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A Convex Hybrid H,, Synthesis With Guaranteed Convergence Rate

Francesco Fichera, Christophe Prieur, Sophie TarbouaedhLuca Zaccarian

Abstract—In this paper, a hybrid controller design for a  of a single linear controller used for multiple performance
continuous-time .Ilnear time-invariant (LTI) plant is pres ented. purposes). On the other hand, in [12], [20] it has been proved
The idea is to simultaneously design the flow and jump maps 4t for LTI plants, there exists no nonlinear (possiblyeim
with the respective sets of the controller, guaranteeingH . . .

varying) controller that yields af, gain lower than the one

specifications and decay rate of the plant state of the hybrid A . X e
C|osed_|00p System. A convex LMIl-based design procedure is aSSOCIated to the Optlma| ||near Controller. The main |dba. [0}

proposed, generalizing the results in [22]. this paper is to carry out with a multiobjective synthesis to
Index Terms—Hybrid controller synthesis, exponential sta- achieve a desired convergence rate &hd specifications
bility, convergence rate, H. specification. through a hybrid controller. It will be shown that, given
a desired (and achievable), gain, the hybrid controller
|. INTRODUCTION guarantees a convergence rate higher than or equal to the

Hybrid control theory is being developed to provide moréPtimal one induced by a convex linear controller design,
flexible stabilizing and performing controllers, overcaigi thus reaching a better trade-off between the two required
some intrinsic limitations of the classical theory. Withire ~ Specifications.
general context of hybrid systems, much attention has beenln the current literature, [21] needs to be mentioned where
devoted in recent years to the study of hybrid (or rese§ line search parameter is used to design a linear dynamical
controllers for improved performance with continuouseim feedback controller and a resetting rule satisfying sGe
plants. In [1], [2], [15] promising performance analysis fo specification.
some specific hybrid systems have been presented with re-Finally, we point out that the results in this paper can be
spect to rise-time, overshoot, settling-time. In [17] isilown ~ extended to the output feedback case using the construction
that the desirable closed-loop behavior may be induced fpyesented in [6]. For a comprehensive overview of the hybrid
resetting the controller according to an optimal reset lavgystems framework that we use here, the reader can consult
Also in [19] optimal techniques for overshoot reduction and8], [9].
maximization of the decay rate have been presented. Both inThe paper is organized as follows. In Section Il the consid-
[17] and [19] (see also [2], [5], [6], [11], [18]) the hybrichpt ~ ered plant and the problem we want to solve are defined. In
with a suitable reset law is added to a preexisting controllésection Il the main results are presented followed by some
(not necessarily stabilizing in some cases) to enhance thgmarks. In Section IV, we compare our performance to the
entire closed-loop system. one obtained with the linear solution. Section V contains

In this paper, we present an optimal technique to designs@me simulations to show the advantages of our technique.
hybrid controller, that is, both continuous and discretegpa Section VI concludes the paper. The proofs of the results are
(including also the flow and jump sets) are simultaneouslgmitted.
designed according to an optimal criterion. We point out Notation. R denotes the set of real numbeRs,, denotes
that, in general, the optimal design of a hybrid controllethe set of non-negative real numbers. The Euclidean norm is
cannot be achieved by separately designing the continuodenoted by - |. For a matrixM, He(M) = M + M™. For
and discrete parts according to the desired cost functiods aany s € R, the functiondz : R — R is defined bydz(s) =0
combining the two parts a posteriori, because the obtaindfd|s| < 1 anddz(s) = sgn(s)(|s| — 1) if |s| > 1. Given a
hybrid dynamics can negatively affect the optimal indexegiatrix @, Apmin(Q) (resp.Amq.(Q)) denotes the minimum

and may also lead to instability (see [10], [13]). (resp. the maximum) eigenvalue @f.
The hybrid controller synthesis we propose is multiobjec-
tive oriented because we want to overcome some limitations II. PROBLEM STATEMENT

due to the continuous and/or linear theory in the multiob-

I . . ; W id LTI pl , ted b
jective domain (see [11] for a discussion on the trade-offs e consider a planP, represented by
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Now let us introduce the following assumption to simplify System (3), (4) is a hybrid system with inputs which,
the technique we want to present. following the works in [3], [23], is suitably described by
Assumption 1: The plant (1) hasD,, = 0. o ensuring that the hybrid time domain of the input state

Note that Assumption 1 is not very restrictive. In case théz,, z., 7) and outputs, all coincide. Therefore when charac-
systemP hasD, # 0, we can always defing, := y, — D,u terizing the£, norm of a solution paifw, x) or of an output,

and usey, as new input for the hybrid controller (2). one should use sums and integrals (see also the recent work
Let us introduce our hybrid controller architecture [14]). Here we take a different route because we are focusing
) _ _ on the ordinary time response of the plant which is not
te = Acte+ Beyp i (2, 2.) € F or hybrid, and we focus on the ordinary-tinfg normt (or t-L»
T=1-dz (%) T €10, p] norm for short):
Cy zF = Kyzp if (zp,z.)eJand (2 - 1
Feol v € lp. 20) lelar = ([ lete.aPar) ©)
u= Cexc+ D.yp 0

with z, € R, 7 € R is the dwell-time logic (depending Which is well defined due to the presence of the dwell-time

deadzone functiodz(-)) andF and7 are the flow and jump domain unbounded in the ordinary time direction. A similar

sets, respectively, defined as approach has been used in [7], [16]. Note that using the norm
. (5) will enable us to carry out useful comparison to linear
F_ {{xp] : {xp} N [a:p} < —aa’ Py, - €|xc|2} ’ controllers inducing aft, specification on the continuous-
Ze Ze Ze time £, norm of the plant output. Based on (5), we will
(3a) denote byt-£, gain of (3), (4) fromw to z, the worst case
. ratio between| z,||2: and||w||2; over allw such thatfjw|| 2, #
T = {{%] : {%} N, [%} > _deppxp — ez}, 0 whenever (3), (4) starts from zero initial conditions.
Le Le Te| i While the above commented tools will be used to charac-
(3b) terize the external performance of our hybrid closed lotgp (i
with response to "external” perturbations), the internal prgpe

P A PB will be assessed establishing an exponential bound on the
Ny := He q 00 p]) (3c) trajectories of (3), (4) which only involves the ordinargg.
In particular, we will say that (3), (4) withv = 0 hast-
The parameters of the hybrid controller (2), (3) correspondecay raten if there existsM, > 0 such that for all initial
to A, B, C., D., Kp, P, = P/ >0, &, e andp and will  conditions(z(0, 0), 7(0,0)), one has
be designed in this paper.
Connecting in feedback andP is always possible since [2(t, j)| < My exp(—at)[z(0,0)|, V(t,j) € dom(z). (6)
Assumption 1 implies well-posedness in the linear sens

Thus, we obtain the hybrid closed-loop system |T‘h|s notion of ordinary-time exponential decay will allow

us to perform comparisons with the (continuous-time) expo-

0| _ w4 Buw nential decay induced by the stand&fd, controller. Note
be | it x€Forrel,p that due to the presence of the QWeII-time.Iog‘ioensuri'ng
sz p+t—s> p(j— k) for any pair of hybrid times(t, j),
o+ r (s,k) € dom(x_), (t,5) > (ch_), the t?(Ijecay rate property
ﬁ} = Az it 7 and 9 (4) (6) ensures uniform exponential stability of theomponent
Te F_ o TE 7 € [p. 2] of (3), (4) in the hybrid sense (see [24]). Nevertheless, we
z C_ D use (6) in our statement because we are actually interested
Zp = G+ Dw in establishing a (tight) exponential bound for our solatio
Yp = Cpzp + Dyyw

P which only involves the ordinary time Based on the above
with @ = [z7 27]7 e R", A, := [ §] and observations, the problem that we address in this paper is
the following one:
Problem: Consider the plant P in (1) under Assumption
1. Design the matrices 4., B, C., D., K,, P,, and the
positive scalars &, p and e such that

B, i. t-Decay rate:with w = 0 and for any initial condition,
= B.C, A B.D,, . global exponential stability of the hybrid closed-loop
C.+D.D.C, D.,C.|D,,+ D,D.D,

1To be precise the function in (5) is not a norm because, fomele,
Note that the architecture of the hybrid controller (2) witha solution¢ starting at a nonzero position and jumping in zerdzay) =

. 0,,0) would satisfy||£||2¢ = O (this is not the case for the norms in [3],
the flow and jump sets (3) corresponds to the one present&g])_ Nevertheless we call it norm through the paper dueh®intuition

in [5]. that it generalizes the continuous-time norm.
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system (4) (in the sense of [24]) with a t-decay rate K, are obtained, since inequality (8) is strict, it is always
& for the z,, component of the solution is ensured; possible to find a small enough> 0 that satisfies (8).

ii. Ho specification: given any w € t-Lo, the t-£5 gain _
from w to z, is less than ~ for all initial conditions B. Main result

satisfying x(0,0) = 0. Theorem 1. Given the plant (1) under Assumption 1,
assume that there exit = Y7 € R»*", W = W1 ¢
[11. MAIN AND PRELIMINARY RESULTS R > A € R™»X", B c R™*4, (' € RP*™ D € RP¥4
A. A preliminary result and positive scalars and« such that
Let us first state the lemma given below, which has Yy I
. ) . . > 0, (9a)
some interest of its own. The result is an extension of rw
the main result in [19, Theorem 2], which shows that an Y <0, (9b)

arbitrarily small twist of the flow and jump sets of [19,
Theorem 2] (thee|z.|* term in (3)) is sufficient to obtain
a strict Lyapunov function (instead, non-strict ones and
LaSalle type reasoning were required in [19, Theorem 2]).
The lemma below also illustrates how the solution proposed D. = D
in this paper does not require the dwell-time logic in the ¢, — ((j ~D.C,Y)Y —W—1)~L

He (APY + BPC') < —aY. (9c)

ased on any solution to (9), define

absence of disturbances and exhibits trivial (that is, et th 5 — _y-15 4 B,D.,
origin) Zeno solutions. When looking &£, norms and A, = —W‘l(fl+WBCC* Y — WB,Cu(Y — W)
nonzerow, dwell time is needed to ensure that all hybrid ~W(A, + B Dc% Y)Y f w11,
time domains are unbounded in the ordinary time direction B, =Y, ! g g
¢ _ K,= (Y -w-hy L
In the next statement we udwgbrid controller (2), (3) (10)

without dwell time to denote dynamics (2), (3) without the Then, for eachi satisfying0 < @ < «, there exists > 0
stater and where the conditions involving are removed sych that

from the flow/jump rules (this can be interpreted by select- B B
ing p = oo and disregarding the subcomponent of the He(P,(Ap + ByKp)) < —aP, — eK] K,.  (11)
solution). Similarly for (3), (4).

Lemma 1: Given the plantP in (1) with w = 0. If there
exist matrices”, = P > 0, andK, € R"»*"<, and positive
scalarsa ande such that

Moreover, for eaclr > 0 satisfying (11), there exists@a> 0
such that for any € (0, p) the hybrid controller (2) with
the flow and jump sets in (3) guarantees global exponential
stability of the origin for thex, component of the hybrid
He(P, (A, + ByK,)) < —aP, — KK, (8) closed-loop system (3), (4) withdecay ratev/2 and¢-Lo
gain smaller thany. O
then thehybrid controller (2), (3) without dwell-time 7 and Theorem 1 gives an LMlI-based convex procedure to
with 0 < & < «, guarantees global exponential stability ofdesign a hybrid controller, of the same order as the plant
the origin in the sense of [24] artellecay ratev/2 forthexz, P, solving the problem at the end of Section II. In this
component of each solution to thgbrid closed-loop system  paper we only consider the synthesis of a plant-order optima
(3), (4) without dwell-time 7. ¢ controller, which impliesz € R2?" in (4). The («a,7)
Lemma 1 provides sufficient conditions for global expoirade-off in our design can be addressed either by fixing
nential stability of the origin for the hybrid controller X2 « and solving an eigenvalue problem minimizingecause
with flow and jump sets (3) and without dwell-tinte Note  constraints (9) are linear in the unknown variables aftbas
that in [5] the same architecture is shown to guarantee globiaeen fixed, or fixingy and solving the generalized eigenvalue
exponential stability of the origin relying on a dwell-time problem arising from (9) (in particular, (9c)).
which is unnecessary here for this purpose. Moreover, this Inequalities (9a) and (9b) imply the existence of a matrix

lemma provides an estimate of thelecay rate. P = [25]71 = PT > 0. More specifically, defining
Note that for the simple exponential stability objective we/(z) = 27 Px, it turns out thatV can be used as a

might just use Lemma 1. Since (8) involves a quadratic termisturbance attenuation Lyapunov function which does not
in the unknownk,,, one way to design the controller is firstincrease at jumps, thus providing thel, gain of the
to selecte = 0, to solve (8) like in [5], [6] and oncé’, and statement. On the other hand, the hybrid controller (2)



has the flow and jump sets (3) based on a Lyapunov- 120

like function V,(z,) := 2l Pz, (see also Lemma 1) that 100¢ T el
under condition (11) guarantees global exponential stgbil 8of 1
of the hybrid closed-loop system withdecay ratei/2. The > 60
main idea behind our construction is to define a reset map aor
able to overlap these two functions without affecting each 201 R ek itk it
K . 0 i i i i i i i
performance property. The next remark gives further detail 0 05 1 15 2 25 3 35 4
on this topic. “
Remark L Under the hypotheses of Theorem 1_and with Fig. 1. Trend ofy and « for the linear and hybrid case.
relation to the design problem at the end of Section II, the
two functionsV(z) and V,(x,) mentioned above are such
that is referred to [22, Theorem 2] and [4] for what is next. Since
« V guarantees thé{., specification, arising from the the quadratic Lyapunov function in the transformed coordi-
continuous (flow) dynamics of the closed loop; nates ofS is a quadratic form with the matri¥ = [¥ 1],

« V, guarantees the-decay rate, by enforcing a jump then the multiobjective synthesis (optimal with respedh
(from the definition of flow and jump sets) wheneverZ, gain and decay rata;) for the linear (and continuous-

the decay rate condition would be violated; time) case is given by solving (9a), (9b) and
« V andV, do not increase across jumps;
« V andV, match after each jump (namely(z") = ¥ < —ap { yoI } (12)
. I w |’
Vo(wp))i | _
» after each jump both functions share the same dynamlwshere;1 is defined in (7), and computing the linear con-
(namelyV (z) = V,(x,)). troller (A., B., C., D.) by using (10).

Using the properties above, through the resets we can keepNote that inequality (12) is more restrictive than (9¢) and
all the trajectories in the region whefié,, therefore|z,|, allows us to conclude that the guaranteed decay rate by the
decreases at the desired rate. At the same time, we ceontinuous-time linear design ia/2. In the sequel we
integratel along flows and, sinc& does not increase at will use oy, to denote the decay rate for the linear case
jumps, we can add all these integrals to obtain #g,  and to distinguish it from the hybrid decay rateused in
specification. Note that we are not claiming to use a differerthe previous section. With this notation, we can state the
Lyapunov function for each objective, and the conservativdollowing lemma.

ness discussed in [2ZIV.A] still holds. However, since Lemma 2: Given the plantP in (1) under Assumption 1,
the controller state can be reset (this is an extra degree @rtition matrix2; in (7) asX; := ;1; gm . If there exists
freedom), the flow and jump sets (affecting the decay rat@). > ¢ such that conditions (9a), (9b) and (12) are satisfied
can be designed based on the Lyapunov-like functipthat by suitable matricesi, B, ¢, D, Y, W and a scalany,

privileges the decrease in the -direction. Moreover, such then there exist an > «, satisfying (9c). More specifically,
a function is built from the functio” and shares with it gjyen the strictly positive scalar

some properties as stated above. As a final remark, we should A -
mention that an important degree of freedom is obtained by & = Anin (=T'(Z13 + a, W) ~'TT), (13)
the fact that we only require thedecay rate property for

the x,, substate (whereas with linear techniques, one wou . P
need to focus on the whole state,, x.)). same solutio, B, C, D, Y, W anda = ar + . 0

Remark 2: The flow and jump sets (3) depend on the Lemma 2 establishes that any solution to the linear design
selection ofa ande. Note that, asy tends toa, the flow set problem (9a), (9b), (12) is also a solution of our constireti

shrinks and the controller is expected to jump more 01‘tet¥‘.'ith a st!ictly Iarger dgcay rate, the gap being at least the
The smallest flow set is obtained for = a. It should be duantitya >0 defined in (13).

also emphasized that increased valuesaofire expected V. SIMULATIONS

to produce smaller values ¢f, because requiring a faster ) ) ) _
convergence rate, in general, would reduce the left marginA comparison between the linear and hybrid case is

by our inequalities for tolerating the perturbations agsi prese_nt_ed. The controlle_r in the Iinegr case is designed
from the dwell-time mechanism. + combining the# ., synthesis and the regional pole placement

presented in Section IV (see also [22], [4]). The hybrid
IV. COMPARISON TO LINEAR PERFORMANCE  controller is obtained with the technique in Theorem 1.
In this section we present the equivalent multiobjectiv8oth design syntheses are obtained by fiximgand o,
technique for the linear case (see [22], [4]) and then a lemnsaich a way to cope only with LMI eigenvalue problems
stating the expected performance difference, concertiag trather than generalized eigenvalue problems. Therefoee, w
decay rate, between the linear and hybrid approaches. compare controllers (linear and hybrid) guaranteeing the
First let us consider the continuous-time part of controllesame convergence rate (namely= o).
(2), that isA.., B., C. andD, without dwell time. The reader  Let us consider a DC motor and a load used in [6],

With I = Y*%A(i}g + qLI), conditions (9) holg with the



approximated by a second order model by neglecting the
electrical time constant. The plant can be represented as

A, | B, | B 24 0] 21
e 1 0lo0|1
7z j?z Djw - 0 1/10]0
Cp | Dp | Duw 0 1]0]5

Note that for the purpose of the simulation we decided
to use a performance outprf which penalizes the control
input « coming from the controller and the plant output.
The exogenous signab can affect the state dynamics and
the outputy,,.

Figure 1 shows the optimal values obtained with the
linear and the hybrid syntheses as a function of the decay
rate. It is easy to see that the hybrid case can induce a
certain convergence rate without giving up too much on
the achievablg-L-, gain (in the sequels, since there is
no ambiguity (see Section Il)). For decay rates larger than
a = 0.5, the linear synthesis returns largés gains than the
hybrid synthesis, whosg€, gains show a mild increase.

To show the effectiveness of our method, we propose two
design syntheses with = o, = 0.5 anda = ar = 2,
respectively. To show that both items of the problem in
Section Il are solved, for each synthesis there will be two
simulations:

e (no disturbance) a simulation with z(0) :=
[2,(0)T, 2.(0)T]T = [-0.7, —4, 0, 0]7 and no dis-
turbance; this case illustrates the effectiveness of the
estimate of the rate of convergence;

o (zero initial condition) a simulation witha(0) = 0
and w(t — to) = exp(—(t — tp)), with ¢, = 1; this
case illustrates the effectiveness of the estimate of the
Lo gain.

of convergence between the linear and hybrid case.

A. Synthesis with o = 0.5
In this case, the syntheses return the linear controller

[ —2.5635 —1.1005(0.5222]
= 1 -0.2 | 0.2
| —0.0818 —0.4503]0.1611 |
and the hybrid controller
[ —2.5635 —1.1005(0.5222]
= 1 —-0.2 | 0.2
| —0.0818 —0.4503]0.1611 |

A | Be
0.1661 0.3842 ‘0.9999 0 ]

o

[ PolKp ] = [0.3842 0.8888 | 0  0.9999
[@]e|p]=]04995]0.001|0.001 ].

Note that in this case the hybrid synthesis returned
a hybrid controller whose continuous-time part (that is
(A., B, C., D.)) matches the controller obtained through
the linear synthesis.

S| o

Fig. 2.

AC C

TABLE |

[zpll2¢/llwll2

hybrid
linear

8.0533

linear
—-— - hybrid
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14 16 18 20

Hybrid and linear controllers fax = 0.5 (no disturbance).
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linear
— - — - hybrid
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Time

8
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Time
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0 Jkﬁ//
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B. Synthesis with a = 2

Let us now consider the syntheses obtained with- 2.
In this case, the syntheses return the linear controller

6

10 12 14 16 18 20
Time

Fig. 3. Hybrid and linear controllers far = 0.5 (zero initial condition).

As Figure 1 shows (see also Table 1), far= 0.5 the
Once again, we point out that both linear and hybrid synthdinear and hybrid controllers guarantee the safegain.
ses are obtained for a given speed of convergence. Therefdvioreover, looking at the transfer functions of both closed-

we do not expect, a priori, important differences in the spedoop systems (for the hybrid case we used the continuous-
time part to compute it), it turns out that there is an unstabl

zero. It is surprising that the effects of the reset action on
the reset controller somehow mitigates the negative effefct

this bad zero on the transient response (see Figure 2 where
the hybrid response shows a reduced undershoot). On the
other hand, Figure 3 depicts the fact that in the presence
of a disturbancev € L5, the hybrid and linear controllers
behave essentially in the same way, which is expected, since
the v is the same for both controllers. Table | reports the
estimated(, gain~ coming from our LMls, together with

the lower bound obtained from computifig, ||2;/||w]|2; for

the simulation curves. Clearly this lower bound is smaller
than~.

—759441.3562 —1756876.5916|—0.2001
= | —273818.5690 —633452.3572| 1.5878

—393020.4671 —909208.6041 | —0.1334




and the hybrid controller
(1]

il B —~3.3135 —3.07080.7572
~—| =] 09999 —02 [ 02 |,
Ce | De —0.4567 —1.4354[0.2786
2
Bk, | | 0748 17324 09999 0 2
Pl 5= | 1732440081 | 0 0.9999 |

[ale|p]=11998]0.001]0.001 |. [3]

Figure 4 shows that the hybrid controller induces a com-4l
parable decay rate to the linear one. Indeed both contsoller
induce decay rate = 2. Instead, Figure 5 illustrates th& 5]
gain improvement arisen from the use of the hybrid solution.

In particular, looking at the performance outpt(middle
plot), it is possible to see the improvement with the hybrid[s)
controller (see also Table II).

VI. CONCLUSIONS

A multiobjective synthesis for a hybrid controller has g
been presented. It has been shown that the hybrid synthesis
can guarantee a better trade-off betwegp gain and
guaranteed decay rate as compared to a linear controller. {g
has been also proved that for a givethe hybrid controller
can guarantee a strictly larger decay rate as compared to W&
linear case, even if the improvement can be small.

[11]
TABLE Il [12]
_ lzpll2e /Nwll2e v o
hybrid 13.9302 13.9312 9 [13]
linear 41.8168 55.6699 [14]
oF
< B 125]
0 05 1 15 2 25 3 35 4 45 5
Time
40} [16]
NS 20—\¥
or [17]
7200 05 1 15 2 25 3 35 4 45 5
Time
s 2¥ [18]
ol
0 05 1 15 2 25 3 35 4 45 5
Time
) . . . [19]
Fig. 4. Hybrid and linear controllers fax = 2 (no disturbance).
NI - linear [20]
> S~ — -~ hybrid
) B [21]
[22]
[23]
[24]

Fig. 5. Hybrid and linear controllers fak = 2 (zero initial condition).
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