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A Convex Hybrid H∞ Synthesis With Guaranteed Convergence Rate

Francesco Fichera, Christophe Prieur, Sophie Tarbouriechand Luca Zaccarian

Abstract— In this paper, a hybrid controller design for a
continuous-time linear time-invariant (LTI) plant is pres ented.
The idea is to simultaneously design the flow and jump maps
with the respective sets of the controller, guaranteeingH∞

specifications and decay rate of the plant state of the hybrid
closed-loop system. A convex LMI-based design procedure is
proposed, generalizing the results in [22].

Index Terms—Hybrid controller synthesis, exponential sta-
bility, convergence rate,H∞ specification.

I. INTRODUCTION

Hybrid control theory is being developed to provide more
flexible stabilizing and performing controllers, overcoming
some intrinsic limitations of the classical theory. Withinthe
general context of hybrid systems, much attention has been
devoted in recent years to the study of hybrid (or reset)
controllers for improved performance with continuous-time
plants. In [1], [2], [15] promising performance analysis for
some specific hybrid systems have been presented with re-
spect to rise-time, overshoot, settling-time. In [17] it isshown
that the desirable closed-loop behavior may be induced by
resetting the controller according to an optimal reset law.
Also in [19] optimal techniques for overshoot reduction and
maximization of the decay rate have been presented. Both in
[17] and [19] (see also [2], [5], [6], [11], [18]) the hybrid part
with a suitable reset law is added to a preexisting controller
(not necessarily stabilizing in some cases) to enhance the
entire closed-loop system.

In this paper, we present an optimal technique to design a
hybrid controller, that is, both continuous and discrete parts
(including also the flow and jump sets) are simultaneously
designed according to an optimal criterion. We point out
that, in general, the optimal design of a hybrid controller
cannot be achieved by separately designing the continuous
and discrete parts according to the desired cost functions and
combining the two parts a posteriori, because the obtained
hybrid dynamics can negatively affect the optimal indexes
and may also lead to instability (see [10], [13]).

The hybrid controller synthesis we propose is multiobjec-
tive oriented because we want to overcome some limitations
due to the continuous and/or linear theory in the multiob-
jective domain (see [11] for a discussion on the trade-offs
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of a single linear controller used for multiple performance
purposes). On the other hand, in [12], [20] it has been proved
that for LTI plants, there exists no nonlinear (possibly time-
varying) controller that yields anL2 gain lower than the one
associated to the optimal linear controller. The main idea of
this paper is to carry out with a multiobjective synthesis to
achieve a desired convergence rate andH∞ specifications
through a hybrid controller. It will be shown that, given
a desired (and achievable)L2 gain, the hybrid controller
guarantees a convergence rate higher than or equal to the
optimal one induced by a convex linear controller design,
thus reaching a better trade-off between the two required
specifications.

In the current literature, [21] needs to be mentioned where
a line search parameter is used to design a linear dynamical
feedback controller and a resetting rule satisfying someH∞

specification.
Finally, we point out that the results in this paper can be

extended to the output feedback case using the construction
presented in [6]. For a comprehensive overview of the hybrid
systems framework that we use here, the reader can consult
[8], [9].

The paper is organized as follows. In Section II the consid-
ered plant and the problem we want to solve are defined. In
Section III the main results are presented followed by some
remarks. In Section IV, we compare our performance to the
one obtained with the linear solution. Section V contains
some simulations to show the advantages of our technique.
Section VI concludes the paper. The proofs of the results are
omitted.

Notation. R denotes the set of real numbers,R≥0 denotes
the set of non-negative real numbers. The Euclidean norm is
denoted by| · |. For a matrixM , He(M) = M +MT . For
anys ∈ R, the functiondz : R → R is defined bydz(s) = 0
if |s| ≤ 1 and dz(s) = sgn(s)(|s| − 1) if |s| ≥ 1. Given a
matrix Q, λmin(Q) (resp.λmax(Q)) denotes the minimum
(resp. the maximum) eigenvalue ofQ.

II. PROBLEM STATEMENT

We consider a LTI plantP , represented by

P







ẋp = Āpxp + B̄pu+ B̄ww
zp = C̄zxp + D̄zu+ D̄zww
yp = C̄pxp + D̄pu+ D̄ww

(1)

wherexp ∈ R
np is the state of the system,u ∈ R

p is the
control input,yp ∈ R

q is the measured output (used for the
feedback),w ∈ R

r is an exogenous input (like disturbances,
references) andzp ∈ R

ν is the performance output.



Now let us introduce the following assumption to simplify
the technique we want to present.

Assumption 1: The plant (1) has̄Dp = 0. ◦
Note that Assumption 1 is not very restrictive. In case the

systemP hasD̄p 6= 0, we can always definēyp := yp−D̄pu
and usēyp as new input for the hybrid controller (2).

Let us introduce our hybrid controller architecture

C



























ẋc = Ācxc + B̄cyp

τ̇ = 1− dz
(

τ
ρ

)
if (xp, xc) ∈ F or

τ ∈ [0, ρ]

x+
c = Kpxp

τ+ = 0
if (xp, xc) ∈ J and

τ ∈ [ρ, 2ρ]
u = C̄cxc + D̄cyp

(2)

with xc ∈ R
nc , τ ∈ R is the dwell-time logic (depending

on the parameterρ to be selected and on the standard unit
deadzone functiondz(·)) andF andJ are the flow and jump
sets, respectively, defined as

F =

{

[

xp

xc

]

:

[

xp

xc

]T

Np

[

xp

xc

]

≤ −α̃xT
p P̄pxp − ǫ|xc|

2

}

,

(3a)

J =

{

[

xp

xc

]

:

[

xp

xc

]T

Np

[

xp

xc

]

≥ −α̃xT
p P̄pxp − ǫ|xc|

2

}

,

(3b)

with

Np := He

([

P̄pAp P̄pBp

0 0

])

. (3c)

The parameters of the hybrid controller (2), (3) correspond
to Āc, B̄c, C̄c, D̄c, Kp, P̄p = P̄T

p > 0, α̃, ǫ andρ and will
be designed in this paper.

Connecting in feedbackC andP is always possible since
Assumption 1 implies well-posedness in the linear sense.
Thus, we obtain the hybrid closed-loop system



















































[

ẋp

ẋc

]

= Ax+ Bw

τ̇ = 1− dz
(

τ
ρ

)
if x ∈ F or τ ∈ [0, ρ]

[

x+
p

x+
c

]

= Arx

τ+ = 0
if x ∈ J andτ ∈ [ρ, 2ρ]

zp = Cx+Dw
yp = C̄pxp + D̄ww

(4)

with x = [xT
p xT

c ]
T ∈ R

n, Ar :=
[

I 0
Kp 0

]

and

(

A B
C D

)

:=





Ap Bp

Bc Ac

Bpw

Bcw

C D





:=





Āp + B̄pD̄cC̄p B̄pC̄c B̄w + B̄pD̄cD̄w

B̄cC̄p Āc B̄cD̄w

C̄z + D̄zD̄cC̄p D̄zC̄c D̄zw + D̄zD̄cD̄w



 .

Note that the architecture of the hybrid controller (2) with
the flow and jump sets (3) corresponds to the one presented
in [5].

System (3), (4) is a hybrid system with inputs which,
following the works in [3], [23], is suitably described by
ensuring that the hybrid time domain of the inputw, state
(xp, xc, τ) and outputs, all coincide. Therefore when charac-
terizing theL2 norm of a solution pair(w, x) or of an output,
one should use sums and integrals (see also the recent work
[14]). Here we take a different route because we are focusing
on the ordinary time response of the plantP , which is not
hybrid, and we focus on the ordinary-timeL2 norm1 (or t-L2

norm for short):

‖ξ‖2t =

(∫ ∞

0

|ξ(t, j)|2dt

)
1

2

, (5)

which is well defined due to the presence of the dwell-time
logic τ ensuring that all the solutions have unbounded time
domain unbounded in the ordinary time direction. A similar
approach has been used in [7], [16]. Note that using the norm
(5) will enable us to carry out useful comparison to linear
controllers inducing anH∞ specification on the continuous-
time L2 norm of the plant output. Based on (5), we will
denote byt-L2 gain of (3), (4) fromw to zp the worst case
ratio between‖zp‖2t and‖w‖2t over allw such that‖w‖2t 6=
0 whenever (3), (4) starts from zero initial conditions.

While the above commented tools will be used to charac-
terize the external performance of our hybrid closed loop (its
response to ”external” perturbations), the internal property
will be assessed establishing an exponential bound on the
trajectories of (3), (4) which only involves the ordinary time.
In particular, we will say that (3), (4) withw = 0 has t-
decay rateα if there existsMx > 0 such that for all initial
conditions(x(0, 0), τ(0, 0)), one has

|x(t, j)| ≤ Mx exp(−αt)|x(0, 0)|, ∀(t, j) ∈ dom(x). (6)

This notion of ordinary-time exponential decay will allow
us to perform comparisons with the (continuous-time) expo-
nential decay induced by the standardH∞ controller. Note
that due to the presence of the dwell-time logicτ , ensuring
ρ + t − s ≥ ρ(j − k) for any pair of hybrid times(t, j),
(s, k) ∈ dom(x), (t, j) ≥ (s, k), the t-decay rate property
(6) ensures uniform exponential stability of thex component
of (3), (4) in the hybrid sense (see [24]). Nevertheless, we
use (6) in our statement because we are actually interested
in establishing a (tight) exponential bound for our solution
which only involves the ordinary timet. Based on the above
observations, the problem that we address in this paper is
the following one:
Problem: Consider the plant P in (1) under Assumption
1. Design the matrices Āc, B̄c, C̄c, D̄c, Kp, P̄p, and the
positive scalars α̃, ρ and ǫ such that

i. t-Decay rate: with w = 0 and for any initial condition,
global exponential stability of the hybrid closed-loop

1To be precise the function in (5) is not a norm because, for example,
a solutionξ starting at a nonzero position and jumping in zero at(t, j) =
(0, 0) would satisfy‖ξ‖2t = 0 (this is not the case for the norms in [3],
[14]). Nevertheless we call it norm through the paper due to the intuition
that it generalizes the continuous-time norm.



Σ :=

[

Σ1 Σ2

ΣT
2 Σ3

]

:= He

















ĀpY + B̄pĈ Āp + B̄pD̂C̄p B̄w + B̄pD̂D̄w Y C̄T
z + ĈT D̄T

z

Â WĀp + B̂C̄p WB̄w + B̂D̄w C̄T
z + C̄T

p D̂
T D̄T

z

0 0 − γ

2
I D̄T

zw + D̄T
wD̂

T D̄T
z

0 0 0 − γ
2
I

















(7)

system (4) (in the sense of [24]) with a t-decay rate
α̃ for the xp component of the solution is ensured;

ii. H∞ specification: given any w ∈ t-L2, the t-L2 gain
from w to zp is less than γ for all initial conditions
satisfying x(0, 0) = 0.

III. MAIN AND PRELIMINARY RESULTS

A. A preliminary result

Let us first state the lemma given below, which has
some interest of its own. The result is an extension of
the main result in [19, Theorem 2], which shows that an
arbitrarily small twist of the flow and jump sets of [19,
Theorem 2] (theǫ|xc|

2 term in (3)) is sufficient to obtain
a strict Lyapunov function (instead, non-strict ones and a
LaSalle type reasoning were required in [19, Theorem 2]).
The lemma below also illustrates how the solution proposed
in this paper does not require the dwell-time logic in the
absence of disturbances and exhibits trivial (that is, at the
origin) Zeno solutions. When looking att-L2 norms and
nonzerow, dwell time is needed to ensure that all hybrid
time domains are unbounded in the ordinary time direction
t.

In the next statement we usehybrid controller (2), (3)
without dwell time to denote dynamics (2), (3) without the
stateτ and where the conditions involvingτ are removed
from the flow/jump rules (this can be interpreted by select-
ing ρ = ∞ and disregarding theτ subcomponent of the
solution). Similarly for (3), (4).

Lemma 1: Given the plantP in (1) with w = 0. If there
exist matrices̄Pp = P̄T

p > 0, andKp ∈ R
np×nc , and positive

scalarsα andǫ such that

He(P̄p(Ap +BpKp)) < −αP̄p − ǫKT
p Kp, (8)

then thehybrid controller (2), (3) without dwell-time τ and
with 0 < α̃ ≤ α, guarantees global exponential stability of
the origin in the sense of [24] andt-decay ratẽα/2 for thexp

component of each solution to thehybrid closed-loop system
(3), (4) without dwell-time τ . ♦

Lemma 1 provides sufficient conditions for global expo-
nential stability of the origin for the hybrid controller (2)
with flow and jump sets (3) and without dwell-timeτ . Note
that in [5] the same architecture is shown to guarantee global
exponential stability of the origin relying on a dwell-time,
which is unnecessary here for this purpose. Moreover, this
lemma provides an estimate of thet-decay rate.

Note that for the simple exponential stability objective we
might just use Lemma 1. Since (8) involves a quadratic term
in the unknownKp, one way to design the controller is first
to selectǫ = 0, to solve (8) like in [5], [6] and oncēPp and

Kp are obtained, since inequality (8) is strict, it is always
possible to find a small enoughǫ > 0 that satisfies (8).

B. Main result

Theorem 1: Given the plant (1) under Assumption 1,
assume that there existY = Y T ∈ R

np×np , W = WT ∈
R

np×np , Â ∈ R
np×np , B̂ ∈ R

np×q, Ĉ ∈ R
p×np , D̂ ∈ R

p×q

and positive scalarsγ andα such that
[

Y I
I W

]

> 0, (9a)

Σ < 0, (9b)

He
(

ĀpY + B̄pĈ
)

< −αY. (9c)

Based on any solution to (9), define

D̄c = D̂,

C̄c = (Ĉ − D̄cC̄pY )(Y −W−1)−1,

B̄c = −W−1B̂ + B̄pD̄c,

Āc = −W−1(Â+WB̄cC̄pY −WB̄pC̄c(Y −W−1)
−W (Āp + B̄pD̄cC̄p)Y )(Y −W−1)−1,

P̄p = Y −1,
Kp = (Y −W−1)Y −1.

(10)
Then, for each̃α satisfying0 < α̃ ≤ α, there existsǫ > 0
such that

He(P̄p(Ap +BpKp)) < −α̃P̄p − ǫKT
p Kp. (11)

Moreover, for eachǫ > 0 satisfying (11), there exists āρ > 0
such that for anyρ ∈ (0, ρ̄) the hybrid controller (2) with
the flow and jump sets in (3) guarantees global exponential
stability of the origin for thexp component of the hybrid
closed-loop system (3), (4) witht-decay ratẽα/2 and t-L2

gain smaller thanγ. �

Theorem 1 gives an LMI-based convex procedure to
design a hybrid controller, of the same order as the plant
P , solving the problem at the end of Section II. In this
paper we only consider the synthesis of a plant-order optimal
controller, which impliesx ∈ R

2np in (4). The (α, γ)
trade-off in our design can be addressed either by fixing
α and solving an eigenvalue problem minimizingγ because
constraints (9) are linear in the unknown variables afterα has
been fixed, or fixingγ and solving the generalized eigenvalue
problem arising from (9) (in particular, (9c)).

Inequalities (9a) and (9b) imply the existence of a matrix
P = [ Y Z

Z Z ]
−1

= PT > 0. More specifically, defining
V̄ (x) = xTPx, it turns out that V̄ can be used as a
disturbance attenuation Lyapunov function which does not
increase at jumps, thus providing thet-L2 gain of the
statement. On the other hand, the hybrid controller (2)



has the flow and jump sets (3) based on a Lyapunov-
like function Vp(xp) := xT

p P̄pxp (see also Lemma 1) that
under condition (11) guarantees global exponential stability
of the hybrid closed-loop system witht-decay ratẽα/2. The
main idea behind our construction is to define a reset map
able to overlap these two functions without affecting each
performance property. The next remark gives further details
on this topic.

Remark 1: Under the hypotheses of Theorem 1 and with
relation to the design problem at the end of Section II, the
two functionsV̄ (x) and Vp(xp) mentioned above are such
that

• V̄ guarantees theH∞ specification, arising from the
continuous (flow) dynamics of the closed loop;

• Vp guarantees thet-decay rate, by enforcing a jump
(from the definition of flow and jump sets) whenever
the decay rate condition would be violated;

• V̄ andVp do not increase across jumps;
• V̄ and Vp match after each jump (namelȳV (x+) =

Vp(xp));
• after each jump both functions share the same dynamics

(namely ˙̄V (x+) = V̇p(xp)).
Using the properties above, through the resets we can keep
all the trajectories in the region whereVp, therefore|xp|,
decreases at the desired rate. At the same time, we can
integrateV̄ along flows and, sincēV does not increase at
jumps, we can add all these integrals to obtain theH∞

specification. Note that we are not claiming to use a different
Lyapunov function for each objective, and the conservative-
ness discussed in [22,§IV.A] still holds. However, since
the controller state can be reset (this is an extra degree of
freedom), the flow and jump sets (affecting the decay rate)
can be designed based on the Lyapunov-like functionVp that
privileges the decrease in thexp-direction. Moreover, such
a function is built from the function̄V and shares with it
some properties as stated above. As a final remark, we should
mention that an important degree of freedom is obtained by
the fact that we only require thet-decay rate property for
the xp substate (whereas with linear techniques, one would
need to focus on the whole state(xp, xc)). ⋆

Remark 2: The flow and jump sets (3) depend on the
selection ofα̃ andǫ. Note that, as̃α tends toα, the flow set
shrinks and the controller is expected to jump more often.
The smallest flow set is obtained for̃α = α. It should be
also emphasized that increased values ofα̃ are expected
to produce smaller values of̄ρ, because requiring a faster
convergence rate, in general, would reduce the left margin
by our inequalities for tolerating the perturbations arising
from the dwell-time mechanism. ⋆

IV. COMPARISON TO LINEAR PERFORMANCE

In this section we present the equivalent multiobjective
technique for the linear case (see [22], [4]) and then a lemma
stating the expected performance difference, concerning the
decay rate, between the linear and hybrid approaches.

First let us consider the continuous-time part of controller
(2), that isĀc, B̄c, C̄c andD̄c without dwell time. The reader
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Fig. 1. Trend ofγ andα for the linear and hybrid case.

is referred to [22, Theorem 2] and [4] for what is next. Since
the quadratic Lyapunov function in the transformed coordi-
nates ofΣ is a quadratic form with the matrixP = [ Y I

I W ],
then the multiobjective synthesis (optimal with respect tothe
L2 gain and decay rateαL) for the linear (and continuous-
time) case is given by solving (9a), (9b) and

Σ1 < −αL

[

Y I
I W

]

, (12)

whereΣ1 is defined in (7), and computing the linear con-
troller (Āc, B̄c, C̄c, D̄c) by using (10).

Note that inequality (12) is more restrictive than (9c) and
allows us to conclude that the guaranteed decay rate by the
continuous-time linear design isαL/2. In the sequel we
will use αL to denote the decay rate for the linear case
and to distinguish it from the hybrid decay rateα used in
the previous section. With this notation, we can state the
following lemma.

Lemma 2: Given the plantP in (1) under Assumption 1,
partition matrixΣ1 in (7) asΣ1 :=

[

Σ̄11 Σ̄12

Σ̄
T
12

Σ̄13

]

. If there exists
a γ > 0 such that conditions (9a), (9b) and (12) are satisfied
by suitable matriceŝA, B̂, Ĉ, D̂, Y , W and a scalarαL,
then there exist anα > αL satisfying (9c). More specifically,
given the strictly positive scalar

ˆ̃α := λmin(−Γ(Σ̄13 + αLW )−1ΓT ), (13)

with Γ := Y − 1

2 (Σ̄12 + αLI), conditions (9) hold with the
same solutionÂ, B̂, Ĉ, D̂, Y , W andα = αL + ˆ̃α. ♦

Lemma 2 establishes that any solution to the linear design
problem (9a), (9b), (12) is also a solution of our construction
with a strictly larger decay rate, the gap being at least the
quantity ˆ̃α > 0 defined in (13).

V. SIMULATIONS

A comparison between the linear and hybrid case is
presented. The controller in the linear case is designed
combining theH∞ synthesis and the regional pole placement
presented in Section IV (see also [22], [4]). The hybrid
controller is obtained with the technique in Theorem 1.
Both design syntheses are obtained by fixingα and αL

such a way to cope only with LMI eigenvalue problems
rather than generalized eigenvalue problems. Therefore, we
compare controllers (linear and hybrid) guaranteeing the
same convergence rate (namelyα = αL).

Let us consider a DC motor and a load used in [6],



approximated by a second order model by neglecting the
electrical time constant. The plant can be represented as







Āp B̄p B̄w

C̄z D̄z D̄zw

C̄p D̄p D̄w






=









−2.4 0 2 1
1 0 0 1
0 1 10 0
0 1 0 5









.

Note that for the purpose of the simulation we decided
to use a performance outputzp which penalizes the control
input u coming from the controller and the plant output.
The exogenous signalw can affect the state dynamics and
the outputyp.

Figure 1 shows the optimal valuesγ obtained with the
linear and the hybrid syntheses as a function of the decay
rate. It is easy to see that the hybrid case can induce a
certain convergence rate without giving up too much on
the achievablet-L2 gain (in the sequelL2, since there is
no ambiguity (see Section II)). For decay rates larger than
α = 0.5, the linear synthesis returns largerL2 gains than the
hybrid synthesis, whoseL2 gains show a mild increase.

To show the effectiveness of our method, we propose two
design syntheses withα = αL = 0.5 and α = αL = 2,
respectively. To show that both items of the problem in
Section II are solved, for each synthesis there will be two
simulations:

• (no disturbance) a simulation with x(0) :=
[xp(0)

T , xc(0)
T ]T = [−0.7, −4, 0, 0]T and no dis-

turbance; this case illustrates the effectiveness of the
estimate of the rate of convergence;

• (zero initial condition ) a simulation withx(0) = 0
and w(t − t0) := exp(−(t − t0)), with t0 = 1; this
case illustrates the effectiveness of the estimate of the
L2 gain.

Once again, we point out that both linear and hybrid synthe-
ses are obtained for a given speed of convergence. Therefore,
we do not expect, a priori, important differences in the speed
of convergence between the linear and hybrid case.

A. Synthesis with α = 0.5

In this case, the syntheses return the linear controller
[

Āc B̄c

C̄c D̄c

]

:=





−2.5635 −1.1005 0.5222
1 −0.2 0.2

−0.0818 −0.4503 0.1611



 ,

and the hybrid controller
[

Āc B̄c

C̄c D̄c

]

:=





−2.5635 −1.1005 0.5222
1 −0.2 0.2

−0.0818 −0.4503 0.1611



 ,

[

P̄p Kp

]

:=

[

0.1661 0.3842
0.3842 0.8888

0.9999 0
0 0.9999

]

[

α̃ ǫ ρ
]

=
[

0.4995 0.001 0.001
]

.

Note that in this case the hybrid synthesis returned
a hybrid controller whose continuous-time part (that is
(Āc, B̄c, C̄c, D̄c)) matches the controller obtained through
the linear synthesis.

TABLE I

‖zp‖2t/‖w‖2t γ α
hybrid
linear

8.0533 8.0539 0.5
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Fig. 2. Hybrid and linear controllers forα = 0.5 (no disturbance).
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Fig. 3. Hybrid and linear controllers forα = 0.5 (zero initial condition ).

As Figure 1 shows (see also Table I), forα = 0.5 the
linear and hybrid controllers guarantee the sameL2 gain.
Moreover, looking at the transfer functions of both closed-
loop systems (for the hybrid case we used the continuous-
time part to compute it), it turns out that there is an unstable
zero. It is surprising that the effects of the reset action on
the reset controller somehow mitigates the negative effects of
this bad zero on the transient response (see Figure 2 where
the hybrid response shows a reduced undershoot). On the
other hand, Figure 3 depicts the fact that in the presence
of a disturbancew ∈ L2, the hybrid and linear controllers
behave essentially in the same way, which is expected, since
the γ is the same for both controllers. Table I reports the
estimatedL2 gain γ coming from our LMIs, together with
the lower bound obtained from computing‖zp‖2t/‖w‖2t for
the simulation curves. Clearly this lower bound is smaller
thanγ.

B. Synthesis with α = 2

Let us now consider the syntheses obtained withα = 2.
In this case, the syntheses return the linear controller

[

Āc B̄c

C̄c D̄c

]

:=





−759441.3562 −1756876.5916 −0.2001
−273818.5690 −633452.3572 1.5878
−393020.4671 −909208.6041 −0.1334



,



and the hybrid controller
[

Āc B̄c

C̄c D̄c

]

:=





−3.3135 −3.0708 0.7572
0.9999 −0.2 0.2
−0.4567 −1.4354 0.2786



 ,

[

P̄p Kp

]

:=

[

0.7488 1.7324
1.7324 4.0081

0.9999 0
0 0.9999

]

.

[

α̃ ǫ ρ
]

=
[

1.998 0.001 0.001
]

.

Figure 4 shows that the hybrid controller induces a com-
parable decay rate to the linear one. Indeed both controllers
induce decay rateα = 2. Instead, Figure 5 illustrates theL2

gain improvement arisen from the use of the hybrid solution.
In particular, looking at the performance outputzp (middle

plot), it is possible to see the improvement with the hybrid
controller (see also Table II).

VI. CONCLUSIONS

A multiobjective synthesis for a hybrid controller has
been presented. It has been shown that the hybrid synthesis
can guarantee a better trade-off betweenL2 gain and
guaranteed decay rate as compared to a linear controller. It
has been also proved that for a givenγ the hybrid controller
can guarantee a strictly larger decay rate as compared to the
linear case, even if the improvement can be small.

TABLE II

‖zp‖2t/‖w‖2t γ α
hybrid
linear

13.9302
41.8168

13.9312
55.6699

2
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Fig. 4. Hybrid and linear controllers forα = 2 (no disturbance).
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Fig. 5. Hybrid and linear controllers forα = 2 (zero initial condition ).
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[15] D. Nešić, A.R. Teel, and L. Zaccarian. Stability and Performance
of SISO Control Systems with First Order Reset Elements.IEEE
Transactions on Automatic Control, page in press, 2011.

[16] D. Nešić, L. Zaccarian, and A.R. Teel. Stability Properties of Reset
Systems.Automatica, 44(8):2019–2026, 2008.

[17] F.R. Poursafei, J.P. Hespanha, and G. Stewart. Quadratic Optimization
for Controller Initialization in Multivariable SwitchingSystems. In
Proceedings of the 2010 American Control Conference, pages 2511–
2516, Baltimore, Maryland, USA, June 2010.

[18] C. Prieur, S. Tarbouriech, and L. Zaccarian. Guaranteed Stability for
Nonlinear Systems by Means of a Hybrid Loop. InProceedings of
the 8th IFAC Symposium on Nonlinear Control Systems (NOLCOS),
pages 72–77, Bologna, Italy, September 2010.

[19] C. Prieur, S. Tarbouriech, and L. Zaccarian. Improvingthe Perfor-
mance of Linear Systems by adding a Hybrid Loop. In18th IFAC
World Congress, Milano, Italy, September 2011.

[20] S. Rangan. MultiobjectiveH∞ Problems: Linear and Nonlinear
Control. System & Control Letters, 32(3):303–308, 1997.

[21] A. Satoh. State feedback synthesis of linear reset control with L2

performance bound via lmi approach. InIFAC 18th World Congress,
pages 5860–5865, Milan, Italy, 2011.

[22] C. Scherer, P. Gahinet, and M. Chilali. MultiobjectiveOutput-feedback
Control via LMI Optimization. IEEE Transactions on Automatic
Control, 42(7), 1997.

[23] A.R. Teel. Asymptotic Stability for Hybrid Systems viaDecomposi-
tion, Dissipativity, and Detectability. InIEEE Conference on Decision
and Control, pages 7419–7424, 2010.

[24] A.R. Teel, F. Forni, and L. Zaccarian. Lyapunov-based Sufficient
Conditions for Exponential Stability in Hybrid Systems.IEEE Trans-
actions on Automatic Control, 2011, submitted and also available on:
http://control.disp.uniroma2.it/zack/ftp/submitted/ExpHybrid.pdf.


