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Comparing Fuzzy Partitions: A Generalization of the
Rand Index and Related Measures

Eyke Hüllermeier, Maria Rifqi, Sascha Henzgen, and Robin Senge

Abstract—In this paper, we introduce a fuzzy extension of a class
of measures to compare clustering structures, namely, measures
that are based on the number of concordant and the number of
discordant pairs of data points. This class includes the well-known
Rand index but also commonly used alternatives, such as the Jac-
card measure. In contrast with previous proposals, our extension
exhibits desirable metrical properties. Apart from elaborating on
formal properties of this kind, we present an experimental study
in which we compare different fuzzy extensions of the Rand index
and the Jaccard measure.

Index Terms—Clustering, distance, fuzzy partition, Jaccard in-
dex, Rand index, similarity.

I. INTRODUCTION

T
HE problem of comparing two partitions of a set of ob-

jects occurs quite naturally in various domains, notably in

data analysis and clustering. For example, one way to evaluate

the result of a clustering algorithm is to compare the clustering

structure that is produced by the algorithm with a correct parti-

tion of the data (which of course presumes that this information

is available). In cluster analysis, the so-called external evalu-

ation measures have been developed for this purpose [1], [2].

However, measures of that kind are not only of interest as evalu-

ation criteria, i.e., to compare a hypothetical partition with a true

one. Instead, distance measures for partitions are interesting in

their own right and can be used for different purposes.

Just to give a motivating example, consider the problem to

compare two different representations of the same set of objects.

More concretely, in [3], the problem of clustering data in a very

high dimensional space is considered. To increase efficiency,

they propose to map the data into a low-dimensional space first

and to cluster the transformed data thus obtained afterward. In

this context, a distance measure to cluster structures (partitions)

is useful to measure the loss of information that is incurred

by the data transformation: If the transformation is (almost)

lossless, the clustering structures in the two spaces should be

highly similar, i.e., their distance should be small. On the other

hand, a significant difference between the two partitions would
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indicate that the transformation does have a strong effect in the

sense of distorting the structure of the dataset.

Even though a large number of evaluation criteria and sim-

ilarity indexes to cluster structures have been proposed in the

literature, their extension to the case of fuzzy partitions has

received much less attention so far. This is especially true for

external evaluation criteria and measures comparing two clus-

tering structures, whereas internal criteria to evaluate a sin-

gle partition1 have been studied more thoroughly (see, e.g., [4]

and [5] for early proposals).

Nevertheless, a few measures to compare fuzzy partitions, no-

tably extensions of the well-known Rand index, have recently

been proposed in the literature. In this paper, which is an ex-

tended version of a previous conference version [6], we make

another proposal for a measure of that kind, namely a fuzzy

variant of the Rand index and related measures. In contrast with

previous proposals, our measure satisfies desirable properties of

a metric (when being used as a distance function).

The remainder of this paper is organized as follows. In the

next section, we briefly recall the definition of the well-known

Rand index to compare clustering structures. In Section III,

we review existing approaches to compare fuzzy partitions. In

Section IV, we introduce our new measure and elaborate on its

formal properties. In Section V, we address the question of how

to generalize our approach to other types of similarity measures.

In Section VI, we compare our measure experimentally with

previous proposals. This paper concludes with a short summary

and an outlook on future work in Section VII.

II. RAND INDEX

Let P = {P1 , . . . , Pk} ⊂ 2X and Q = {Q1 , . . . , Qℓ} ⊂ 2X

be two (crisp) partitions of a finite set X = {x1 , x2 , . . . , xn}
with n elements, which means that Pi �= ∅, Pi ∩ Pj = ∅ for all

1 ≤ i �= j ≤ k, and P1 ∪ P2 ∪ . . . ∪ Pk = X (and analogously

for Q). Let

C = { (xi , xj ) ∈ X × X | 1 ≤ i < j ≤ n }

denote the set of all tuples of elements in X .2 We say that two

elements (x, x′) ∈ C are paired in P if they belong to the same

cluster, i.e., if there is a cluster Pi ∈ P such that x ∈ Pi and

x′ ∈ Pi . Moreover, we distinguish the following subsets of C:
� C1 ≡ the set of tuples (x, x′) ∈ C that are paired in P and

paired in Q;

1Typically, such criteria compare the intracluster variability, i.e., the variabil-
ity among objects within the same cluster (which should be small) with the
intercluster variability, i.e., the variability among objects from different clusters
(which should be high).

2Since we consider unordered tuples, we should more correctly write {xi , xj }
instead of (xi , xj ).
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� C2 ≡ the set of tuples (x, x′) ∈ C that are paired in P but

not paired in Q;
� C3 ≡ the set of tuples (x, x′) ∈ C that are not paired in P

but paired in Q;
� C4 ≡ the set of tuples (x, x′) ∈ C that are neither paired

in P nor in Q.

Obviously, {C1 , C2 , C3 , C4} is a partition of C, and a + b +
c + d = |C| = n(n − 1)/2, where

a = |C1 |, b = |C2 |, c = |C3 |, d = |C4 |. (1)

The tuples (x, x′) ∈ C1 ∪ C4 are the concordant pairs, i.e., the

pairs for which there is agreement between P and Q, while

the tuples (x, x′) ∈ C2 ∪ C3 are the discordant pairs for which

the two partitions disagree. The Rand index is defined by the

number of concordant pairs that are divided by the total number

of pairs:

R(P,Q) =
a + d

a + b + c + d
. (2)

Thus defined, the Rand index is a similarity measure which

assumes values between 0 and 1. It can easily be turned into a

distance function by defining

DR (P,Q) = 1 − R(P,Q) =
b + c

a + b + c + d
.

It is worth mentioning that DR satisfies the classical properties

of a distance (reflexivity, separation, symmetry, and triangular

inequality).

III. GENERALIZATIONS OF THE RAND INDEX

In this section, we briefly review existing measures that have

been proposed in the literature to compare fuzzy partitions.

We start with the proposals of Campello [7] and Frigui et al.

[8], which are intimately connected in the sense that the latter

can be seen as a special case of the former. Subsequently, an

alternative extension of the Rand index is discussed, namely the

one proposed by Brouwer [9], which is based on the idea of

a “measure of bonding” between pairs of objects. While this

approach is still quite similar to Campello and Frigui et al., the

measure that is put forward by Anderson et al. [10] proceeds

from a different idea and takes the so-called contingency matrix

of two fuzzy partitions as a point of departure. Finally, we also

discuss other proposals that are not direct extensions of the Rand

index.

A. Campello and Frigui et al.

In order to extend the Rand index to the case of fuzzy parti-

tions, Campello [7] first reformulates this measure within a set-

theoretic framework. An extension to the fuzzy case can then

be accomplished in a straightforward way by using generalized

set-theoretical operators. Recall that k = |P| and ℓ = |Q|, and

consider the following sets:
� V ≡ the set of pairs (x, x′) ∈ C that belong to the same

cluster in P; it can be expressed as V =
⋃

1≤i≤k Vi , where

Vi is the set of pairs that both belong to the ith cluster

Pi ∈ P.

� W ≡ the set of pairs (x, x′) ∈ C that belong to different

clusters in P; it can be expressed as W =
⋃

1≤i �=j≤k Wij ,

where Wij is the set of pairs such that x ∈ Pi and x′ ∈ Pj .
� Y ≡ the set of pairs (x, x′) ∈ C that belong to the same

cluster in Q; it can be expressed as Y =
⋃

1≤i≤ℓ Yi , where

Yi is the set of pairs that both belong to the ith cluster

Qi ∈ Q.
� Z ≡ the set of pairs (x, x′) ∈ C that belong to different

clusters in Q; it can be expressed as Z =
⋃

1≤i �=j≤ℓ Zij ,

where Zij is the set of pairs such that x ∈ Qi and x′ ∈ Qj .

The Rand index can directly be written in terms of the cardi-

nalities of these sets, since the four quantities (1) are obviously

given by

a = |V ∩ Y |, b = |V ∩ Z|
c = |W ∩ Y |, d = |W ∩ Z| . (3)

In the fuzzy case, the above sets become fuzzy sets. Let

Pi(x) ∈ [0, 1] denote the degree of membership of element x ∈
X in the cluster Pi ∈ P. The sets V , W , Y , and Z can then be

defined through fuzzy-logical expressions that involve a t-norm

⊤ and t-conorm ⊥ [11]:

V (x, x′) = ⊥k
i=1⊤(Pi(x), Pi(x

′))
W (x, x′) = ⊥1≤i �=j≤k⊤(Pi(x), Pj (x

′))

Y (x, x′) = ⊥ℓ
i=1⊤(Qi(x), Qi(x

′))

Z(x, x′) = ⊥1≤i �=j≤ℓ⊤(Qi(x), Qj (x
′)) .

(4)

Moreover, defining the intersection of sets by the t-norm com-

bination of membership degrees and resorting to the commonly

used sigma-count principle [12] to define set cardinality, one

obtains

a = |V ∩ Y | =
∑

(x,x ′)∈C

⊤(V (x, x′), Y (x, x′))

b = |V ∩ Z| =
∑

(x,x ′)∈C

⊤(V (x, x′), Z(x, x′))

c = |W ∩ Y | =
∑

(x,x ′)∈C

⊤(W (x, x′), Y (x, x′))

d = |W ∩ Z| =
∑

(x,x ′)∈C

⊤(W (x, x′), Z(x, x′)) .

(5)

As before, the Rand index can then be defined as in (2), namely

as the fraction

a + d

a + b + c + d
.

In passing, we note that Campello is actually only interested in

comparing a fuzzy partition P with a non-fuzzy partition Q. On

the other hand, he notes himself that, formally, the measure can

also be applied to compare two fuzzy partitions.

A very similar proposal was made by Frigui et al. [8]. Essen-

tially, their measure can be seen as a special case of Campello’s,

using the product as a t-norm in (4) and summation (bounded
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Fig. 1. Simple fuzzy partition of a subset of the reals (indicated by circles).
The partition consists of two clusters, i.e., P1 (left) and P2 (right). While some
elements definitely belong to only one of the clusters, some “critical” points in
the middle have partial membership in both clusters.

sum) as a t-conorm:

a =
∑

(x,x ′)∈C

ψ(P )(x, x′)ψ(Q)(x, x′)

b =
∑

(x,x ′)∈C

ψ(P )(x, x′) (1 − ψ(Q)(x, x′))

c =
∑

(x,x ′)∈C

(1 − ψ(P )(x, x′))ψ(Q)(x, x′)

d =
∑

(x,x ′)∈C

(1 − ψ(P )(x, x′)) (1 − ψ(Q)(x, x′))

(6)

where

ψ(P )(x, x′) =

k
∑

i=1

Pi(x)Pi(x
′) = P(x) · P(x′)T (7)

with P(x) = (P1(x), . . . , Pk (x)) being the membership vector

of x in the partition P.

Having defined a similarity or, equivalently, a distance func-

tion, it is natural to ask for desirable metrical properties of that

function. When doing so, it turns out quickly that the previous

measures fail to be a proper metric. In fact, they not even satisfy

reflexivity, the perhaps most basic axiom: Even for two identical

partitions P and Q, the quantities b and c in (5) will generally

not vanish, a necessary condition to have R(P,Q) = 1.

Consider, for example, the simple fuzzy partition P that is

illustrated in Fig. 1, which consists of two clusters P1 and P2 .

Instead of a hard boundary, there is a “soft” transition between

P1 and P2 ; the elements x1 , x2 , x3 , and x4 partially belong to

both clusters and have membership degrees, respectively, of 3/4,

1/2, 1/2, 1/4 in P1 and 1/4, 1/2, 1/2, 3/4 in P2 . Comparing P

with itself in terms of either Campello’s or Frigui’s fuzzy Rand

index, we obtain R(P,P) < 1.

Upon closer examination, it seems that the core principle

of the aforementioned extensions is not suitable to compare

partitions in a fuzzy sense. This becomes especially obvi-

ous when using the product as a t-norm and the (bounded)

sum as t-conorm, that is, for the special case of Frigui et al.

These operators suggest a kind of “probabilistic” interpreta-

tion. Indeed, if Pi(x) is interpreted as the probability that

x belongs to the ith cluster, then V (x, x′) = ψ(P )(x, x′) is

nothing else but the probability that x and x′ are put in the

same cluster, given that the two corresponding clusters are cho-

sen independently of each other according to the distributions

(P1(x), P2(x), . . . , Pk (x)) and (P1(x
′), P2(x

′), . . . , Pk (x′)),
respectively. Likewise, W (x, x′) = 1 − ψ(P )(x, x′) is the prob-

ability that x and x′ are put into different clusters.

Even if one accepts the probabilistic interpretation of a single

membership degree, the additional assumption of independence

is clearly not tenable. In fact, this property is obviously violated

when comparing a partition with itself, since for each element

x ∈ X , a cluster can then only be chosen once and not two

times independently of each other. However, even if P and

Q are not identical, independence of cluster membership is in

conflict with the topological relationships between the elements

and clusters. In the example in Fig. 1, for instance, it is not

reasonable to put x1 and x4 into cluster P2 and x2 and x3 into

cluster P1 . When putting elements independently of each other

into clusters, however, this is a possible scenario. And indeed,

this scenario contributes to the fuzzy Rand index according to

(4) and (6).

What the fuzzy partition in our example truly suggests is that

we are uncertain about the boundary between the two clusters.

More concretely, the fuzzy partition suggests four possible non-

fuzzy partitions:
� P1 , which puts the boundary left to x1 ;
� P2 with boundary between x1 and x2 ;
� P3 with boundary between x3 and x4 ;
� P4 , which puts the boundary right to x4 .

Thus, it seems reasonable to define an extension of the Rand

index as an aggregation (e.g., weighted average) of the results

of the non-fuzzy comparisons, namely

R(P1 ,Q), R(P2 ,Q), R(P3 ,Q), R(P4 ,Q) .

In Campello’s and Frigui’s approach, there are not 4 but 16

scenarios which have an influence on the result, since each of

the four cluster memberships is determined independently of

each other. In general, the result will, therefore, be different.

In fact, differences already occur for single pairs of elements.

For example, since x2 and x3 are always in the same cluster in

P1 , . . . ,P4 , it is natural to say that they are paired with degree

1. According to Campello’s approach, however, the degree to

which x2 and x3 are in the same cluster in P is given by

V (x2 , x3) = ⊥(⊤(1/2, 1/2),⊤(1/2, 1/2)),

which corresponds to the truth degree of the proposition that

“x1 is put into P1 AND x2 is put into P1 OR x1 is put into

P2 AND x2 is put into P2 .” In general, this degree will be < 1
(except for special (⊤,⊥) combinations such as ⊤ = min and

⊥ = bounded sum).

B. Brouwer

An alternative extension of the Rand index has been recently

proposed by Brouwer [9]. His “measure of bonding” between

pairs of objects arguably improves upon the comparison of ob-

jects as proposed by Frigui et al. (and Campello). Besides, this

measure shares some similarities with our proposal to be in-

troduced later on: Brouwer’s bonding between two objects is

closely related to what we shall call their degree of equivalence.

Apart from that, however, the approach is still quite similar to

Campello and Frigui et al.

More specifically, Brouwer notes that the dot product (7) is

a questionable measure to compare two membership vectors.

Therefore, he proposes to replace this measure by the cosine
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similarity between the membership vectors P(x) and P(x′):

b(P )(x, x′) =
P(x)

|P(x)|
·
P(x′)T

|P(x′)|
. (8)

Thus, the main difference to Frigui is the normalization of the

membership vectors. Brower considers (8) as a degree of “bond-

ing” of the objects x and x′. The four values (5) are derived

in the same way, namely according to (6) with ψ(P )(x, x′)
and ψ(Q)(x, x′) replaced by b(P )(x, x′) and b(Q)(x, x′),
respectively.

As an illustration, consider again our previous example. Re-

stricting to the objects x1 , x2 , x3 , x4 , the partition P is given by

the membership matrix

P =

⎛

⎜

⎝

3/4 1/4
1/2 1/2
1/2 1/2
1/4 3/4

⎞

⎟

⎠
.

Brouwer’s “bonding matrix” is then given by the pairwise cosine

similarities between the rows of P:

B =

⎛

⎜

⎝

1 0.8944 0.8944 0.6
0.8944 1 1 0.8944
0.8944 1 1 0.8944

0.6 0.8944 0.8944 1

⎞

⎟

⎠
.

Comparing P with itself, one derives a = 4.56, b = c =
0.6177, and d = 0.2046 from this matrix, and hence a similar-

ity degree of 0.7941. In the case of Frigui, the corresponding

“bonding matrix” is given by

B = P · PT =

⎛

⎜

⎝

0.625 0.5 0.5 0.375
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

0.375 0.5 0.5 0.625

⎞

⎟

⎠

yielding a smaller similarity degree of 0.5052. Although the

result of Brouwer looks more reasonable than the one of Frigui,

the example also reveals that his approach is not reflexive either.

C. Anderson et al.

Anderson et al. [10] proceed from the contingency matrix that

is associated with two partitionsP andQ, defined asC = PT Q.

If P consists of k clusters and Q consists of ℓ clusters, then

C = (ci,j ) is a (k × ℓ)-matrix. In the non-fuzzy case, the entry

ci,j corresponds to the number of objects x that are put into the

ith cluster Pi in P and into the jth cluster Qj in Q.

It was already observed by Brouwer in [9] that the quantities

a, b, c, d can directly be derived from C. For example, what is

the number a = |C1 | of tuples (x, x′) of objects that are both

paired in P and in Q? If (x, x′) ∈ C1 , then there are clusters

Pi and Qj such that x and x′ are both in Pi and both in Qj ,

and hence both in Pi ∩ Qj . The other way around, there are
(

ci,j

2

)

= ci,j (ci,j − 1)/2 possibilities to choose a pair (x, x′)

of that kind. In total, since we can choose (x, x′) from the

intersection Pi ∩ Qj of any pair of clusters Pi and Qj , this

yields

a = |C1 | =
k

∑

i=1

ℓ
∑

j=1

ci,j (ci,j − 1)/2 .

The other quantities can be derived analogously:

a = 1
2

∑k
i=1

∑ℓ
j=1 ci,j (ci,j − 1)

b = 1
2

(

∑ℓ
j=1 c2

•j −
∑k

i=1

∑ℓ
j=1 c2

i,j

)

c = 1
2

(

∑k
i=1 c2

i• −
∑k

i=1

∑ℓ
j=1 c2

i,j

)

d = 1
2

(

n2 +
∑k

i=1

∑ℓ
j=1 c2

i,j −(
∑k

i=1 c2
i•+

∑ℓ
j=1 c2

•j )
)

(9)

where ci• =
∑n

r=1 Pi(xr ) denotes the size of the cluster Pi ,

c•j =
∑n

r=1 Qj (xr ) denotes the size of the cluster Qj , and

n = |X| is the number of objects.

Mathematically, the expressions (9) can of course also be used

in the case of fuzzy partitions P and Q. Then, the entries of the

matrix C = PT Q are no longer integers, but a, b, c, d can still

be computed. This is precisely the idea of Anderson et al. [10].

While formally correct, at least at first sight, this idea can

be called into question from a semantical point of view. In

fact, one should note that (9) is one particular possibility to

express a, b, c, d (in the non-fuzzy case). However, mathemat-

ically, these quantities can be expressed in many other ways,

too, and in each of these cases, a straightforward fuzzification

will probably yield a different result. In particular, note that the

binomial coefficient

(

ci,j

2

)

equals ci,j (ci,j − 1)/2 only if c

is an integer. In the fuzzy case, however, the meaning of the

number ci,j (ci,j − 1)/2 is not at all obvious. Besides, the latter

expression is not the standard way to extend the binomial co-

efficient to real arguments. Instead, this is normally done using

the well-known Gamma function. Thus, one may argue that a

more proper generalization would have been

a =
1

2

k
∑

i=1

ℓ
∑

j=1

Γ(ci,j + 1)

Γ(ci,j )
.

Indeed, it is worth mentioning that ci,j (ci,j − 1) < 0 if 0 <
ci,j < 1, and this situation may well occur in the fuzzy case.

Consequently, a can even become negative, and examples of

this kind are easy to construct. This immediately implies that

measures like the Jaccard coefficient (which is defined as a/(a +
b + c); see Section V) can become negative as well.

Unsurprisingly, this approach does indeed fail to guarantee

desirable metrical properties apart from symmetry. Again, for

example, it is not even reflexive. As one advantage, however, also

emphasized by the authors, we note its computational efficiency.

This efficiency is mainly due to the fact that, in contrast with

all other methods, the measure does not need to consider all

pairs of object (making the complexity inherently quadratic in

n = |X|).

D. Other Measures

Apart from the measures discussed above, other proposals

can be found in the literature. These proposals, however, are not
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extensions of the Rand index and related measures, insofar, as

they are not based on a generalization of the four quantities (1).

Beringer and Hüllermeier [3] proceed from the following

intuitive idea: A partition P = {P1 , . . . , Pk} is similar to a par-

tition Q = {Q1 , . . . , Qℓ} if, for each cluster in Pi ∈ P, there

is a similar cluster Qj ∈ Q, and vice versa if, for each cluster

Qj ∈ Q, there is a similar cluster Pi ∈ P. Formally, this can be

expressed as follows:

S(P,Q) = ⊤ (s(P,Q), s(Q,P)) (10)

where s(P,Q) denotes the similarity of P to Q (in the afore-

mentioned sense) and vice versa s(Q,P) the similarity of Q to

P:

s(P,Q) = ⊤
1≤i≤k

⊥
1≤j≤ℓ

s(Pi , Qj ), (11)

where ⊤ is a t-norm (modeling a logical conjunction), ⊥ is a t-

conorm (modeling a logical disjunction), and s(Pi , Qj ) denotes

the similarity between clusters Pi and Qj . Regarding the latter,

note that one can refer to standard measures for the similarity

of fuzzy sets, such as

s(Pi , Qj ) =
|Pi ∩ Qj |

|Pi ∪ Qj |
=

∑

x∈X min(Pi(x), Qj (x))
∑

x∈X max(Pi(x), Qj (x))
. (12)

In order to take the different size of clusters into account,

Beringer and Hüllermeier propose to generalize this approach

by using a weighted t-norm aggregation [13]:

s(P,Q) = ⊤
1≤i≤k

m

(

wi , ⊥
1≤j≤ℓ

s(Pi , Qj )

)

(13)

where wi = |Pi |/|X| is the relative size of cluster Pi .

A similar approach was recently put forward by Runkler [14].

The measure he proposes is almost the same as the unweighted

version (10), except that the two similarity degrees are combined

disjunctively instead of conjunctively:

S(P,Q) = ⊥(s(P,Q), s(Q,P)) . (14)

Thus, in a sense, it is more an inclusion than a similarity measure,

and consequently loses reflexivity. As fuzzy-logical operators,

Runkler suggests ⊤ = min and ⊥ = max.

IV. NEW FUZZY RAND INDEX

In this section, we propose a new fuzzy variant of the Rand

index that exhibits desirable metric properties. In the following,

we focus on the view of the Rand index as a distance function.

Thanks to the affine transformation DR = 1 − R, all results can

directly be transferred to the original conception as a measure

of similarity.

A. Definition

Given a fuzzy partition P = {P1 , P2 , . . . , Pk} of X , each

element x ∈ X can be characterized by its membership vector

P(x) = (P1(x), P2(x), . . . , Pk (x)) ∈ [0, 1]k , (15)

where Pi(x) is the degree of membership of x in the ith cluster

Pi . We define a fuzzy equivalence relation on X in terms of a

similarity measure on the associated membership vectors (15).

Generally, this relation is of the form

EP(x, x′) = 1 − ‖P(x) − P(x′)‖, (16)

where ‖ · ‖ is a proper metric on [0, 1]k . The basic requirement

on this metric is that it yields values in [0, 1]. Relation (16)

generalizes the equivalence relation that is induced by a con-

ventional partition (where each cluster forms an equivalence

class). Indeed, it is easy to verify that relation (16) is not only

reflexive and symmetric but TL -transitive as well, where TL is

the Lukasiewicz t-norm (u, v) �→ max(u + v − 1, 0) [15]. In

passing, we also note that definition (16) is invariant toward a

permutation (renumbering) of the clusters in P, which is clearly

a desirable property.

Now, given two fuzzy partitions P and Q, the idea is to

generalize the concept of concordance as follows. We consider

a pair (x, x′) as being concordant insofar as P and Q agree on

their degree of equivalence. This suggests to define the degree

of concordance as

conc(x, x′) = 1 − |EP(x, x′) − EQ (x, x′)| ∈ [0, 1] . (17)

Analogously, the degree of discordance is

disc(x, x′) = |EP(x, x′) − EQ (x, x′)| .

Our distance measure on fuzzy partitions is then defined by the

normalized sum of degrees of discordance:

d(P,Q) =

∑

(x,x ′)∈C |EP(x, x′) − EQ (x, x′)|

n(n − 1)/2
. (18)

Likewise,

RE (P,Q) = 1 − d(P,Q) (19)

corresponds to the normalized degree of concordance and, there-

fore, is a direct generalization of the original Rand index.

B. Formal Properties

In this section, we first show that our proposal is indeed a

proper generalization of the Rand index. Afterward, we study

the metrical properties of the measure.

Proposition 1: In the case where P and Q are non-fuzzy

partitions, measure (19) reduces to the original Rand index.

Proof: In the non-fuzzy case, the membership vectors (15)

are 0/1-vectors. More specifically, each vector has a single en-

try Pi(x) = 1, while all other entries are 0. Consequently, the

fuzzy equivalence (16) reduces to the conventional equivalence,

that is, EP(x, x′) = 1 if x and x′ are in the same cluster and

EP(x, x′) = 0 otherwise. Likewise, (17) yields 1 if (x, x′) is a

concordant pair and 0 otherwise. Consequently, measure (19) is

the (normalized) sum of concordant pairs and, therefore, equals

the original Rand index. �

Recall that a nonnegative Z2 → R mapping d(·) is called

a metric on Z if it satisfies the following properties for all

z, z′, z′′ ∈ Z:
� Reflexivity: d(z, z) = 0.
� Separation: d(z, z′) = 0 implies z = z′.
� Symmetry: d(z, z′) = d(z′, z).
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� Triangle inequality: d(z, z′′) ≤ d(z, z′) + d(z′, z′′).
The properties of reflexivity and symmetry are quite obvi-

ously valid for our measure (18). To show the triangle inequality,

consider three fuzzy partitions P, Q, R and fix a single tuple

(x, x′) ∈ C. Let

u = EP(x, x′), v = EQ (x, x′), w = ER (x, x′) .

Since u, v, and w are the real numbers (from the unit interval),

and the simple difference on the reals satisfies the triangle in-

equality, we have |u − w| ≤ |u − v| + |v − w|. Now, since this

inequality holds for each pair (x, x′) ∈ C, it remains valid when

summing over all these pairs. In other words, it is also satisfied

by (18), which means that

d(P,R) ≤ d(P,Q) + d(Q,R) .

The separation property is not immediately valid for (18).

Roughly speaking, this is due to the fact that, by mapping

elements to their membership vectors (15), some information

about the partition itself is lost. In particular, it is possible that

two partitions, even though they are not identical, cannot be

distinguished in terms of the distances between these vectors.

Nevertheless, we can guarantee the separation property by

restricting to a reasonable subclass of fuzzy partitions. We call

a fuzzy partition P = {P1 , P2 . . . Pk} normal, if it satisfies the

following:

N1 For each x ∈ X: P1(x) + · · · + Pk (x) = 1.

N2 For each Pi ∈ P, there exists x ∈ X such that Pi(x) = 1.

In other words, we consider Ruspini partitions [16] and as-

sume that each cluster has a prototypical element. Moreover, we

assume the following equivalence relation on X:

EP(x, x′) = 1 − 1
2

∑k
i=1 |Pi(x) − Pi(x

′)|
= 1 − ‖P(x) − P(x′)‖ (20)

with ‖ · ‖ being the L1-norm divided by 2. Note that 0 ≤
EP(x, x′) ≤ 1 for all (x, x′) ∈ X2 under assumption N1.

Now, consider two normal fuzzy partitions P and Q, and

suppose that d(P,Q) = 0. According to our definition of d(·),
this obviously means that

EP(x, x′) = EQ (x, x′) (21)

for all (x, x′) ∈ C. We call a set {p1 , p2 , . . . , pk} ⊂ X a pro-

totype set for P, if Pi(pi) = 1 for all i = 1, . . . , k (note that

a prototype set is not necessarily unique). We distinguish two

cases.

a) There are no identical prototype sets for P and Q; note

that this is necessarily the case if P and Q have a different

number of clusters. Let k and ℓ denote the number of clusters

in P and Q, respectively, and let ℓ ≤ k without loss of gen-

erality. (Remark that k > 1, since otherwise k = ℓ = 1, which

means that both P and Q consist of a single cluster and are,

therefore, identical.) Moreover, let {p1 , . . . , pk} be a proto-

type set of P. Note that N1 and N2 jointly imply that a pro-

totype is represented by a 0/1 membership vector, and that

‖P(pi) − P(pj )‖ = 1 for two different prototypes pi and pj .

Moreover, these properties imply that the extreme distance of 1

can only be assumed for membership vectors (m1 , . . . , mk ) and

(m′
1 , . . . , m

′
k ) if min(mi ,m

′
i) = 0 for all i ∈ {1, . . . , k}; that

is, mi > 0 implies m′
i = 0, and m′

i > 0 implies mi = 0. Now,

consider the membership vectors Q(p1), . . . ,Q(pk ), which can

be combined into a (k × ℓ)-matrix:

Q(p1) : m11 m12 . . . m1ℓ

Q(p2) : m21 m22 . . . m2ℓ

...
...

...
...

Q(pk ) : mk1 mk2 . . . mkℓ .

Since ℓ ≤ k, and since not all pi are prototypes in Q, there is

necessarily a column c and rows i and j such that mic > 0 and

mjc > 0 (in other words, it is not possible that there is only one

positive entry in each column). Consequently, there exist at least

two prototypes pi and pj of clusters Pi and Pj , respectively, for

which ‖Q(pi) − Q(pj )‖ < 1, and therefore, EQ (pi , pj ) > 0.

Since EP(pi , pj ) = 0, condition (21) is, hence, violated.

b) There are identical prototype sets {p1 , . . . , pk} =
{q1 , . . . , qℓ}, respectively, forP andQ (which means that k = ℓ,

i.e., P and Q do have the same number of clusters). We can then

establish a one-to-one correspondence between prototypes such

that, without loss of generality, pi = qi for i = 1, . . . , k. From

properties N1 and N2, it follows that the membership degree of

any element x in the cluster Pi is a function of EP(x, pi). In

fact, noting that P(pi) is a 0/1 vector with a single 1 on position

i, we get

EP(x, pi) = 1 − 1
2

∑k
j=1 |Pj (x) − Pj (pi)|

= 1 − 1
2

(

(1 − Pi(x)) +
∑

j �=i Pj (x)
)

= 1 − 1
2 ((1 − Pi(x)) + (1 − Pi(x)))

= Pi(x) .

(22)

From (21), it thus follows that Pi(x) = Qi(x) for all x ∈ X ,

i.e., the ith cluster in P and the ith cluster in Q are identical.

Since this holds for all i ∈ {1, 2, . . . , k}, we have shown that

P = Q.

The aforementioned results can be summarized as follows.

Theorem 1: The distance function (18) on fuzzy partitions is

a pseudo-metric, i.e., it is reflexive, symmetric, and subadditive.

Moreover, on the restricted class of normal fuzzy partitions or,

more specifically, under the assumptions N1, N2, and (20), it

also satisfies the separation property, and therefore, it is a metric.

Remark 1: Since our comparison of two fuzzy partitions P

and Q is eventually reduced to the comparison of the corre-

sponding equivalence relations EP and EQ , it appears legitimate

to ask for the formal relationship between the partitions and the

equivalence relations (for more general studies of this type of

question, see, e.g., [17]–[19]). In this regard, it is worth men-

tioning that the following result follows immediately from (22):

If P = {P1 , . . . , Pk} is a normal fuzzy partition with prototypes

{p1 , . . . , pk}, then P = {E1 , . . . , Ek}, where the fuzzy equiv-

alence class Ei is defined by Ei(x) = EP(x, pi) for all x ∈ X .

In other words, just like in the non-fuzzy case, the original

partition P corresponds to the collection of (fuzzy) equivalence

classes associated with its prototypical elements.
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Finally, regarding the computational complexity of our ap-

proach, note that our measure is essentially derived by compar-

ing the equivalence degrees (16) for each pair of elements x
and x′, and that the number of such pairs is n(n − 1)/2. The

computation of the equivalence degrees in turn comes down to

comparing vectors of dimension k in the case of the first and of

dimension ℓ in the case of the second partition. Thus, as a result,

the overall complexity is O(max(k, ℓ) · n2).

V. EXTENSIONS

Apart from the Rand index itself, a number of related com-

parison measures have been proposed in the literature, many

of which can be expressed in terms of the four cardinalities

a, b, c, and d in (1). Important examples include the Jaccard

measure [20] (also known as Tanimoto coefficient)

a

a + b + c
(23)

and the related Dice index

a

a + 1
2 (b + c)

. (24)

An obvious idea is to extend our approach to measures of this

kind. In this regard, it is important to note that, for many mea-

sures, the two types of concordance are not treated in a sym-

metric way, as done by the Rand index. In the two aforesaid

measures, for example, only a appears, while d is omitted from

both the nominator and the denominator. Now, since our gen-

eralization of concordance (17) is an expression of the sum

a + d, an important prerequisite to apply our approach to other

measures is to split (17) into two parts, say, a-concordance and

d-concordance.

Essentially, (17) expresses that x and x′ are concordant insofar

as their degree of equivalence in structure P is the same as their

degree of equivalence in structure Q, that is

u = EP(x, x′) = EQ (x, x′) = v.

In the non-fuzzy case, where u and v are either 0 or 1, we have

a-concordance if u = v = 1 and d-concordance if u = v = 0.

Specifically, a-concordance can be considered as a strict version

of concordance, which not only assumes that u is equal to v,

but also that both values are large, i.e., x and x′ are regarded

as equivalent in both structures. In fact, this is the reason why

a-concordance is in a sense more relevant than d-concordance.

An obvious formalization of a-concordance, in the fuzzy case,

is therefore

a = ⊤(1 − |u − v|,⊤(u, v)),

where ⊤ is a t-norm operator [11]. Thus, x and x′ are a-

concordant insofar as their degree of equivalence in P and Q is

similar and their degree of equivalence in P is high and their de-

gree of equivalence in Q is high. In other words, the additional

restriction, which is distinguishing a-concordance from concor-

dance, is the condition ⊤(u, v), which is conjunctively com-

bined with the original degree of concordance. Consequently,

d-concordance corresponds to that part of the concordance for

which this condition is not satisfied or, stated differently, for

which the negation of this condition holds, which means that

either u (the degree of equivalence in P) is not high or v (the

degree of equivalence in Q) is not high:

d = ⊤(1 − |u − v|,⊥(1 − u, 1 − v))

where⊥ is a t-conorm. To make this definition of a-concordance

and d-concordance consistent with our previous proposal, we

should require that the sum of these two types of concordance

equals the original concordance, which leads to

w = ⊤(w,⊤(u, v)) + ⊤(w,⊥(1 − u, 1 − v)), (25)

where w = 1 − |u − v|. An interesting question, then, concerns

the choice of the t-norm ⊤ and t-conorm ⊥: Which operators

(⊤,⊥) can guarantee that (25) holds for all 0 ≤ u, v, w ≤ 1?

Interestingly, this question can be answered in a unique way,

thanks to a theorem that is proved by Alsina in [21]: The only

admissible choice is the product t-norm and its associated t-

conorm, namely the algebraic sum. Thus, we end up with the

following definitions of a-concordance and d-concordance:

a = (1 − |u − v|) · u · v,

d = (1 − |u − v|) · (1 − u · v)

where u = EP(x, x′) and v = EQ (x, x′). These quantities can

be directly plugged into (23) or (24), thus allowing us to gener-

alize measures of this kind.

In a similar way, the degree of discordance could be split into,

say, b- and c-discordance (although a distinction of this kind is

used by less measures). The case of b-discordance occurs when

the degree of equivalence of x and x′ in P is larger than that in

Q (which necessarily means EP(x, x′) = 1 and EP(x, x′) = 0
in the non-fuzzy case), and vice versa for c-discordance. A

generalization of this distinction calls for a fuzzy extension of

the “larger than” relation, which, in the simplest case, is given

by the standard order relation on [0, 1]. This yields

b = max (EP(x, x′) − EQ (x, x′), 0)

c = max (EQ (x, x′) − EP(x, x′), 0)

Thus, we end up with a consistent generalization of all four

quantities that are used by measures based on the concordance

and discordance of pairs of data points, suggesting a direct fuzzy

extension for each measure of that kind.

VI. EXPERIMENTAL VALIDATION

An experimental comparison of similarity measures for fuzzy

partitions, or similarity measures in general, is far from trivial,

mainly because a clear reference is normally missing: If two

measures produce different similarity degrees for a pair of parti-

tions (P,Q), it is often difficult to say which is the more correct

one.

Our experiments are, therefore, based on two settings for

which there is at least a reasonable expectation. This is

accomplished by producing a sequence of fuzzy partitions

(P1 ,P2 , . . . ,Pm ) with a natural linear order, where Pi is the

solution to a clustering task Ti . As will be seen, due to the spe-

cific construction of the sequences of tasks Ti and partitions Pi ,
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the following assumption appears legitimate: The closer i and j,

the more similar the tasks Ti and Tj , and hence the more similar

Pi and Pj should be.

More specifically, since larger effects can be expected for

smaller indexes, we measure the similarity between tasks Ti

and Tj by

S(i, j) = S(Ti , Tj ) =
min(i, j)

max(i, j)
. (26)

The performance of a similarity measures R for fuzzy par-

titions is then defined in terms of the correlation between S
and R, that is, by comparing the set of similarity degrees

{si,j = S(i, j)}1≤i<j≤m as defined in (26) with the set of simi-

larity degrees {ri,j = R(Pi ,Pj )}1≤i<j≤m . Since the numbers

S(i, j) themselves might be disputable, whereas their compar-

ison is definitely meaningful (i.e., S(i, j) < S(k, l) means that

tasks Ti and Tj are less similar to tasks Tk and Tl), we com-

pute a rank correlation measure, namely the Kendall tau co-

efficient [22], instead of a numerical correlation measure. This

coefficient ranges between−1 and +1, with +1 meaning perfect

correlation, 0 no correlation, and −1 perfect anti-correlation.

A. First Experiment: Comparing Partitions with Different Num-

bers of Clusters

Sequences of fuzzy partitions are generated in two different

ways. In our first experiment, we applied fuzzy C-means (FCM)

clustering [23], [24] with different values of C.3 In principle,

any other clustering method could of course also be used. Our

decision in favor of FCM is simply driven by its popularity. In

order to avoid local optima, FCM was started ten times, and the

best result was adopted.

More concretely, the task Ti was defined as partitioning a

given dataset into C = i + 1 groups, with i ∈ {1, 2, . . . , 7}. Our

assumption of task similarity as explained earlier does clearly

make sense for this problem. For example, the task to partition a

dataset into three clusters is more similar to finding four clusters

than to finding, say, six clusters; correspondingly, the three-

cluster structure P2 is expected to be more similar to the four-

cluster structure P3 than to the six-cluster structure P5 .

As an illustration, consider the dataset shown in Fig. 2, which

has been generated synthetically using four Gaussian distribu-

tions. The optimal number of clusters is, thus, C = 4, though

in general, this number is of course unknown. Applying FCM

with C ranging from 2 to 8 yields seven different fuzzy parti-

tions P1 , . . . ,P7 . These partitions can be compared with each

other using our extension of the Rand index (or any of the other

extensions that are discussed in Section III). Table I provides a

summary of the corresponding similarity degrees R(Pi ,Pj ).

B. Second Experiment: Comparing Partitions of Related

Datasets

Our second experiment is motivated by the fact that, prior to

applying a clustering method, the original data are often prepro-

3Note that the FCM algorithm produces fuzzy partitions that are not neces-
sarily normal in the sense as defined in Section IV.

Fig. 2. Synthetic dataset generated by sampling from four Gaussian
distributions.

TABLE I
SIMILARITY R(Pi , Pj ) BETWEEN FUZZY PARTITIONS WITH DIFFERENT

NUMBERS OF CLUSTERS

cessed, for example, using dimensionality reduction techniques

(an example of this kind was given in Section I). More specifi-

cally, as task Ti , we considered the problem to partition a low-

dimensional projection of the original dataset, namely the pro-

jection given by the first i principal components (as determined

by the principal component analysis), into a pre-defined (and

data-dependent) number of clusters. Obviously, the assumption

of task similarity does again appear reasonable, simply because

the closer the i and j, the more similar the datasets to be parti-

tioned, namely the i-dimensional and j-dimensional projections

of the original data.

The dimensionality i ranges between dmin = 1 and the max-

imum value dmax which depends on the dimensionality of the

original dataset. Like in the first experiment, FCM was used to

cluster, and the pre-defined number C of clusters was given by

the number of classes of the respective dataset (all datasets have

a specific class attribute, which is typically used as a target in

classification). The datasets used in both experiments are taken

from the UCI repository for machine learning.4 We removed all

non-numerical attributes; see Table II for a summary.

4http : //archive.ics.uci.edu/ml/
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TABLE II
DATASETS USED IN THE EXPERIMENTS: SIZE (NUMBER OF INSTANCES),

NUMBER OF CLASSES, AND NUMBER OF ATTRIBUTES (DIMENSIONS) IN THE

FIRST (E1) AND SECOND EXPERIMENT (E2)

TABLE III
AVERAGE RANK OF HRHS IS COMPAREDWITH THE AVERAGE RANK OF OTHER

METHODS USING THE HOLM TEST

TABLE IV
FIRST EXPERIMENT: CORRELATION FOR RAND IN TERMS OF KENDALL TAU

C. Results

The results of the first experiment are summarized in Table IV

for the Rand index as a similarity measure and in Table V for

the Jaccard measure. Both tables show the aforementioned cor-

relation between the similarity of tasks and the similarity of

fuzzy partitions for our proposal (which is denoted HRHS) as

well as the approaches that are discussed in Section III: Brouwer,

Campello,5 Anderson et al., Frigui et al., and Runkler. The same

results are summarized for the second experiment in Table VI

(Rand) and Table VII (Jaccard). Obviously, our approach per-

forms quite well in comparison with the other methods. This is

confirmed by a statistical test that is based on the average rank6

of each method, which follows the two-step procedure proposed

in [25] and is summarized in Table III.

5with t-norm min and t-conorm max.
6On each dataset, the best method (i.e., with the highest correlation value)

receives rank 1, the second-best method receives rank 2, etc., and these ranks
are averaged over the datasets, giving rise to one average rank per experiment
and method.

TABLE V
FIRST EXPERIMENT: CORRELATION FOR JACCARD IN TERMS OF KENDALL TAU

TABLE VI
SECOND EXPERIMENT: CORRELATION FOR RAND IN TERMS OF KENDALL TAU

TABLE VII
SECOND EXPERIMENT: CORRELATION FOR JACCARD IN TERMS OF

KENDALL TAU

In addition, Fig. 3 provides a visual impression of the per-

formance of the different methods (for the sake of clearness,

we omit Brouwer and Frigui, which behave quite similarly to

Campello and Anderson, respectively), albeit only for a sin-

gle example. What is shown here, for the wine dataset, is a

graphical illustration of the similarity matrix (ri,j ) with entries

ri,j = R(Pi ,Pj ) for the Jaccard measure. Each of these en-

tries is shown as a black bar whose length is proportional to the

value. What should be expected, therefore, is to find the longest

bars on the diagonal, whereas the length decreases toward the

lower left and upper right corner; besides, the bars on the main

and the secondary diagonals should have a similar length. As

can be seen, this expectation is met quite well by our approach,

for which this tendency is rather pronounced. What can also be

seen from these pictures is that, in general, the different methods

show different qualitative behaviors.

VII. SUMMARY AND OUTLOOK

The main contribution of this paper is a proposal of a gener-

alized Rand index to compare fuzzy clustering structures. Elab-

orating on the formal properties of our measure, we have shown

that it is a pseudo-metric and, on a subclass of fuzzy parti-

tions obeying certain normality assumptions, even a metric.
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Fig. 3. Visual representation of similarity between fuzzy partitions (first
experiment, Wine data, Jaccard). (a) HRHS. (b) Campello. (c) Anderson.
(d) Runkler.

Thus, in contrast with previous proposals, our extension ex-

hibits desirable metrical properties. Indeed, our review of exist-

ing approaches has revealed a number of potential shortcomings,

which are, in a sense, also confirmed by our experimental study.

Apart from generalizing the Rand index, we also provided the

basis to extend our approach to other similarity measures which

are defined in terms of the same basic quantities, namely the

numbers a, b, c, and d of concordant and discordant object pairs.

Even though our results allow such measures to be extended to

the case of fuzzy partitions, it is of course not clear which of

the metrical properties will be preserved by this extension. Just

like in the case of the Rand index, we are, therefore, interested

in studying the formal properties of fuzzy extensions of specific

measures such as, for example, the Jaccard index.

REFERENCES

[1] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Clustering validity check-
ing methods: Part I,” ACM SIGMOD Rec., vol. 31, no. 2, 2002.

[2] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Clustering validity check-
ing methods: Part II,” ACM SIGMOD Rec., vol. 31, no. 3, pp. 19–27, 2002.
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Dr. Hüllermeier is a member of the IEEE Computational Intelligence Society
and a board member of the European Society for Fuzzy Logic and Technology
(EUSFLAT). He is the Coeditor-in-Chief of Fuzzy Sets and Systems and is on
the editorial board of several other journals. Moreover, he is the Coordinator of
the EUSFLAT working group on learning and data mining, and the Head of the
IEEE Computational Intelligence Society task force on machine learning.
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