similar for the Shekel function the r2 correlation is
improved for sample densities of both five and 10. The r2 correlation increases from 0.231
with the stationary model to 0.346 with the non-stationary model when a sample density
of 10 is used. Given the similar standard deviations this is a significant increase. The r2

correlation of the prediction of the Hartmann H6,4 function is also improved significantly
by the non-stationary model, almost doubling for sampling densities of both five and
seven and increasing by 60% for a sampling density of 10. The RMSE and MAE are also
improved slightly when the non-stationary model is employed.
Each of the three performance metrics indicate that the two knot non-stationary pre-

dictor of the 10 variable Michalewicz function is superior to the stationary predictor.
All of the r2 correlations are better than those obtained by the stationary model while
both the RMSE and MAE show noticeable reductions. Both the RMSE and MAE for
the models constructed using sample densities of seven and ten are approximately half
that obtained by the stationary model given identical sample plans.
The two-knot non-stationary model performs significantly better on the 10 variable

Trid function, the r2 correlation is approximately twice that of the stationary model.
Employing a sampling density of 10 points, for example, causes the r2 increase from
0.527 to 0.999. This improvement in performance is reflected by both the RMSE and
MAE. The mean RMSE decreases from 8316.1 to 252.9, likewise the mean MAE reduces
by two orders of magnitude from 35386.2 to 375.8.
The non-stationary kriging formulation of Xiong et al. is capable of representing more

elaborate definitions of the non-linear mapping function through the addition of more
knots in each piecewise linear representation. Tables B2, B3 and B4 of Appendix B also
contain results for a non-stationary kriging model constructed with a five knot non-linear
mapping in each ordinate direction. The hyperparameters for these models are tuned in
an identical manner to those of the two knot models.
The r2 correlation results for each of the test functions, with the exception of the 10

variable Michalewicz function, are all significantly lower than the corresponding two knot
non-stationary model. Likewise the RMSE and MAE results for each of these tests are
worse than for the equivalent two knot model. These results therefore demonstrate the
dangers of an over parameterization of the non-linear mapping. The additional flexibility
of the model has made the hyperparameter optimization much more difficult and the
“optimum” hyperparameters found result in a model less accurate than that produced
via a simpler non-linear mapping.
Applying the five knot non-stationary model to the Michalewicz function, however,

results in a superior model to that produced by the two knot model with a higher mean
r2 correlation for each of the three sample densities and lower mean RMSE and MAE.
These results highlight one of the major difficulties of non-stationary kriging, namely how
to determine an appropriate fidelity of the non-linear mapping function. Too complex
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a model risks an over parameterization while a simpler model risks the creation of an
under performing surrogate.

3.2. Optimization Performance

To determine the optimization performance of both stationary and non-stationary kriging
the previous analytical test functions are used once again. The optimization of each
function commences with a surrogate model created from the 5d sampling plan used
in the previous investigation. This model is searched in order to maximize the expected
improvement, Eq. 10. Depending on the dimensionality of the problem one or more points
are evaluated using the true objective function value and added to the sampling plan.
Analytical test problems with four or fewer variables have a single update point evaluated
at a time, while those with six or 10 variables have five or 10 update points evaluated
based on a K-MEANS cluster analysis.
With the sampling plan updated, the hyperparameters of the surrogate model are re-

trained and new update points searched for using the expected improvement criterion.
This process repeats until a predefined budget of 10d update points have been evaluated.
As with the previous comparison of surrogate model accuracy each optimization is re-
peated 50 times, each with a different design of experiments (DoE). The results of these
optimizations are presented in Table C1 of Appendix C along with the true global min-
ima. Due to the poor results of the five knot non-stationary model in the previous tests
only the optimization performance of the two knot non-stationary model is considered
here.
As per the results concerning the accuracy of the surrogate models, the optimizations

using both the stationary and non-stationary models are quite similar for those problems
with one, two or three variables. There is no significant difference in the final optimum
obtained when optimizing the Forrester, Xiong, Branin, Mystery, six hump camelback,
Paciorek or Hartmann H3,4 functions. With the exception of the Mystery function the
mean optima obtained by the non-stationary optimization are within less than 5× 10−3

of those obtained by the stationary optimization while the magnitude of the standard
deviations are also similar. Both optimizations also tend to result in objective functions
within 3.8× 10−3 of the value at the true global minimum in of each of these tests.
From the four variable Shekel function onwards there is no longer such a parity be-

tween the strategies. However, unlike the results of Section 3.1, the non-stationary model
does not consistently outperform the stationary model, instead the performance of each
strategy appears to be more problem dependant. The non-stationary model outperforms
the stationary model when optimizing both the Shekel and Trid functions while the
stationary model performs better on the Hartmann H6,4 function.
When optimizing the Shekel function the mean objective function obtained by the

non-stationary kriging model is much lower than that obtained by the stationary model.
The stationary optimization obtained a mean objective function of -4.68 while the non-
stationary optimization obtained -5.27. It should be noted however that there is much
more variance in the final objective function obtained by the non-stationary optimization.
Therefore, although it performs better on average, there is less consistency between the
results.
When optimizing the Hartmann H6,4 function the stationary optimization performs

better than the non-stationary optimization. The mean final objective function is -3.15
compared to the mean objective function of -2.82 obtained using the non-stationary
optimization. The stationary optimization even results in a more consistent optimization
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as indicated by the standard deviation in the final objective function value.
When applied to the Michalewicz function both optimizations obtained a similar mean

final objective function, -4.92 when using the stationary model and -4.93 when using
the non-stationary model. However, the variance in the objective function is slightly
higher when employing a non-stationary model at 0.166 compared to 0.125 when using
a stationary model.
The non-stationary optimization significantly outperforms the stationary optimization

on the Trid function. When employing a stationary model a mean objective function of
-20.7 is obtained, whereas when a non-stationary model is employed the mean objective
function is substantially reduced to approximately -57.7. Employing a non-stationary
model also results in a reduction in the variance of the final optima, the standard devi-
ation reduces from approximately 75.6 to 59.9.
Given the previous differences in the accuracy of the initial surrogate models it is

perhaps initially surprising that the stationary model performs so well when the corre-
sponding functions are optimized. The r2 correlation, RMSE and MAE for the Hartmann
H6,4 function are better when employing the non-stationary model and yet when a sta-
tionary model is utilized within an optimization consistently better results are obtained.
Likewise the results for the Michalewicz function indicate that a non-stationary model
initially represents the function better however both strategies perform similarly within
an optimization.
This apparent disparity can be explained by considering the surrogates presented in

Figure 2. As noted previously, the non-stationary model is clearly more globally accurate
than either stationary model. However, Figure 2 also demonstrates that even though the
stationary models are less accurate, they do approximate the region of the global optimum
very well. Searching any of the models for an update point will therefore produce similar
results.
Based on the results presented here it could therefore be inferred that a stationary

model performs just as well as a non-stationary model within an optimization as long
as either the region around the global optimum, or the general trend towards it, are
captured well by the stationary model. This implies that the performance gain offered
by non-stationary kriging when employed within an optimization process is very much
problem dependent.

4. Adaptive Partial Non-Stationary Kriging

The previous results raised a number of issues with the application of non-stationary
kriging in the representation and optimization of black box functions. At lower dimensions
non-stationary kriging offers little performance advantage in either the representation
or optimization of the analytical test functions considered, however, as dimensionality
increases some disparity in the performance of each strategy is observed. The performance
of each strategy within an optimization appears to be determined by the nature of the
objective function as some test functions are better optimized by the stationary model
and others by the non-stationary model. The question is therefore how to determine
when one model should be used over another and how to determine an appropriate level
of complexity for the density function parameterization.
In the following section we consider a simple adaptive partial non-stationary kriging

strategy to investigate the potential of automatically determining the best model for a
black box objective function. It should be noted that this strategy is not presented as the
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Table 2. Description of the Adaptive Partial Non-Stationary (APNS) Kriging process.

Step

1 Construct a stationary kriging model (optimize the hyperparameters)
2 Split the sample data into four random groups
3 Remove each group from the sample data and calculate a prediction of the missing data
4 Using the predictions for each sample point, calculate the r2 correlation
5 Introduce non-stationarity into the variable with the largest θ
6 Construct the partial non-stationary kriging model
7 Calculate the r2 correlation
8 If the r2 correlation improves add an additional knot otherwise move to the next variable
9 If all variables have been tried and no further improvement in r2 is obtained use the best model

definitive solution to the issue of appropriate model selection, rather it serves to demon-
strate the potential impact of such an approach on design optimization performance. The
proposed adaptive strategy is assessed with regard to both the accuracy of the surrogate
models produced and the performance within an optimization.

4.1. Surrogate Modeling Strategy

The adaptive partial non-stationary kriging strategy considered here commences with
the construction of a stationary kriging model from the sample data. The hyperparam-
eters of this model are tuned using the method employed in Section 3.1. This stationary
model provides a baseline with which to compare each of the subsequent partial non-
stationary models. In a similar process to Viana et al. (2009), the sample data used
in the construction of the model is randomly partitioned into four approximately equal
groups. Each group of points is removed from the sample set in turn and a kriging pre-
dictor, based upon the remaining data and the previously determined hyperparameters,
is used to predict the missing data. Repeating the process for the four groups leads to a
prediction for all of the sample points and permits the calculation of the r2 correlation.
This correlation value is then used to determine if the subsequent non-stationary model
is more accurate.
Once constructed, each dimension of the stationary model is considered in turn for the

introduction of non-stationarity. In a similar manner to Welch et al. (1992) the magni-
tude of the θ parameter is used to indicate the relative importance of a variable. Starting
with the most important variable, the correlation function is modified and a two knot
representation of the density function is introduced. The correlation function of this
partial non-stationary model is therefore a combination of Eq. 1 for those dimensions
remaining stationary and Eq. 11 for the dimension considered as non-stationary. The
hyperparameters are optimized, the partial non-stationary model constructed and the r2

correlation calculated as before. This r2 correlation is then compared to that obtained by
the stationary model, if an improvement is observed the non-stationarity is accepted and
the number of knots in the density function representation increased. Again the hyperpa-
rameters are tuned and the model performance assessed, if the model is an improvement
the number of knots is increased again, if not then the next most important variable is
considered for the introduction of non-stationarity.
This process can be repeated for either a predefined number of cycles or until the θ

value falls below a predefined limit therefore ensuring that only the most active variables
are considered for the introduction of non-stationarity. Table 2 summarizes the APNS
kriging process.
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4.2. Surrogate Model Accuracy

As per the comparisons in Section 3.1 the accuracy of the adaptive partial non-stationary
(APNS) kriging model is evaluated over 11 analytical test functions using a range of
different sampling densities. To maintain consistency the same sampling plans used in
the previous investigations are employed here again. The results for the APNS strategy
are also presented in Tables B2, B3 and B4 of Appendix B.
The results presented in Appendix B indicate that generally the performance of the

APNS strategy falls somewhere in between that of the non-stationary and stationary
strategies with the r2 correlation, RMSE and MAE generally better than the worst per-
forming of the other two strategies, whichever that may be. The results for the Forrester
function, for example, are better than the stationary model, but not as good as the purely
non-stationary model. Likewise, when sample densities of seven and ten are considered,
for the six hump camelback function the APNS results are better than the non-stationary
model but not quite as good as the stationary model.
These results indicate that by employing an adaptive strategy when constructing the

surrogate model the deficiencies of selecting one modeling technique over another prior
to the construction of a surrogate model of an unknown function can be mitigated to
some extent. The best example of this is the strategies performance with respect to
the Trid function. By employing the APNS kriging strategy, this reduction in general
performance is reduced quite significantly. Employing the strategy on a 10d sample plan,
for example, increases the r2 correlation from 0.527 to 0.966 which is much closer to the
purely non-stationary model’s 0.999.
The brute force strategy employed within the APNS strategy to select an appropriate

level of non-stationarity can result in a significant increase in the cost over the simpler
stationary or non-stationary models presented previously. This is due to the numerous
global hyperparameter optimizations and cross-validations and the increase in complexity
of the non-linear mapping when differing density function representations are employed
in each ordinate direction. The cost can also be problem dependent and increase with
dimensionality. An APNS model of the Forrester function constructed using five sample
points will on average cost 135% more to construct than the equivalent stationary model.
However, an APNS model of the 10 variable Michalewicz function constructed from
50 sample points will, on average, cost 620% more. A more efficient approach to the
optimization of the level of non-stationarity within the model would, of course, drastically
reduce these costs.

4.3. Optimization Performance

As with the stationary and non-stationary strategies, the APNS kriging strategy is in-
tended to be employed within a design optimization framework. It is therefore necessary
to assess the optimization performance of such a strategy.
As per the previous performance comparisons of Section 3.2 each of the 11 analytical

test functions is optimized a total of 50 times, each commencing from a different 5d
random latin hypercube sampling plan. Again a total of 10d updates are evaluated via a
maximization of the expected improvement. The results of these optimizations are also
presented in Table C1 of Appendix C.
As per the results of Section 3.2, stationary kriging, non-stationary kriging and the

APNS kriging strategy all perform similarly for problems with one, two or three variables.
From the Forrester function through to the Hartmann H3,4 function the mean objective
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functions obtained by each strategy are very similar with differences only in the third
decimal place. As with the other two strategies the APNS kriging approach obtains a
final optimum which is typically very close to the true global optimum.
The performance of the APNS kriging strategy on problems with more than three

variables reflects the results pertaining to the accuracy of the surrogate models produced.
That is to say the performance falls somewhere between the stationary model and non-
stationary model. In Section 3.2 the Shekel function was demonstrated to be optimized
more effectively via a non-stationary kriging model. Here the APNS kriging strategy
outperforms the stationary approach and attains a mean objective function similar to
that of the non-stationary approach but with a reduction in the variance.
In Section 3.2, the Hartmann H6,4 function was better optimized by the stationary

kriging approach. Here the performance of the APNS strategy approaches that of the
stationary strategy acheiving a mean objective function of -3.051 to -3.148 obtained
using the stationary strategy. The optimization of the Michalewicz function demonstrated
similar results for both the stationary and non-stationary models, likewise the APNS
strategy results in similar performance. The non-stationary optimization of the Trid
function was far superior to that of the stationary optimization, with both the mean
and variance in the objective function reducing considerably. The APNS kriging strategy
performs similarly well, with the objective function reducing from -20.7 when using a
stationary kriging model to -49.1.
Given a black box function with an unknown prior level of stationarity an adaptive

partial non-stationary kriging approach could therefore be said to offer the best of both
worlds. Through adapting the level of stationarity present within the model to the current
objective function and sampling plan the adaptive approach appears to offer a more
consistent level of optimization performance.

5. 40D Truss Attenuation Optimization

To further investigate the performance of stationary, non-stationary and adaptive partial
non-stationary kriging based design optimizations consider now a 40 variable truss opti-
mization problem. A two-dimensional truss structure similar to those employed on satel-
lites (Nair and Keane (1999)), shown in Figure 3(a), is represented by 42 Euler-Bernoulli
beams each with a total of two finite elements. A unit force excitation is applied to node
number 1 over a 100-200Hz frequency range. Each of the nodes are free to move with
the exception of the leftmost nodes which are fixed. The objective is to minimize the
band-averaged vibration attenuation at the tip compared to the baseline design shown in
Figure 3(a). Each of the 20 nodes are permitted to move both horizontally and vertically
within a 0.9× 0.9 box, also shown in Figure 3(a). This results in a 40 variable optimiza-
tion of a complex multi-modal non-stationary function, as indicated by surface plot in
Figure 3(b) of the response of the structure to changes in the position of the ninth node.
Each of the three optimizations commence from an identical 200 point design of ex-

periments defined by a random Latin hypercube. A further 400 true objective function
evaluations are permitted as updates to the surrogate model as the optimization pro-
gresses. These updates are evaluated in batches of 10 and are defined via a maximization
of the expected improvement criterion using a GA followed by a local terminal search
from the best points of 10 clusters resulting from a K-Means cluster analysis. With such a
large number of sample points and such a high dimensional problem, inevitably the cost
of the optimization of the kriging hyperparameters can become an issue. To reduce this
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Figure 3. The baseline truss geometry (a) and a 2D example of the design space (b)

Table 3. Average final objective function obtained by the three opti-
mization strategies.

Kriging NS Kriging APNS Kriging

Mean Std. Mean Std. Mean Std.

-29.727dB 4.646dB -32.338dB 5.807dB -32.239dB 2.764dB

cost the hyperparameters are reassessed after alternate batches of updates to the model
(Toal et al. (2008)) and the hyperparameters are tuned using only the best 200 design
points, with all points used to form the predictor. The performance of each optimization
strategy is averaged over 10 optimizations commencing from a different initial design of
experiments. The average and standard deviation in objective function obtained by each
of the three strategies are presented in Table 3 with the mean optimization histories
presented in Figure 4.
Upon comparison of the results of Table 3 it is clear that the non-stationary kriging

strategy outperforms stationary kriging. Given the same initial starting points, the non-
stationary kriging strategy produces an average attenuation of -32.3dB, compared to
-29.7dB produced via the stationary strategy. The stationary strategy does however
result in a slight improvement in the variance in the quality of these final designs. As per
Section 4, the adaptive partial non-stationary kriging strategy results in similar mean
designs to that of the non-stationary strategy but with a significant reduction in the
variance in the quality of these designs. The mean objective function is -32.2dB, slightly
less than the non-stationary approach, but the standard deviation in these designs is
2.76dB compared to 5.81dB. The optimization histories of Figure 4 indicate that the
non-stationary approach appears to converge at a faster rate than the stationary kriging
approach, however after the first 100 updates the strategy appears to have difficulty
improving further upon the current best solution. While the rate of converge of the APNS
strategy is slightly slower than that of the non-stationary strategy, after approximately
150 updates it appears to have converged almost completely to an objective function
similar to that of the final solution of the non-stationary strategy.
Examples of “optimum” geometries resulting from each of the three optimization

strategies are presented in Figure 5 along with the frequency responses of each design
over an extended 1-300Hz range. It is quite obvious that each of the three strategies con-
verge to different solutions. This result highlights the multi-modal nature of the design
space and reflects the results observed by Nair and Keane (1999) where it was noted that
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Figure 4. Optimization history for the 40D attenuation problem

quite different designs can result in similar objective function values. As demonstrated
by the results of Figures 5(b), 5(c) and 5(d) each of the optimizations has resulted in a
noticeable decrease in the displacement of the tip node across the optimized frequency
domain. As expected from the results of Nair and Keane (1999) each of the final designs
offers little improvement over the baseline design outside the 100-200Hz range as these
frequencies were not considered for optimization.

6. Conclusions

A comparison of the performance of stationary and non-stationary kriging with respect
to the construction of surrogate models for the purpose of design optimization has been
presented and a novel adaptive partial non-stationary kriging strategy has been intro-
duced.
The presented results indicate that on problems with one, two or three variables both

stationary and non-stationary kriging perform similarly, effectively supporting optimiz-
ing of each of the analytical test functions considered. However, differences in the per-
formance of the models do become apparent as the dimensionality and complexity of the
optimization problem increases. These differences appear to be problem dependant, with
optimizations carried out using stationary kriging performing better than those using
non-stationary kriging on some problems and vice versa.
This difficulty in determining an appropriate model for a given black box objective

function lead to the consideration of an adaptive partial non-stationary (APNS) kriging
model which alters the degree of non-stationarity of the model in each ordinate direction
in order to improve overall model accuracy based on a cross-validation metric. This
surrogate modeling strategy, while not presented as an outright solution to the problem
of model selection due to its computational inefficiencies, provides an indication of the
potential benefits of such a strategy within design optimization. The adaptive partial non-
stationary kriging strategy was capable of spanning the difference in the performance of
the pure stationary and non-stationary kriging strategies. When utilized within design
optimizations the APNS strategy approached the performance of the better of the other
two strategies, demonstrating that, for black box functions, an adaptive non-stationary
approach can result in more consistent performance.
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Figure 5. Example truss designs from each of the three optimizations and the frequency response
of each design

Each of the three kriging strategies were employed in the optimization of a 2D truss
structure. The objective function, the minimization of the band-averaged vibration at-
tenuation at the tip of the structure, is non-stationary and multi-modal in nature. Both
the non-stationary and APNS kriging approaches produced better designs than the sta-
tionary kriging approach while the APNS approach resulted in an improvement in the
consistency between final designs.
Although further research in necessary to reduce the additional cost of the presented

adaptive strategy, the current paper goes some way to demonstrate that such an approach
may have tangible benefits over a traditional kriging based design optimization process.
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Appendix A. Analytical Test Functions

Forrester Function:

y(x) = (6x− 2)2 sin(12x− 4), x ∈ [0, 1] (A1)
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Figure A1. Analytical (a) Forrester and (b) Xiong test functions
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Figure A2. Analytical (a) Branin and (b) Mystery test functions

Xiong Function:

y(x) = sin[30(x− 0.9)4] cos[2(x− 0.9)] + (x− 0.9)/2, x ∈ [0, 1] (A2)

Branin Function:

y(x) = (x2 −
5

4π2
x21 +

5

π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10,

x1 ∈ [15, 10] x2 ∈ [0, 15] (A3)

Mystery Function:

y(x) = 3 + 0.01(x2−x21)
2 − x1 + 2(2− x2)

2 + 7 sin(0.5x1) sin(0.7x1x2),

x1 ∈ [0, 5] x2 ∈ [0, 5] (A4)
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Figure A3. Analytical (a) six hump camelback and (b) Paciorek test functions
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Figure A4. Two dimensional slices through the (a) Hartmann H3,4 (all other variables equal 0.5)
and (b) Shekel test functions (all other variables equal 5)

Six Hump Camelback Function:

y(x) = 4x21 − 2.1x41 + x61/3 + x1x2 − 4x22 + 4x42,

x1 ∈ [−2, 2] x2 ∈ [−1, 1] (A5)

Paciorek Function:

y(x) = sin
1

x1x2
, x1 ∈ [0.3, 1] x2 ∈ [0.3, 1] (A6)
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Hartmann H3,4 Function:

y(x) = −
4∑

i=1

αi exp

− 3∑
j=1

Aij(xj − Pij)
2

 ,

where α =


1
1.2
3
3.2

 , A =


3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 and P =


6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

× 10−4

xi ∈ [0, 1] (A7)

Shekel Function:

y(x) = −
5∑

j=1

[
4∑

i=1

(xi − Cij)
2 + βj

]−1

where β =
1

10

[
1 2 4 4 6 3 7 5 5

]T
and C =


4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6


xi ∈ [0,10] (A8)

Hartmann H6,4 Function:

y(x) = −
4∑

i=1

αi exp

− 6∑
j=1

Bij(xj −Qij)
2



where α =


1
1.2
3
3.2

 , B =


10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 and Q =


1312 2329 2348 4047
1696 4135 1451 8828
5569 8307 3522 8732
124 3736 2883 5743
8283 1004 3047 1091
5886 9991 6650 381



T

× 10−4

xi ∈ [0, 1] (A9)

Michalewicz Function:

y(x) = −
10∑
i=1

sin(xi)[sin(
ix2i
π

)]10, xi ∈ [0, 1] (A10)

Trid Function:

y(x) =

10∑
i=1

(xi − 1)2 −
10∑
i=2

xixi−1, xi ∈ [−100, 100] (A11)
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Figure A5. Two dimensional slices through the (a) Hartmann H6,4 and (b) Michalewicz test
functions (in both cases all other variables equal 0.5)
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Figure A6. Two dimensional slice through the Trid test function (all other variables equal 0)

Appendix B. Surrogate Model Accuracy

Table B1. Overview of the surrogate modeling and optimization strategies including formulae for the total
number of hyperparameters optimized during model construction.

Total no. of Kriging
Name Description hyperparameters

Kriging Traditional stationary kriging with p permitted to vary. 2d+ 1

NS Kriging Non-stationary kriging model employing 2 knots in the 3d+ 2
(2 knots) piecewise linear representation of the density function.

NS Kriging Non-stationary kriging model employing 5 knots in the 6d+ 2
(5 knots) piecewise linear representation of the density function.

APNS Adaptive partial non-stationary kriging model constructed between 2d+ 1 and 5d+ 2
Kriging using a combination of stationary and non-stationary for each optimisation

correlations.
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Table B2. r2 of the three Kriging strategies.

Kriging
NS Kriging NS Kriging APNS
(2 knots) (5 knots) Kriging

Objective Sample
Mean Std. Mean Std. Mean Std. Mean Std.

Function Densitya

Forrester Function
5 0.3389 0.3115 0.4485 0.3435 0.1481 0.2841 0.4081 0.3451
7 0.6490 0.3104 0.8494 0.2514 0.5752 0.3615 0.7123 0.3016
10 0.9983 0.0009 0.9949 0.0068 0.7164 0.3352 0.9973 0.0029

Xiong Function
5 0.5723 0.2162 0.6623 0.1686 0.2017 0.2923 0.5774 0.2255
7 0.7259 0.1144 0.7517 0.1081 0.1573 0.2883 0.7225 0.1122
10 0.8900 0.0555 0.8978 0.0733 0.8550 0.2885 0.9095 0.0541

Branin Function
5 0.5790 0.2654 0.5634 0.2488 0.0980 0.2305 0.5023 0.2645
7 0.8447 0.1663 0.8262 0.1612 0.3620 0.3753 0.8174 0.1798
10 0.9859 0.0276 0.9764 0.0335 0.8994 0.1975 0.9791 0.0378

Mystery Function
5 0.3731 0.1760 0.3193 0.1705 0.0836 0.1655 0.3491 0.1723
7 0.4131 0.1854 0.3998 0.1442 0.0960 0.1774 0.3955 0.1626
10 0.5243 0.1340 0.4892 0.1017 0.1673 0.2291 0.4862 0.1195

6 Hump Camelback
5 0.4361 0.2198 0.4146 0.2105 0.0865 0.1707 0.3694 0.2200
7 0.6560 0.1874 0.6096 0.1738 0.2783 0.3016 0.6182 0.1870
10 0.8161 0.0743 0.7916 0.0874 0.5790 0.3341 0.7968 0.0955

Paciorek Function
5 0.5673 0.1856 0.6213 0.1675 0.1475 0.2261 0.5371 0.1784
7 0.7171 0.1086 0.7834 0.1111 0.3607 0.3412 0.6941 0.1415
10 0.7955 0.1419 0.8353 0.0899 0.6418 0.3050 0.7873 0.1571

Hartmann H3,4

5 0.5551 0.2558 0.5592 0.2368 0.2460 0.2710 0.5366 0.2267
7 0.7668 0.1959 0.7210 0.1384 0.3882 0.3282 0.7804 0.0887
10 0.9041 0.0492 0.8718 0.0648 0.6844 0.2925 0.8766 0.0647

Shekel Function
5 0.1076 0.1085 0.1325 0.1016 0.0259 0.0707 0.1184 0.1253
7 0.2006 0.1926 0.1775 0.1507 0.0518 0.1039 0.2103 0.1841
10 0.2309 0.2258 0.3464 0.2198 0.1216 0.1929 0.3236 0.2283

Hartmann H6,4

5 0.0714 0.0631 0.1468 0.0917 0.0270 0.0602 0.0913 0.0899
7 0.1012 0.0938 0.2137 0.1324 0.0438 0.0928 0.1673 0.1242
10 0.2073 0.1807 0.3344 0.1597 0.1155 0.1448 0.2893 0.1852

Michalewicz Function
5 0.2815 0.2049 0.4446 0.2783 0.4562 0.4200 0.3491 0.2572
7 0.8603 0.2137 0.9375 0.1900 0.9930 0.0029 0.8898 0.2416
10 0.9861 0.0038 0.9971 0.0011 0.9990 0.0005 0.9982 0.0020

Trid Function
5 0.1029 0.1028 0.1863 0.1052 0.0551 0.0758 0.1326 0.1056
7 0.2230 0.2402 0.5238 0.2245 0.2060 0.1903 0.3840 0.2988
10 0.5274 0.3470 0.9999 0.0001 0.9751 0.0090 0.9655 0.1412

aWhere the sample density is given by n/d

Appendix C. Optimization Results
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Table B3. RMSE of the three Kriging strategies.

Kriging
NS Kriging NS Kriging APNS
(2 knots) (5 knots) Kriging

Objective Sample
Mean Std. Mean Std. Mean Std. Mean Std.

Function Density

Forrester Function
5 3.749 1.038 3.255 1.265 4.203 0.940 3.452 1.240
7 2.482 1.234 1.449 1.129 2.777 1.263 2.178 1.265
10 0.233 0.092 0.318 0.199 2.063 1.379 0.267 0.124

Xiong Function
5 0.180 0.044 0.165 0.042 0.239 0.049 0.182 0.053
7 0.147 0.031 0.142 0.036 0.244 0.045 0.150 0.032
10 0.093 0.025 0.089 0.028 0.082 0.064 0.083 0.025

Branin Function
5 37.034 13.670 37.748 12.861 54.399 9.345 41.630 41.588
7 21.353 10.304 22.876 10.163 43.352 15.315 23.274 10.558
10 6.021 4.127 7.850 5.306 14.614 10.781 6.978 5.390

Mystery Function
5 5.165 0.942 5.482 0.854 5.940 0.549 5.332 0.822
7 4.953 0.970 5.038 0.854 5.824 0.615 5.1089 0.807
10 4.339 0.707 4.554 0.528 5.498 0.649 4.594 0.652

6 Hump Camelback
5 0.947 0.245 0.968 0.216 1.132 0.093 1.034 0.233
7 0.690 0.196 0.743 0.188 0.999 0.235 0.735 0.203
10 0.493 0.106 0.529 0.109 0.721 0.264 0.519 0.125

Paciorek Function
5 0.515 0.133 0.530 0.237 0.679 0.109 0.600 0.248
7 0.402 0.129 0.353 0.146 0.588 0.199 0.435 0.200
10 0.309 0.092 0.280 0.081 0.411 0.171 0.317 0.110

Hartmann H3,4

5 0.673 0.223 0.678 0.219 0.850 0.131 0.697 0.203
7 0.461 0.187 0.519 0.142 0.750 0.203 0.463 0.114
10 0.293 0.073 0.340 0.095 0.513 0.206 0.335 0.095

Shekel Function
5 0.120 0.049 0.118 0.048 0.104 0.0205 0.121 0.048
7 0.108 0.033 0.110 0.030 0.104 0.0215 0.109 0.035
10 0.107 0.039 0.098 0.040 0.100 0.0270 0.102 0.042

Hartmann H6,4

5 0.467 0.075 0.435 0.075 0.428 0.049 0.458 0.065
7 0.446 0.057 0.407 0.071 0.423 0.046 0.418 0.066
10 0.394 0.070 0.358 0.064 0.401 0.032 0.370 0.069

Michalewicz Function
5 0.506 0.092 0.430 0.151 0.370 0.213 0.479 0.132
7 0.184 0.122 0.097 0.114 0.045 0.009 0.131 0.146
10 0.067 0.009 0.030 0.006 0.019 0.004 0.022 0.009

Trid Function
5 14553.4 1394.2 13704.6 1303.4 14383.6 958.1 14397.4 1341.3
7 12669.2 2680.2 9534.7 2554.9 12814.4 1387.6 11153.9 3548.2
10 8316.1 5251.1 252.9 76.0 2152.7 383.6 871.0 2540.0
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Table B4. MAE of the three Kriging strategies.

Kriging
NS Kriging NS Kriging APNS
(2 knots) (5 knots) Kriging

Objective Sample
Mean Std. Mean Std. Mean Std. Mean Std.

Function Density

Forrester Function
5 12.497 4.563 11.197 5.295 14.344 3.177 11.729 5.196
7 9.721 5.122 6.134 4.707 11.590 4.576 8.804 5.122
10 1.640 0.722 1.885 0.943 9.706 4.921 1.778 0.802

Xiong Function
5 0.492 0.093 0.476 0.114 0.533 0.092 0.499 0.129
7 0.465 0.110 0.458 0.126 0.544 0.053 0.474 0.116
10 0.313 0.089 0.325 0.090 0.280 0.104 0.308 0.074

Branin Function
5 194.2 65.1 195.7 62.8 236.9 33.3 206.0 63.6
7 149.8 66.5 154.9 64.4 214.7 57.3 154.9 65.8
10 51.0 37.6 65.6 47.9 94.1 60.2 55.8 46.0

Mystery Function
5 14.772 3.325 15.559 3.227 16.5 2.029 15.180 3.004
7 15.782 3.322 16.233 3.203 16.7 2.221 15.936 3.404
10 14.257 2.037 14.727 2.144 15.9 2.010 14.603 2.495

6 Hump Camelback
5 3.658 0.850 3.684 0.782 4.126 0.549 3.672 0.909
7 3.393 0.729 3.560 0.729 4.056 0.841 3.487 0.758
10 2.665 0.840 2.787 0.852 3.169 0.928 2.661 0.899

Paciorek Function
5 2.231 0.687 2.559 1.215 1.796 1.070 2.713 1.427
7 2.099 0.644 2.187 0.658 2.074 1.179 2.362 1.022
10 1.879 0.476 2.158 0.812 2.227 1.112 2.014 0.542

Hartmann H3,4

5 2.445 0.659 2.561 0.696 2.866 0.428 2.633 0.630
7 1.988 0.633 2.161 0.578 2.670 0.524 2.061 0.574
10 1.425 0.432 1.598 0.464 2.186 0.515 1.622 0.494

Shekel Function
5 0.986 0.145 0.965 0.138 1.021 0.073 0.984 0.143
7 0.933 0.0896 0.936 0.103 0.990 0.075 0.919 0.099
10 0.946 0.132 0.918 0.116 0.988 0.096 0.932 0.113

Hartmann H6,4

5 2.665 0.160 2.633 0.304 2.646 0.164 2.702 0.177
7 2.585 0.168 2.549 0.304 2.625 0.143 2.584 0.177
10 2.504 0.263 2.400 0.291 2.597 0.251 2.410 0.332

Michalewicz Function
5 1.872 0.366 1.621 0.573 1.457 0.818 1.778 0.502
7 0.677 0.424 0.380 0.454 0.197 0.055 0.483 0.509
10 0.2691 0.039 0.128 0.025 0.083 0.021 0.102 0.040

Trid Function
5 60770.6 6828.0 57128.9 7792.6 61160.3 4380.6 59429.2 6943.2
7 54361.9 11766.0 42030.7 11498.4 54551.9 7223.8 48093.0 14191.7
10 35486.2 22905.4 375.8 212.2 9635.0 2283.5 3253.2 11571.0
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Table C1. Analytical test function optimization results.

Kriging NS Kriging APNS Kriging

Objective Function Mean Std. Mean Std. Mean Std. Global Minimum

Forrester Function -6.021 9.04× 10−4 -6.021 2.78× 10−4 -6.021 1.49× 10−4 -6.021
Xiong Function -0.621 1.70× 10−2 -0.625 7.48× 10−4 -0.624 2.10× 10−3 -0.625
Branin Function 0.402 6.40× 10−3 0.405 7.54× 10−3 0.403 6.53× 10−3 0.398
Mystery Function -6.495 2.51× 10−2 -6.431 1.66× 10−1 -6.459 7.74× 10−2 -6.514
6-Hump Camelback Function -1.029 4.93× 10−3 -1.029 6.61× 10−3 -1.030 2.24× 10−3 -1.032
Paciorek Function -1.000 7.08× 10−4 -1.000 4.78× 10−5 -1.000 3.44× 10−4 -1.000
Hartmann H3,4 -3.863 4.37× 10−4 -3.861 3.15× 10−3 -3.860 4.18× 10−3 -3.863
Shekel Function -4.681 2.750 -5.270 3.250 -5.273 2.947 -10.153
Hartmann H6,4 -3.148 0.275 -2.818 0.570 -3.051 0.415 -3.322
Michalewicz Function -4.924 0.125 -4.930 0.166 -4.936 0.141 -5.062
Trid Function -20.730 75.654 -57.727 59.920 -49.112 62.746 -200
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Illustration of the piecewise linear representation of the density function (a) and the resulting non-linear 
mapping of the Xiong function (b)  
142x112mm (300 x 300 DPI)  
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Illustration of the piecewise linear representation of the density function (a) and the resulting non-linear 
mapping of the Xiong function (b)  
150x123mm (300 x 300 DPI)  
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A one dimensional demonstration of the accuracy of non-stationary kriging N.B. the non-stationary kriging 
model almost exactly represents the true objective function (sampling plan taken from Xiong et al.)  

143x112mm (300 x 300 DPI)  

 

 

Page 32 of 50

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

The baseline truss geometry (a) and a 2D example of the design space (b)  
81x39mm (300 x 300 DPI)  

 

 

Page 33 of 50

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

The baseline truss geometry (a) and a 2D example of the design space (b)  
142x110mm (300 x 300 DPI)  
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Optimization history for the 40D attenuation problem  

143x112mm (300 x 300 DPI)  
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Example truss designs from each of the three optimizations and the frequency response of each design  
131x147mm (300 x 300 DPI)  
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Example truss designs from each of the three optimizations and the frequency response of each design  
147x119mm (300 x 300 DPI)  
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Example truss designs from each of the three optimizations and the frequency response of each design  
147x119mm (300 x 300 DPI)  
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Example truss designs from each of the three optimizations and the frequency response of each design  
147x119mm (300 x 300 DPI)  
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Analytical (a) Forrester and (b) Xiong test functions  
142x112mm (300 x 300 DPI)  
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Analytical (a) Forrester and (b) Xiong test functions  
142x111mm (300 x 300 DPI)  
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Analytical (a) six hump camelback and (b) Paciorek test functions  
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Two dimensional slices through the (a) Hartmann H34 (all other variables equal 0.5) and (b) Shekel test 
functions (all other variables equal 5)  
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Two dimensional slices through the (a) Hartmann H34 (all other variables equal 0.5) and (b) Shekel test 
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Two dimensional slices through the (a) Hartmann H64 and (b) Michalewicz test functions (in both cases all 
other variables equal 0.5)  
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Two dimensional slices through the (a) Hartmann H64 and (b) Michalewicz test functions (in both cases all 
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Two dimensional slice through the Trid test function (all other variables equal 0)  
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