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Abstract

We study K-theoretical aspects of the braid groups B, (S?) on n strings of the 2-sphere, which by
results of the second two authors, are known to satisfy the Farrell-Jones fibred isomorphism conjec-
ture [56]. In light of this, in order to determine the algebraic K-theory of the group ring Z[B, (S?)], one
should first compute that of its virtually cyclic subgroups, which were classified by D. L. Gongalves
and the first author [47]. We calculate the Whitehead and K_;-groups of the group rings of the finite
subgroups (dicyclic and binary polyhedral) of B,(S?) for all 4 < n < 11. Some new phenomena
occur, such as the appearance of torsion for the K_;-groups. We then go on to study the case n = 4
in detail, which is the smallest value of n for which B, (S?) is infinite. We show that B4(S?) is an am-
algamated product of two finite groups, from which we are able to determine a universal space for
proper actions of the group B4(S?). We also calculate the algebraic K-theory of the infinite virtually
cyclic subgroups of B4(S?), including the Nil groups of the quaternion group of order 8. This enables
us to determine the lower algebraic K-theory of Z[B4(S?)].
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Chapter 1

Introduction

Given a group G, the K-theoretic fibred isomorphism conjecture of F. T. Farrell and L. E. Jones
asserts that the algebraic K-theory of its integral group ring Z[G| may be computed from the
knowledge of the algebraic K-theory groups of its virtually cyclic subgroups (see [33] or
Appendix A for the statement). This conjecture has been verified for a number of classes
of groups, such as discrete cocompact subgroups of virtually connected Lie groups [33],
finitely-generated Fuchsian groups [11], Bianchi groups [9], pure braid groups of aspherical
surfaces [3], braid groups of aspherical surfaces [35] and for some classes of mapping class
groups [10]. In [63], Lafont and Ortiz presented explicit computations of the lower algebraic
K-theory of hyperbolic 3-simplex reflection groups, and then together with Magurn, for
that of certain reflection groups [60]. Similar calculations were performed for virtually free
groups in [54].

Let n € N, let M be a surface, and let B, (M) (resp. P,(M)) denote the n-string braid group
(resp. n-string pure braid group) of M [13, 52]. Some basic information and facts about sur-
face braid groups are given in Appendix B. The braid groups of the 2-sphere S? were first
studied by Zariski, and then later by Fadell and Van Buskirk during the 1960’s [30, 86]. If
M either is the 2-sphere S? or the projective plane RP?, the results of [3, 35] do not apply to
its braid groups, the principal reason being that these groups possess torsion [30, 76]. The
second two authors of this book proved that the conjecture of Farrell and Jones holds also
for the braid groups of these two surfaces, which using the method prescribed by the con-
jecture, enabled them to carry out complete computations of the lower algebraic K-groups
for P,(S?) and P,(RP?) [56]. One necessary ingredient in this process is the knowledge of
the virtually cyclic subgroups of P,(M). For n > 4, P,(S?) has only one non-trivial finite
subgroup, generated by the “full twist” braid, which is central and of order 2, and from this,
it is straightforward to see that P, (S?) has very few isomorphism classes of virtually cyclic
subgroups. The classification of the isomorphism classes of the virtually cyclic subgroups
of P,(RP?), which was established in [45] and used subsequently in [56] to compute the
K-theory groups of Z[P,(RP?)], is rather more involved.

Our aim in this manuscript is to implement similar K-theoretical computations for the
group ring Z[B,(S?)] of the full braid groups of S2. In order to do so, one must determine
initially the virtually cyclic subgroups (finite, and then infinite) of B,(S?), and then compute
the K-groups of these subgroups. If n < 3 then B,(S?) is finite, and so we shall assume in
much of this manuscript that n > 4. The torsion of B, (S?) was determined in [38], and its fi-
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nite order elements were classified in [68]. It was shown by D. L. Gongalves in collaboration
with the first author that up to isomorphism, the finite subgroups of B,,(S?) are cyclic, dicyc-
lic or binary polyhedral (see [43] or Theorem 2). As for the corresponding pure braid groups,
one must then determine the infinite virtually cyclic subgroups of B, (S?) with the aid of the
characterisation due to Epstein and Wall of infinite virtually cyclic groups [28, 55, 78]. Up
to isomorphism and with a few exceptions in the case that 7 is a small even number, this
was achieved in [47]. A taste of the results is given in Theorem 4 when 7 is odd and in
Theorem 39 when n = 4.

In the ensuing quest to compute the lower algebraic K-theory of the group ring Z[B,(S?)],
we encountered a number of difficulties, among them:

(a) the family of virtually cyclic subgroups of B,(S?) is relatively large, and depends on 7,
contrasting sharply with the case of the pure braid groups analysed in [56].

(b) the lower algebraic K-theory of even the finite subgroups of B, (S?) is poorly understood,
and the investigation of the K-groups of dicyclic and binary polyhedral groups presents
additional technical obstacles compared to that of the dihedral and polyhedral groups that
appear in [60, 63] for example.

(c) in order to apply the method of calculation suggested by the fibred isomorphism conjec-
ture, one needs not only to compute the various Nil groups, but also to discover a suitable
universal space for the family of virtually cyclic subgroups of B, (S?). In spite of the rich
topological and geometric structures of the braid groups and their associated configuration
spaces, this space has thus far proved to be elusive for n > 5.

Chapter 2 is devoted to the second point, that of the computation of the lower K-theory
groups of many of the finite subgroups of B,,(S?). In Section 2.1, we recall the classification
up to isomorphism of the finite subgroups of B,,(S?), and of its virtually cyclic subgroups
when 7 is odd or n = 4. In Section 2.2, we compute the number of different types of con-
jugacy classes of the binary polyhedral groups in Proposition 7. These results are used later
in the chapter, when we determine the lower algebraic K-theory of the group rings of these
groups. In Sections 2.3 and 2.5, we calculate the Whitehead and the K_;-groups respect-
ively of the integral group rings of many of the finite subgroups of B,(S?). To our know-
ledge, these sections contain a number of original results, as well as some new phenom-
ena, such as the existence of torsion for some K_j-groups, that did not appear in previous
work [54, 60, 63]. This necessitates alternative techniques, notably the application of results
of Yamada to determine local Schur indices [84, 85], which enables us to calculate the torsion
of our K_1-groups. We believe that the methods that we use to calculate these K-groups for
dicyclic groups of certain orders may be extended to dicyclic groups of other orders. The
Whitehead groups are given in Proposition 10. The main results concerning the K_;-groups
are Theorem 25 for dicyclic groups of order 4m, where m is an odd prime, Proposition 27
for the generalised quaternions (the dicyclic groups of order a power of 2), Proposition 28
for the binary polyhedral groups. We also compute the K_;-groups of the dicyclic groups
of order 24, 36 and 40 in Proposition 29, and of cyclic groups of order 2p¥, 12 and 20, where
p is prime and g € N in Proposition 30. In Section 2.4, we recall briefly the work of Swan
pertaining to the calculation of the Izo—groups of the group rings of the binary polyhedral
groups, and of the dicyclic groups of order 4m for m < 11 [73], and in Theorem 14, we com-
pute Ko(Z[G]) where G is a cyclic group of order 18, 20 or 22. For dicyclic groups of higher
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order, the situation is complicated, and little seems to be known about the corresponding
Izo—groups. In Section 2.6, we sum up the results of many of our computations in Table 2.1,
which lists the lower K-theory groups of the finite subgroups of B,(S?) for all 4 < n < 11.
From this table, we may also obtain the lower K-theory groups of B, (S?) in the cases where
B, (S?) is finite, namely for n € {1,2,3}.

The aim of the remaining two chapters is to determine the lower algebraic K-theory of
Z[B4(S?)]. We study the case of B4(S?) in detail and show how the algebraic and geometric
features of this group interact, thus allowing us to compute its lower K-groups. In prepara-
tion for the explicit computations in Chapter 4, in Chapter 3, we describe the ingredients for
the corresponding computations in the case of infinite virtually cyclic subgroups. We start by
recalling some basic facts about the group B4(S?) in Section 3.1. One striking property, which
was proved in [44, Theorem 1.3(3)], is that it possesses a finite normal subgroup isomorphic
to the quaternion group of order 8. This enables us to show in Proposition 37 that B4(S?)
is an amalgamated product of the generalised quaternion group of order 16 and the binary
tetrahedral group, the amalgamation being along this normal subgroup, from which we de-
duce in Remark 38 that it is hyperbolic in the sense of Gromov. In Section 3.2, we determine
the isomorphism classes of the maximal virtually cyclic subgroups of B4(S?) in Theorem 41,
and in Section 3.3, we show that there are an infinite number of conjugacy classes for each
of the isomorphism classes of the infinite maximal virtually cyclic subgroups. These proper-
ties aid greatly, not just in the computation of the K-groups of the virtually cyclic subgroups
of B4(S?) and of the corresponding Nil groups, but also to exhibit an appropriate universal
space referred to in (c) above.

In Chapter 4, we bring together the results of the previous chapters to compute the lower
K-groups of B4(S?). In Section 4.1, we recall some facts and results about the lower K-theory
of infinite virtually cyclic groups. In Section 4.2, we determine the lower K-groups of B4(S?)
up to the computations of the associated Nil groups, and in Section 4.3, we determine these
Nil groups. One result that is interesting is its own right is Proposition 52 where we calculate
the Bass Nil groups NK;(Z[Qs]) for i = 0,1 of the quaternion group Qg of order 8. Our
calculations show that both Wh(B,(S?)) and Izo(Z[le(Sz)]) are infinitely-generated Abelian
groups, and contain infinite direct sums of Abelian 2-groups. In contrast, we shall see that
K_1(Z[B4(S?)]) = Z ® Z,. Compared with the families of groups considered in [54, 60, 63],
the existence of torsion here is once more a new phenomenon. We summarise these results
as follows.

Theorem 1. The group B4 (S?) has the following lower algebraic K-groups:
Wh(B4(S?)) =~ Z@ Nil;,
Ko(Z[B4(S?)]) = Zy ®Nily, and
K_1(Z[B4(S?))) = Zo & Z,
K_i(Z[B4(S?®)]) = 0 forall i > 2,

where for i = 0,1, the groups Nil; are isomorphic to a countably-infinite direct sum of Zy, Z4 or
Ly @ Ly.

For n > 5, we cannot expect the group B,(S?) to enjoy properties, such as hyperbol-
icity, similar to those of B4(S?). Furthermore, we have not been able as yet to determine
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an appropriate model for the universal space for the family of virtually cyclic subgroups
of B, (S?). There are some candidates suggested by the theory of Brunnian braids, but the
corresponding subgroups are of large index, and do not seem to be terribly useful from a
practical viewpoint. On the positive side, for small odd values of n, the family of virtually
cyclic subgroups of B,,(S?) is relatively small, and our techniques enable us to determine the
corresponding K-groups of these subgroups. If we are able to find an appropriate universal
space, we hope to be able to determine the K-groups of B, (S?) for other values of .

Acknowledgements

We wish to thank the following colleagues for helpful and fruitful discussions: Bruno Angles,
for help with the Galois theory of Section 2.5.2; Eric Jespers, Gerardo Raggi and Angel del
Rio (and the GAP package Wedderga [14]), for aiding us with the Wedderburn decomposition
of dicyclic and binary polyhedral groups; Jean-Francois Lafont, Ivonne Ortiz and Stratos
Prassidis, for conversations on K-theoretical aspects of our work during the early stages of
the writing of this paper; and Chuck Weibel for valuable comments at various points. We
would also like to thank the referees for their comments on the manuscript, and one referee
in particular, who made a number of useful remarks and suggestions to make it easier to
read.

The authors are grateful to the French-Mexican Laboratoire International Associé LAISLA
for partial financial support. D. Juan-Pineda was partially supported by the CNRS, PAPIIT-
UNAM and CONACYT (México), and J. Guaschi was partially supported by the ANR pro-
ject TheoGar n® ANR-08-BLAN-0269-02. J. Guaschi would like to thank the CNRS for having
granted him a ‘délégation” during the writing of part of this paper. J. Guaschi and S. Millan
also wish to thank CONACYT (México) for partial financial support through its programme
‘Estancias postdoctorales y sabaticas vinculadas al fortalecimiento de la calidad del pos-
grado nacional’.



Chapter 2

Lower algebraic K-theory of the finite
subgroups of By (S?)

2.1 Classification of the virtually cyclic subgroups of B, (S?)

If G is a group that satisfies the Farrell-Jones fibred isomorphism conjecture, the lower algeb-
raic K-theory of the group ring Z[ G| may be calculated in principle if one knows the lower al-
gebraic K-theory of the group rings of the virtually cyclic subgroups of G (see Appendix A).
Recall that a group is said to be virtually cyclic if it possesses a cyclic subgroup of finite in-
dex. Clearly any finite group is virtually cyclic. By results of Epstein and Wall [28, 78], an
infinite group is virtually cyclic if and only if it has two ends. This allows us to show that
any infinite virtually cyclic group G is isomorphic either to F x Z or to G; s*kr Gy, where F
is a finite normal subgroup of G, and in the second case, F is of index 2 in both G; and G,.
Consequently, in order to determine the virtually cyclic subgroups of G, one must first dis-
cover its finite subgroups. Let G = BH(SZ), and if m > 2, let Dicy,, denote the dicyclic group
of order 4m, with presentation:

Dicyy = (x,y | x" =%, yxy ' =x71). (2.1)

If m is a power of 2, then we shall also say that Dicy,, is a generalised quaternion group, and
denote it by Qy,,. Using a presentation of B,,(S?), such as that given in Theorem 34, if n < 3,
B, (S?) may be seen to be finite. The group B (S?) is trivial, By(S?) is isomorphic to Z, and
B3(S?) is isomorphic to Dicyy, and its subgroups may be obtained easily. So in most of what
follows, we shall assume that n > 4, in which case Bn(SZ) is infinite. The finite subgroups of
B,,(S?) were classified up to isomorphism in [43] as follows.

Theorem 2 ([43, Theorem 1.3]). Let n > 4. The maximal finite subgroups of B, (S?) are isomorphic
to one of the following groups:

(a) Z’Z(n—l) ifn =5,

(b) Dicy,,

(c) Dicypypyifn=>5o0rn=>7,

(d) the binary tetrahedral group, denoted by T*, if n = 4 (mod 6),

(e) the binary octahedral group, denoted by O*, if n = 0,2 (mod 6),

(f) the binary icosahedral group, denoted by 1*, if n = 0,2,12,20 (mod 30).

5
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More information on T*, O* and I*¥, to which we refer collectively as the binary polyhedral
groups, may be found in [1, 20, 21, 83]. It is well known that the subgroups of dicyclic and
binary polyhedral groups are cyclic, dicyclic or binary polyhedral (see [47, Proposition 85]
for the binary polyhedral case). We recall from [43, page 759] that the finite subgroups
of BH(SZ) are periodic of period 1,2 or 4. Further, by [43, Proposition 1.5], any two finite
subgroups of B,(S?) that are isomorphic are also conjugate, with the exception of those
subgroups that are isomorphic to Z,; and Dicy, if n is even and r divides n/2 or (n —2)/2,
in which case are two conjugacy classes in each isomorphism class. Consequently, any such
subgroup H of B, (S?) satisfies the following three conditions (see [1] or [74, page 20]):

(a) the p?-condition: for any prime divisor p of |H| (|H| denotes the order of H), H contains
no subgroup isomorphic to Z, x Z,,.

(b) the 2p-condition: for any prime divisor p of |H|, any subgroup of H of order 2p is cyclic.
(c) the Milnor condition: if H has an element of order 2, this element is unique (and so is
central in H).

Remarks 3.

(i) The p?-condition implies that the Sylow p-subgroups of H are either cyclic or generalised
quaternion, the latter case occurring only if p = 2.

(i) If G is a dicyclic or binary polyhedral group, the centre Z(G) is generated by the unique
element of order 2.

The second step in the process is to classify the infinite virtually cyclic subgroups of
B,(S?). Up to isomorphism, and with a finite number of exceptions, this was achieved
in [47]. The statement of the main result of [47] is somewhat long to explain here, but to
give a flavour of the results, we state the classification when 7 is odd, in which case the
classification is complete for all values of n. We shall also recall the case n = 4 later in
Theorem 39.

Theorem 4 ([47, Theorem 7]). Let n > 3 be odd. Then up to isomorphism, the virtually cyclic
subgroups of B, (S?) are as follows.

(I) The isomorphism classes of the finite virtually cyclic subgroups of B,(S?) are:

(1) Dicyy,, where m > 3 divides n or n — 2.

(ii) Zm, where m € N divides 2n, 2(n — 1) or 2(n — 2).

(II) If in addition n > 5, then the following groups are the isomorphism classes of the infinite virtu-
ally cyclic subgroups of B, (S?).

(i) Zy ¥ Z, where 0(1) € {Id, —Id}, m is a strict divisor of 2(n — i), for i € {0,2}, and m # n —i.
(ii) Zm x 7, where m is a strict divisor of 2(n — 1).

(iii) Dicgy, xZ, where m > 3 is a strict divisor of n — i for i € {0, 2}.

(iv) Zaq *17,, Lag, where q divides (n —1)/2.

(v) Dicaq k7, Dicsg, where q = 2 is a strict divisor of n — i, and i € {0,2}.

The aim of the rest of this chapter is to compute the lower algebraic K-theory of the group
rings of many of the finite groups of B,(S?). In Section 2.2, we start by determining the
number of different types of conjugacy classes in the binary polyhedral groups. The main
result of that section, Proposition 7, will be used in the rest of the chapter to determine the
lower algebraic K-theory of the group rings of T*, O* and I*. In Sections 2.3, 2.4 and 2.5, we
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calculate respectively the Whitehead, Ko- and K_1-groups of the group rings of many groups
that appear in the statement of Theorem 2. This allows us in Section 2.6 to determine the
lower algebraic K-theory of the group rings of the isomorphism classes of the finite groups
of B,(S?) for all 4 < n < 11, the results being summarised in Table 2.1.

2.2 Conjugacy classes of binary polyhedral groups

In this section, we compute the number of certain types of conjugacy classes of elements of
the binary polyhedral groups. Some of these numbers will be used in the calculations of the
lower algebraic K-theory of the group rings of these groups. Recall first that O* is generated
by the elements X, P, Q and R, subject to the following relations [83, page 198]:

{X?’ =1, P2=Q*=R% POQP'=Q ! XPXx1=0Q, xQx ' =PQ 22)

RXR'= X1, RPR'=QP, RQR ' =Q .

It follows that O* contains T* as an index 2 subgroup generated by X, P and Q that are
subject to the relations given in the first line of (2.2). The subgroup (P, Q) is isomorphic
to Qg, and X is of order 3 and acts by conjugation on (P, Q) by permuting P, Q and PQ
cyclically, so that T* =~ Qg x Z3. Further, O*\ T* is comprised of 12 elements of order 4 and
twelve of order 8. We recall also that |I*| = 120, that I* is comprised of the trivial element,
one element of order 2, thirty elements of order 4, twenty elements of order 3 and twenty of
order 6, twenty-four elements of order 5 and twenty-four elements of order 10. The group
I* also contains subgroups isomorphic to T*. The following lemma will be useful in some of
our computations.

Lemma 5. Let G be a dicyclic or binary polyhedral group, and let ¢ € G be an element of order
greater than or equal to 3. Then the centraliser Cg(g) of g in G is cyclic.

Proof. Let g € G be of order at least 3. Then g € Z(Cs(g)), so |Z(Cs(g))| = 3. The subgroups
of G are cyclic, dicyclic or binary polyhedral (see [47, Proposition 85] for the binary poly-
hedral case). Then Z(C;(g)) is cyclic because the centre of a dicyclic or binary polyhedral
group is isomorphic to Z; by Remarks 3(ii). O

If G is a finite group and d is a divisor of |G|, let v(d) be the number of elements of order
d in G, let ro(d) be the number of conjugacy classes of elements of order d in G, let r1(d) be
the number of conjugacy classes of unordered pairs {g, '} of elements of order d in G, and
let 5(d) be the number of conjugacy classes of cyclic subgroups of G of order d in G. If g, ¢’
are elements of G of the same order d such that {g, ¢} is conjugate to {g’, ¢'~'}, then there
exists 11 € G such that either hgh™! = ¢’ or hgh™! = ¢, so h(g)h™! = (') = (¢'"!), and
thus r1(d) = rp(d). It thus follows that:

v(d) = ro(d) = r1(d) = r2(d). (2.3)
For small d, the inequality r1(d) > r2(d) is an equality.
Lemma 6. Let G be a finite group. Then r1(d) = ro(d) foralld € {1,2,3,4,6}.
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Proof of Lemma 6. 1f d € {1,2} and if g € G is of order d then the pair {g, ¢!} reduces to
{g} and then clearly r{(d) = r2(d). So assume that d € {3,4,6}. From above, it suffices to
show that r(d) < rp(d). Note that if ¢ € G is of order d then the elements of (¢) of order
d are precisely g and ¢ 1. If ¢’ € G is also of order d and {g¢) and (g’) are conjugate then g
is conjugate to ¢’ or ¢'~1, so {g,¢7'} is conjugate to {g’, ¢’ "'}, which completes the proof of
the lemma. O

The following proposition summarises the values of v(d), ro(d),r1(d) and r»(d) for each
of the three binary polyhedral groups. It will be used in the calculations of Whitehead and
K_1-groups in Proposition 10 and Proposition 28 respectively.

Proposition 7.
(a) If G =T*, v(d),ro(d), r1(d) and ro(d) are given by:

d [[1]2]3]4]6
vd) [[1]1]8]6]8
ro@d [[1]1]2]1]2
n@d]|[1]1]1]1]1
nd|[1]1]1]1]1

Ifd € {3,6}, and g € T* is of order d then ¢ and g~ are representatives of the two conjugacy classes
of elements of order g.
(b) If G = O*, v(d),ro(d), r1(d) and ro(d) are given by:

4 [1]2]3]4]6[8]
vd) [[1]1]8]18]8]12
rod) [1]1]1]2]1]2
rnd 111 2]1]2
111 2]1]1

Ifd = 4, and g1 and g, are elements of O* of order 4 such that g1 € T* and gy ¢ T* then g1 and g
are representatives of the two conjugacy classes of elements of order 4. If d = 8, and g € T* is of order
8, g and g are representatives of the two conjugacy classes of elements of order 8.

(c) If G =T1",v(d),ro(d), r1(d) and ro(d) are given by:

~—

d [[1]2]3[4]5]6]10
v(d) [[1]1]20]30]2420]24
rod [1]1]1]1]2]1]2
nd 111 ]1]2]1]2
@11 1]l1]1]1]1

Ifd = 5 (resp. d = 10), and ¢ € T* is of order d, g and g* (resp. g and g°) are representatives of the
two conjugacy classes of elements of order d.

Proof. Since the binary polyhedral groups have exactly one element of order 1 and of order
2, the elements of the columns for d € {1,2} are all equal to 1. So we suppose that d > 3.
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(1) Let G = T*. We make use of the presentation of whose relations are given by the first
line of (2.2). Let d = 3. The subgroups of T* of order 3 are the Sylow 3-subgroups of
T*, so they are pairwise conjugate. Thus 72(3) = 1, and r1(3) = 1 by Lemma 6. We now
compute ry(3). Let ¢ € T be of order 3. Its centraliser C+(X) contains ¢ and the central
element P? of T* of order 2, so Cy+(g) contains the cyclic subgroup (gP?) of order 6. Now
T* contains no element of order greater than 6, and Cy+(g) is cyclic by Lemma 5. It follows
that Cr+(g) = (gP?). By the orbit-stabiliser theorem, the conjugacy class of g contains 4
elements, and since T* possesses 8 elements of order 4, we deduce that r¢(3) = 2. The fact
that r1(3) = 1 implies that ¢ and ¢~! belong to different conjugacy classes, so g and g~! are
representatives of the two conjugacy classes of elements of order 3. By adjoining P? to g, we
see that r;(6) = r;(3) for alli € {0, 1, 2}.

Now let d = 4. The six elements of T* of order 4 are contained in the subgroup (P, Q)

isomorphic to Qs. We have QPQ~! = P~1, so P is conjugate to P~!. Further, conjugation
by X permutes P, Q and PQ, so T* contains a single conjugacy class of elements of order 4,
r0(4) = 1, and thus r1(4) = r2(4) = 1 by (2.3).
(b) Let G = O*. Firstletd = 3. All of the elements of O* of order 3 are contained in its
subgroup T*, and so r¢(3) < 2. From (2.2), we have the relation RXR ! = X1, where X is
of order 3. Since X and X! are representatives of the two conjugacy classes of elements of
order 3 in T*, it follows that there is a single conjugacy class of elements of order 3 in O*, so
r0(3) = 1, and r1(3) = r2(3) = 1 by (2.3). Once more, the values for d = 6 are obtained by
adjoining P? to X.

Now let d = 4. From the case G = T, the six elements of order 4 that belong to the
subgroup T* of O* are pairwise conjugate, and since T* is normal in O¥, they form a complete
conjugacy class of elements of order 4. Now let I/ denote the set of twelve elements of order
4 that belong to O*\ T*, and let g € U. Since Cy+(g) is cyclic by Lemma 5 and contains (),
it follows that |Cy+(g)| € {4,8}. Suppose that |Cy(g)| = 8. Then Cy+(g) = Zs, and there
exists 1 € Cy«(g) of order 8 such that ¢ = h?. But since T* is of index 2 in O, it follows
that h? e T*, which contradicts the fact that ¢ ¢ T*. So |Co+(g)| = 4, and Co«(g) = {g).
The orbit-stabiliser theorem implies that the conjugacy class of g contains twelve elements,
which must be the elements of /. We thus conclude that there are two conjugacy classes
in O* of elements of order 4, so rg(4) = 2. it also follows that if g7 and g, are elements of
O* of order 4 such that g1 € T* and g» ¢ T* then g7 and g, are representatives of these two
conjugacy classes. If ¢ € O* is of order 4, then either it belongs to T*, and then g~! € T*,
or it belongs to O*\ T*, and then ¢~! € O*\ T*. In both cases, it follows that ¢ and ¢! are
conjugate in O*. Thus r1(4) = 2, and hence r;(4) = 2 by Lemma 6.

Finally, let d = 8, let g € O™ be of order 8, and let H be a Sylow 2-subgroup that contains
g. Then |H| = 16, and since O* has no element of order 16, it follows from Remark 3(i)
that H = Q4. The group Q14 contains a unique cyclic subgroup of order 8, and hence H
is the only Sylow 2-subgroup that contains g. Since the Sylow 2-subgroups are pairwise
conjugate, it follows that the three cyclic subgroups of order 8 are pairwise conjugate, and
hence r(8) = 1. The centraliser Cno+(g) contains (g), and is cyclic by Lemma 5, and the
fact that O* has no element of order greater than 8 implies that Cy+(g) = (g). The orbit-
stabiliser theorem implies the conjugacy class of g contains 6 elements, and since O* contains
12 elements of order 8, we conclude that r((8) = 2. Using the presentation (2.1) of Q14, we
see that ygy~! = ¢~ for all y € H\{(g), so ¢ and ¢! are conjugate, and it follows that
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r1(8) = 2 also. We also deduce that g and ¢° are representatives of the two conjugacy classes
of elements of order 8.

(c) Let G = I*. First suppose that d € {3,5}, and let ¢ € I* be an element of order d. Then
Co*(g) contains (g) and the unique element w of I* of order 2, and since Cy+(g) is cyclic by
Lemma 5, we see as in the previous cases that Cn+(g) = (wg), and |Co+(g)| = 2d. The orbit-
stabiliser theorem then implies that the conjugacy class of g contains 60/d elements. If d = 3,
this conjugacy class is the set of elements of order 3, so r¢p(3) = 1, and hence r1(3) = 2(3) = 1
by (2.3). If d = 5, the conjugacy class of g contains 12 elements, from which we conclude that
there are two conjugacy classes C; and C; of elements of order 5, so 1y(5) = 2. The subgroups
of I of order 5 are its Sylow 5-subgroups, which are pairwise conjugate, so r(5) = 1. This
also implies that each such subgroup contributes two elements to each of C; and C,. So if
¢ € O*is of order 5, it is conjugate to exactly one element 1 of (¢)\ {g}. Note that h # g (resp.
h # ¢~2) for otherwise ¢ would be conjugate to g> (resp. ¢2), then ¢ would be conjugate
to ¢! (resp. to g), and the conjugacy class of ¢ would contain at least three elements of (g),
which is not possible. Hence g is conjugate to ¢! for every element ¢ € I* of order 5, but is
not conjugate to g% or to ¢~ 2. This proves that the conjugacy class of {g, ¢!} is equal to that
of ¢, and so r1(5) = 2, and that ¢ and g are representatives of the two conjugacy classes of
elements of order 5. Once more, if d € {3, 5}, then r;(2d) = r;(d) for alli € {0, 1,2}.

It remains to study the case d = 4. Let ¢ € I* be an element of order 4. Using once more
the fact that Cy«(g) contains (g) and is cyclic, we see that Cy+(g) = (g), and then that the
conjugacy class of ¢ contains thirty elements, which is the number of elements of I* of order
4.Sorp(4) =1,and r1(3) = 12(3) = 1 by (2.3). H

2.3 Whitehead groups of the finite subgroups of B, (S?)

If G is a finite group, recall that its Whitehead group Wh(G) is a finitely-generated Abelian
group, and so may be written in the form:

Wh(G) = Z' ®SK4(Z[G]), (2.4)

where SK;(Z[G]) is isomorphic to the torsion subgroup of Wh(G) [79]. The following pro-
position implies that to determine Wh(G), where G is a finite subgroup of B,,(S?), it suffices
to compute r.

Proposition 8. Let n € N, and let G be a finite subgroup of B,,(S?). Then SK1(Z[G]) is trivial.

Proof. As we mentioned in Section 2.1, any finite subgroup G of B,(S?) is cyclic, dicyclic
or binary polyhedral. If G is cyclic, dicyclic of order 8m, m € N, or binary polyhedral the
result follows from [75, Theorem A, parts (1), (3), (5), (6) and (7)]. The only other possibility
is when G is dicyclic of order 4m, where m is odd. In this case, the Sylow p-subgroups of
G are cyclic, and from [74, page 20], G admits a presentation of the Type I groups of [75,
Appendix]. The result then follows from [75, Theorem A, part (2)]. O

Remark 9. One may also prove Proposition 8 by applying [70, Theorem 14.2(i) and Ex-
ample 14.4].
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Consequently, if G is a finite subgroup of B,(S?), then by equation (2.4), Wh(G) is a
free Abelian group, and it remains to calculate its rank. This is achieved in the following
proposition.

Proposition 10. Let n € N, let G be a finite subgroup of B,(S?), and if g € N, let 5(q) denote the
number of divisors of q. Then Wh(G) = Z’, where:

(2] +1-6(m) ifG=2ZmmeN
m+1—-612m) if G = Dicgy,, m =2

r=<0 ifG=T*
1 ifG~0O"
2 ifG =T

\

Proof. Let G be isomorphic to a finite subgroup of B,(S?). We recall once more that G is
cyclic, dicyclic or binary polyhedral. Let 71 denote the number of conjugacy classes of un-
ordered pairs {g,¢7'} in G, where g € G, and let r, be the number of conjugacy classes of
cyclic subgroups of G. By [59, page 39], the rank r of Wh(G) is equal to r; — 1, and so:

r= > (r(d) —ra(d)). (2.5)

d[|G]

We treat the possibilities for G separately.

(1) G = Zy,, where m € N. Since G is Abelian, r; is just the number of unordered pairs
{g,¢7'} in G, where g runs over the elements of G, and r; is the number of cyclic subgroups
of G. Since g = ¢! if and only if [(g)| € {1,2}, we have that r; = "+ + 1 if m is odd, and
r o= mT*Z +2if mis even. So r; = | 4] + 1. Since the subgroups of Z,, are in bijection with
the divisors of m, we have r, = 6(m), sor =1y —r, = | 2| + 1 — §(m) as required.

(b) G =~ Dicyy,, where m > 2. Let G = (x)[[{x)y be given by equation (2.1). Since the
elements of (x) y are of order 4, it follows from Lemma 6 and equation (2.5) that they do not
contribute to 7. So we just need to consider the contributions of the elements of (x) to r; and
rp. Using equation (2.1), the conjugacy classes of the elements of (x) in G are {x', x~'}, where
0 <7 < m. Since {x) is of order 2m, as in the cyclic case, its elements contribute m + 1 to the
ri-term, and 6(2m) to the rp-term, and thus r = m + 1 — §(2m).

(c) If G is binary polyhedral, the rank of Wh(G) may be easily deduced using (2.5) and the
tables of Proposition 7. O

2.4 Ky(Z[G)) for the finite subgroups of B,(S?)

Let G be a finite group. The calculation of Ko(Z[G)) is a difficult problem, even when the
order of G is small. It is known that Ko(Z[G]) is isomorphic to the ideal class group CL(Z[G])

of Z|G] [23, Section 49.11]. The following theorems summarise some results about Ko(Z[G])
for certain finite groups.
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Theorem 11 ([23, Corollary 50.17], [27]). If G is Abelian then KO(Z[G]) is trivial if and only if G
is either cyclic of order n, n € {1,2,...,11,13,14,17,19}, or is isomorphic to Zy ® Zy. If G is non
Abelian and Ko(Z[G]) = 1 then G is isomorphic to one of Dihag, g > 3, Ay, Sy or As, Dihyg being
the dihedral group of order 2q.

Theorem 12 ([73, Theorems III and IV, Corollary 10.12]).
Zy ifme{2,3,4,57,8,11}

(a) Ko(Z[Dicam)) = {73 ifm =9
75 ifme {6,10}.

(b) Ko(Z[T*]) = Zy, Ko(Z[O*]) = Z3 and Ko(Z[1*]) = Z3.

In Section 2.6, we will determine the lower algebraic K-theory of the finite subgroups of
B, (S?) for all 4 < n < 11. With this in mind, we now compute Ko(Z[G)) for some other finite
cyclic groups. Before proving our results, we state the following result concerning the Bass
cyclic units of the group ring Z[Z].

Theorem 13 ([7, p. 403]). Let G denote the cyclic group of order n. Let n,k € N, let g € Z;, be an
element of order n, and let m be a multiple of ¢(n). Then k™ = 1 mod n. Further, the Bass cyclic
units are defined by:

k—1>m 1—K"

in(§) = (1+ g+ + )"+ (L + g+ +8"),

where k and n are relatively prime, and they generate all the units of infinite order in Z|Zy).
Theorem 14. Let G = Z,, where n € {18,20,22}. Then EO(Z[G]) ~ Zs if n € {18,22}, and
Ko(Z[G]) = Z3 if n = 20.

Proof. Let G = Z;,, where n € {18,20,22}. We make use of an appropriate Cartesian square
and the associated Mayer-Vietoris sequence as follows. We begin with the Rim square asso-

ciated to Z,:
2|y —— Z

l J (2.6)
7 —— [Fs.
By (2.6), we obtain the following Cartesian square:

ZIG] —— Z[Zy)]

| | @.7)
L L) —— Fa[Zy].

Proposition 8 and Theorem 11 imply that Ko(Z|Z, 1)) = 0and SKy(Z[Z,5]) = 0, hence the
Mayer-Vietoris sequence associated with (2.7) becomes:

~

- U(Z[Zy)2]) @ U(Z[Zy o)) — U(F2|Zy]) — Ko(Z[G]) — 0.
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In the rest of this proof, U(R) will denote the group of Bass cyclic units of an integral group
ring R. We therefore need to understand the following homomorphism:

U(Z]Zn)2)) @ U(Z[Zyp]) — U(F2|Zy2]) (2.8)

that is induced by reduction modulo 2. If n = 18 (resp. n = 22), the ring F>[Z,, ] is semi-
simple, and is isomorphic to Fp @ F» (&%) @ F» (&) (resp. to Fr ®F»(&)), where  is a primitive
(n/2)™ root of unity, and is a root of the polynomial x® + x3 + 1 (resp. of x!0 + 27 + ... +
x? + x + 1). Both of these polynomials are irreducible in F,[x]. Recall that F»(¢) is a field
with 64 (resp. 1024) elements [19], and its group of units is cyclic of order 63 (resp. of order
1023 = 31.11.3). Suppose that n = 18. As we mentioned, we are taking U(Z[Zy]) to be
generated by the Bass cyclic units that are of infinite order in Z[Zg]. These cyclic units are
described by Theorem 13, and are uy 6, 4 6, Us,6, 176 and uge. The image of uy ¢ in Fy (&) is:
(Lt 80" = (T +80)° = (14 0)° = g1+ &%)

=31+ + ) =+ P+ e+ =148+
So the image of ”%,6 in (%) is 1+ &2 + &7, the image of u§’6 inIF,(¢) is the image of (u%/6)2u§,6
in IF>(¢), which is equal to:

A+ 4+ +8) =1+ 3+ + 8+ 0+ P+ P+ + 0 =+ 0.

Thus the image of ”;,6 in F(¢) is the image of ”3,6”7,6 in F»(&), which is equal to:

E+O)1+E+8) =+ P+ 0+ &+ + =1

Hence the image of uy¢ in () is of order 7, and the image of uyguge in F>(§) is of order
21. We now show that the three other cyclic units are each of order 21.

(i) upe: its image in Fp (&) is (1 +&)° = (1 +¢&2)% = 1+ &2 + &* + %, So the image of u%’() in
[F,(¢) is equal to the image of u%bu% in F»(¢), which in turn is equal to:

A+&E+ B+ +E+ &+ =1+ + &+ + &+ 0+ 8+ 6+
BHe+P+0+8 40+ +1=22+7.
Hence the image of ”g,é in [F(¢) is equal to the image of (u%ﬁ)2 in [F(¢), which is equal to
&* + &, and the image of uzﬁ in [F(¢) is equal to the image of (”2,6)”2,6 in F»(&), which in
turn is equal to:
I+ 4+ )+ =+ + P+ T+ P+ +1+82 =8,

which is of order 3. It follows that the image of uj ¢ in [F2(§) is of order 21.
(i) The image of uy 6 in [F5(C) is:

(1+8+8+)° =1+ +& +2°)

=1+ ++21+ 3+ +2%

=1+ +8+0)1+8+34+¢°

= P+@+y =+ + 8 =+ + Y.
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Then the image of uib inFp(&)is &1+ +&8) =8+ 4+ =31+ +¢°), and the
image of u?w = U a6 in Fa(Z) is:

A+ +NA+ T+ ) =T A+ + P+ A+ T+ T+ )
@+ 4+
e+ =gt +0).
Thus the image of u46 (u4 )2 is E(1+¢7),

C++IHA+E) =20+ ++ T +1+87) ="

It follows that the image of 146 in F2(¢) is of order 21.
(iii) The image of us5 ¢ in Fp(¢) is

(I+g+ -+ =1+ P+ T+ + ) = (P + e+’ = 1+ 5+
=1+ 5+ 1+5+8) =1+ +EHA+E+E)
= (1+5+ 8+ + 0+ 0480 =51+,
Sotheimageofu56inF2(§)15(33(1+§4+§8+§3) &+ x7 +Cz+§6 1+ &%+ &7, and the
1mageofu56 (ugé) is 1+ ¢* + &, Hence’che1mageofu56 u56u56ls
(1+& 851 +¢h) = ¢+ +P+T++1) =88 +¢%) =&

It follows that the image of u54 in Fo(¢) is of order 21.

I

: 7 _ .6 o
and the image of uj ; = 1, (U is:

We conclude that the image in IF5 () of the subgroup generated by the cyclic units is of order
21. Hence the cokernel in (2.8) is of order 3, and from that equation we see that Ko(Z[Z4g]) =~
73, thus proving the result in the case n = 18. The proofs in the cases n = 20 and n = 22 are
similar. First suppose that n = 22. As above, we see that the Bass cyclic units are of the form
ux 19 for k = 2,3,4,...,10, and making use of a Mathematica [67] routine written by José
Hernandez (CCM-UNAM), to whom we are grateful, one may check that the image in F»(¢)
of the subgroup generated by the cyclic units is of order 341, and that the cokernel of (2.8)
is of order 3, so once more, Ky(Z[Z2]) =~ Zs. Finally, suppose that n = 20. In this case, the
ring F2[Z10] is not semi-simple. It is isomorphic to Fo[x]/(x°> — 1)2, and its group of units is
isomorphic to the direct product U(F2[Z1g]) = (Z2)° x Z3 x Zs. Applying the Mathematica
routine once more to the cyclic units u34, 74 and ug 4, we see that the image of the group
generated by these units in (2.8) is of order 15, and hence the cokernel of (2.8) is isomorphic
to Z3. This completes the proof of the theorem. O

2.5 K_1(Z|G]) for the finite subgroups of B, (S?)

Let G be a finite subgroup of B,(S?). In order to determine K_1(Z[G]), we shall use the
following special case of a result of Carter. Similar results have recently been obtained inde-
pendently by B. Magurn in [65] for generalised quaternion and binary polyhedral groups.
First we recall that a simple Artinian ring A is isomorphic to M, (D) for some positive
integer n and some skew field D. Further, D is finite dimensional over its centre E, the di-
mension being a square [D : E], and the Schur index of A is equal to /[D : E][22, Section 27].
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Theorem 15 ([15, Theorem 1]). Let G be a finite group of order q. Then

K(Z[G)) = Z' @2, 2.9)
where r is given by
r=1-rg+ Z (rq, —1¥,), (2.10)
plIG|

rq (resp. rq,, ry,) denotes the number of isomorphism classes of irreducible Q- (resp. Qp-, F)-)
representations of G, and s is equal to the number of simple components of Q|G| that have even
Schur index m but have odd local Schur indices mg at every finite prime Q of the centre which
divides q.

So to calculate K_1(Z[G]), we must determine the quantities ¢ for the various fields
appearing in equation (2.10), as well as the number s. For the finite subgroups G of B,(S?),
we divide this calculation into two parts. In Section 2.5.1, we determine r, which yields the
torsion of K_1(Z[G]). In Section 2.5.2, we compute s, which is the rank of K_1(Z[G]). We
then obtain K_1(Z[G]) from (2.9).

2.5.1 Torsion of K_1(Z[G]) for finite subgroups of B, (S?)

Let G be a finite subgroup of B,(S?), and let s be as defined in equation (2.9). As remarked
in [15, page 1928], a consequence of Theorem 15 is that K_;(Z[G]) is torsion free if G is
Abelian. In particular, if G is cyclic, then s = 0. If G is non cyclic, then as we shall see,
K_1(Z|G]) may have torsion. Although equation (2.9) clearly allows for this possibility, this
appears to be a new phenomenon, and contrasts with the calculations given in [60, 63] for
example. We thus require new techniques to calculate the torsion of K_1(Z[G]). If G is
dicyclic, we make use of results due to Yamada concerning the computation of the (local)
Schur indices of the simple components of Q[G] [85]. If G is binary polyhedral, then one
may apply induction/restriction techniques and the Mackey formula.

Assume first that G = Dicy,, is dicyclic, where m > 3 is odd. If m is an odd prime then
we determine K_1(Z[Dicyy,]). In principle, our method should apply to any odd value of m,
not just for prime values. If m is odd, the Wedderburn decomposition over Q of the algebra
Q[Dicyy, | is given in [22, Example 7.40]:

Q[Dicyy,] = Q[Dihyy,] @ Qi) @ ( P H2d0>

do|m, do>1
~ Q*® ( D M (Q(e+ gl))> ®Q()® ( &) sz0>, (2.11)
d|m, d>2 do|m, dy>1
where (; is a primitive d™ root of unity, and
Hy = E;®E i®E;j® Egk (2.12)
is the quaternion skew field with centre E; = Q (@d + Q;l). In particular, if m = p is prime

then
Q[Dicy,] = Q*® M; (Ey) ® Qi) @ Hye (2.13)
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Note that the number of components in equation (2.13) is equal to the number of conjugacy
classes of cyclic subgroups of Dicyy,, and that the components are in one-to-one correspond-
ence with the irreducible Q-representations of Dicg,. The first four components of equa-
tion (2.13) are matrix rings over fields, and so their Schur index is equal to one. By equa-
tion (2.9), the torsion of K_1(Z[Dicy,]) is then either trivial or equal to Z, depending on the
Schur and local Schur indices of the remaining component Hj,. We now determine precisely
this torsion using results of Yamada [84, 85].

Proposition 16. If y be an odd prime, the torsion of K_1(Z[Dicy,]) is trivial if p = 3 mod 4, and
is equal to Zy if 4 = 1 mod 4.

Proof. We apply the results of [84, 85], and refer the reader to these papers for the notation
used in this proof. If n € N and w € Z is coprime with 7, then wmod”™ n will denote
w as an element of the multiplicative group of integers modulo n. With the notation of [85,
Proposition 4], we have m = 2u,r = 2u—1,s = 2, h = y and u is the order of 2y — 1 mod™ 2,
sou = s = 2. From [85, Example 3, Section 6], there are representations of Dicy, of the form

U‘S‘zg, where 0 < & < 2y — 1. Such representations are defined in [85, equation (8), p. 214] and

induced by linear characters. Using [85, Proposition 5], the representation u10) gives rise

to an irreducible representation of Q[Dicy,], and the last part of [85, Example 3, Section 6]
implies that its Schur index is equal to two. Since the Schur index of each of the first four
components of equation (2.13) is equal to one, it follows that the simple component Hy,, of

Q[Dicyy] corresponds to Uﬁ)) .

We now apply [85, Proposition 9] to Ufo) Within our framework, the enveloping algebra

envg (Uﬁ;) with respect to Q is isomorphic to the simple component Hy,, and the centre
Esy, of Hp,, is isomorphic to Q <)(§23> , Xf()) being the character of Uﬁ; [84, Introduction] With

ST = st 2 Let
p be a finite prime of the centre E, of Hy, that divides 4u. Then p divides 2y, and since y is
odd, p divides p, where p € {2, u}. We distinguish these two possibilities, the notation being
that of [85, Proposition 9].

(a) Suppose that p divides 2. Then we have p = 2,b =z = 1,a = 1 and ¥ is the order of
2y —1mod™ p,sot' = 2. Thus e, = 1, and hence ¢, = A, = 1.

(b) Suppose that p divides y. Then p = p, b = 0,z = 2,0 = 1, 2u—1mod*2) =
(pmod 2y = {1}, f=f =t =1,g=p,e,=2,¢, = ged (2,4 — 1) = 2 and

_J1 ify=T1mod 4
|2 ify=3mod 4

the notation of [85, Proposition 9], we have d; = 2u and v =

2
Np = —F——=
ged (2,15)
by [85, Proposition 9(II)].
Thus if ¢ = 1 mod 4, the simple component Hy,, of Q[G] whose Schur index is equal to
two satisfies the property that its local Schur indices at every finite prime of the centre are
odd. Hence the integer s of equation (2.9) is equal to one, so the torsion of K_1(Z[G]) is Z,. If

# = 3 mod 4 then A, = 2 for any finite prime p that divides y, so s = 0, and hence K_;(Z[G])
is torsion free. u
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As another example, we calculate the torsion of K_;(Z[Dicyy,]) in the case where m is a
power of 2 (so Dicyy, is a generalised quaternion group).

Proposition 17. The torsion of K_1(Z[Qx]) is trivial if k = 3, and is equal to Z if k > 4.
Proof. Let k > 3. Then Dicyx = Qo From [22, Example 7.40, case 1],

Q9] = Q[Dihy 1] ®Hy1, (2.14)

where H,x1 is the quaternion skew field defined by equation (2.12). Using [22, Example 7.39],
each simple component of Q[Dih,2] is a matrix ring over a field, and so its Schur index is
equal to one. As in the proof of Proposition 16, one may show that the Schur index of the re-
maining simple component H, 1 of equation (2.14) is equal to two, and that this component

corresponds to the irreducible representation ul(/zg. To study the local Schur index A, of each
finite prime p dividing the centre E,—1 of the simple component H,—1, we again apply [84,
Proposition 9]. With the same notation, we have m = 21 p—ok-1_ 1 yy=g=2h=20K2
d; = 281 and v; = 2. If p does not divide 2! then Ap = 1 by [84, Proposition 9(I)]. So
suppose that p divides 25~1. With the notation of [84, Proposition 9(II)], b = z = 1 and p = 2.
If k = 3 then we are in the exceptional case of [84, Proposition 9(II)], so Ay = 2. Thus there
exists a finite prime of the centre Ey1 of Hy1 dividing 2k with even local Schur index, and
it follows from Theorem 15 that the torsion of K_1(Z[Qg]) is trivial. Assume then that k > 4.
So f = ]? =t =1lande, = g = 2, thus ¢, = Ay = 1. Then the simple component Hy; of
Q[ Q,x] whose Schur index is equal to two satisfies the property that its local Schur indices
at every finite prime of the centre dividing 2F are odd. Hence the integer s of equation (2.9)
is equal to one, and thus the torsion of K_1(Z[Q«]) is equal to Z, as required. O

Now let G be a binary polyhedral group. We recall that a group is said to be 2-hyper-
elementary if it is a semi-direct product of a cyclic normal subgroup of odd order and a 2-
group. Since G is not itself 2-hyper-elementary, induction/restriction techniques may be
used to calculate the torsion of K_1(Z[G]).

Proposition 18. The torsion of K_1(Z[G]) is trivial if G =~ T*, and is equal to Z, if G =~ O* or
Gx~1TI"

Proof. Let G be a binary polyhedral group. Applying [15, Theorem 3(iii) and page 1936], we
have the composition

®n K 1(Z[H]) ™ K 1(Z[G]) > @y K_1(Z[H]), (2.15)

where ind and res are the usual induction and restriction maps that are surjective and in-
jective respectively when restricted to the corresponding torsion subgroups, and H runs
over the conjugacy classes of the 2-hyper-elementary subgroups of G [15, Theorem 3(iii)
and p. 1936]. Restricting to these torsion subgroups, we see that the torsion of K_1(Z[G])
injects into that of @y K_1(Z[H]). The non-trivial 2-hyper-elementary subgroups of T* are
Zz, Z3, Z4, Z(, and Qg, those of O* are Zz, Z3, Z4, Z(,, Zg, DiClz, Qg and Qlé, and those of
I* are Zy, Z4, Z¢, Z10, Qs, Dic1p and Dicyg (see [73, Lemma 14.3] and [47, Proposition 85]).
If m € N, the group algebra Q[Z,,] splits [22, Example 7.38], so the torsion of K_1(Z|Z]) is
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trivial [15, page 1928]. Further, by Propositions 16 and 17, the torsion of K_1(Z[Qs]) and of
K_1(Z|Dic1p]) is also trivial, and setting L = Q14 (resp. L = Dicyg) if G = O* (resp. G = I¥),
the torsion of K_1(Z[L]) is Zy. The injectivity of res in equation (2.15) implies that the torsion
of K_1(Z[T*)) is trivial, which gives the result in this case.

Solet G = O* or I, and let L be as defined above. Now G possesses a single conjugacy
class of subgroups isomorphic to L [73, Lemma 14.3], and since L is the only subgroup of G
for which the torsion of K_1(Z[L]) is non trivial, we need only to consider the restriction of
equation (2.15) to the factor H = L:

K_4(Z[L]) % K_4(Z[G]) X5 K4 (Z[L)). (2.16)
It thus suffices to show that the restriction of (2.16) to the corresponding torsion subgroups is
the identity. Now K_;(-) is a Mackey functor [70, Theorem 11.2], so we may apply Mackey’s
formula that describes the composition (2.16) as the sum of the maps:

K_1(Z[L]) “ K_4(Z[x; 'La; 0 L]) = K4 (Z[L)), (2.17)

where G = []Lx;L is a double coset decomposition of G, and the map cy, is induced by
the homomorphism xl._lei N L — L defined by y — xiyxi_l [70, Section 11a]. Let Ng(L)
denote the normaliser of L in G. If x; ¢ Ng(L) then the torsion of K_1(Z[xi_1in N L]) is
trivial, and the corresponding map (2.17) contributes zero to the restriction of (2.16) to the
torsion subgroups. If on the other hand, x; € Ng(L), the corresponding map (2.17) is an
isomorphism. Now L < Ng(L) < G, and since L is not normal in G and G has no proper
subgroup that strictly contains L [47, Proposition 85], it follows that Ng(L) = L. So there is
only one double coset representative x; that belongs to Ng(L), and for this x;, it follows that
the restriction of (2.16) to the torsion subgroups is equal to the restriction of the isomorph-

ism (2.17) to the torsion subgroups. Since the torsion of K_1(Z[L]) is Z;, the same conclusion
holds for K_1(Z|G]). O

Remarks 19.

(a) The induction/restriction arguments in the proof of Proposition 18 were inspired by
those given in [73, Paragraph 14] for the Izo—groups.

(b) Let G = O or I*. We sketch an alternative proof of the fact that K_1 (Z[G]) has non-trivial
torsion that uses [73, Proposition 4.11]. The embedding of G in the Hamilton quaternions
H [20, Chapter 7] induces an algebra homomorphism ¢¢: Q[G] — H. By [73, Proposi-
tion 4.11 and its proof], P (Z[G]) is a maximal order I'; that is completely described in [73,
page 79], from which one may prove that Im(i;) is equal to H;, where d = 8 (resp. d = 5) if
G = O (resp. G = I"), in other words, H; appears as a factor in the Wedderburn decompos-
ition of Q[G]. On the other hand, from equation (2.14) (resp. equation (2.13)), we know that
H, also appears in the Wedderburn decomposition of Q[ Q4] (resp. Q[Dicyp]), and from the
proof of Proposition 17 (resp. Proposition 16), that it contributes a Z,-term to the torsion of
K_1(Z]|Q16]) (resp. K_1(Z[Dicy))). It follows then from [15, Theorem 1] that K_1(Z[G]) has
non-trivial torsion.
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(c) Using the GAP package Wedderga [14], one may obtain the complete Wedderburn decom-
position for the binary polyhedral groups:

Q[T*] = Q@ Q({3) ® M3(Q) ® Hy @ H(Q({3)) (2.18)
Q[O*] = Q? @ M, (Q) ®2M3(Q) @ Hs ® M,(H), and (2.19)
Q[I*] = Q® M4(Q) @ Hs @ My (H) ® M5(Q) @ M3(H(Q)) @M3(Q(V5)),  (220)

where H is the quaternion algebra (—1,—3)/Q. This algebra admits a basis {1,7,],k} as a
Q-vector space, and the algebra multiplication satisfies ij = —ji = k, i* = —1 and j> = 3.
Somewhat surprisingly, we were not able to find the decompositions (2.18)—(2.20) in the
literature.

In order to prove Theorem 31 and to obtain Table 2.1 given on page 34, we will need to
calculate K_1(Z[G]) for some other dicyclic groups, namely G = Dicy,, where u € {6,9,10}.
We now compute the torsion of K_1(Z[Dicy,]) for p = 9, as well as the case where u = 27,
where T is an odd prime, which includes the cases 4 = 6 and p = 10.

Proposition 20.

(a) If p = 27, where T is an odd prime, then the torsion of K_1(Z[Dicy,]) is Zo.
(b) The group K_1(Z|Dicsg)) is torsion free.

Proof.

(a) Let u = 27, where T is an odd prime. From [22, Example 7.40] or [73, pp. 75-76], and
using (2.11) and the notation of Section 2.5.1, we have:

Q[Dicy,] = Q[Dicg]

=Q'e ( D Mz (Q(aa+ 6;1>>> ® Hy @ Hr. (221)

de{t,27}

The first three factors of equation (2.21) are matrix rings over fields, so their Schur index is
equal to one. Further, the factor Hy appears in the Wedderburn decomposition of the Q-
algebra Q[T*], and since K_1(Z[T*]) is torsion free by Proposition 18, H4 does not contribute
to the torsion of K_1(Z[Dicyy]). It remains to determine the Schur and local Schur indices of
the remaining factor Hy,. Once more, we follow the proof of Proposition 16, and we use the

results and notation of [84, 85], taking m = 41,r =41 — 1, h = 27, and u = s = 2. Using [85,

Proposition 5], the representation LI£ 0) gives rise to an irreducible representation of Q[Dicy,,|,

and the last part of [85, Example 3, Section 6] implies that its Schur index is equal to two.
Since the Schur index of each of the first four components of equation (2.21) is equal to one,

it follows that the simple component Hy. of Q[Dicg,] corresponds to Uﬁg With the notation
of [85, Proposition 9], we have d; = 47 and v; = 2. Let p be a finite prime of the centre of Hy
that divides 47. Then p divides 2 or 7. If p | 2, then p = 2. We are not in the exceptional case
of [85, Proposition 9(II)] since the order of r in Z% is equal to 2. Further, a = 2, and t' is equal
to the order of 47 —1in Z%,sot' = 2. If p | 7, then p = 7, a = 1, and #' is equal to the order
of 4t —1in Z}, so t' = 2 also. So in both cases ¢, = s/t' = 1, hence c, = A, = 1. Thus the
simple component Hy, of Q[Dic;ly] whose Schur index is equal to two satisfies the property
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that its local Schur indices at every finite prime of the centre are odd. Hence the integer s of
equation (2.9) is equal to one, and therefore the torsion of K_1(Z[Dicy,]) is Z,.
(b) By (2.11), the Wedderburn decomposition of the (Q-algebra Q[Dicsg] is given by:

Q[Dicsg] = Q* ® My (E3) ® Ma(Eg) ® Q(i) ® He @ Hiyg. (2.22)

The first four factors of equation (2.22) are matrix rings over fields, so their Schur index is
equal to one. Further, the factor Hg also appears in the Wedderburn decomposition of the
Q-algebra Q[Dicy;], and since K_1(Z[Dicyy]) is torsion free by Proposition 16, Hg does not
contribute to the torsion of K_1(Z[Dicss]). It thus suffices to determine the Schur and local
Schur indices of the remaining factor Hyg. Following the proof of Proposition 16, we obtain
m=d; =18, y=h=9,r =17 and u = s = v; = 2, and the representation Uﬁi gives rise to
an irreducible representation of (Q[ Dicss| whose Schur index is equal to two. Since the Schur
index of each of the first four components of equation (2.13) is equal to one, it follows that
the simple component Hjg of Q[Dicsg| corresponds to Uﬁg If p is a finite prime of the centre
Eg of Hg that divides 36, then p divides 6, and hence p divides p, where p € {2,3}. If p | 3,
thenp=q=3b=0,z=a=¢,=c¢c, =2,1 zf:fz 1,and Ay = 2. Thus the Schur index
of the simple component Hl;g of the decomposition (2.22) of Q[Diczg] is equal to 2, but its
local Schur indices at every finite prime of the centre of H;g are not always odd. It follows
from Theorem 15 that K_1(Z[Dicgg]) is torsion free. O

2.5.2 The rank of K_1(Z[G]) for the finite subgroups of B, (S?)

Let G be a finite subgroup of B,(S?). To calculate the rank of K_1(Z[G]), we shall apply
equation (2.10). In each case, we will thus need to calculate the number rr of distinct irre-
ducible F[G]-modules, where F is equal respectively to Q, Q, and IF,. Before doing so, we
recall the requisite theory (see [22, pages 492 and 508] or [70, pages 25-26]).

Let F be a field of characteristic p > 0, where p is prime if p > 0. If G is a finite group of
exponent m, let:

~ m ifp=0
"= {m /p* if p > 0, where a is the largest power of p that divides m.

Let F({;) be a field extension of F by a primitive 7™ root of unity, which we denote by

(- Then F((;) is a Galois extension of F, whose Galois group, denoted by Gal(F({;)/F), is
given by:

Gal(F(¢z)/F)={¢: F(Cs) — F(Ts)| ¢ is an automorphism and ¢(z) = zforall z € F}.

Each automorphism ¢ € Gal(F({;)/F) is uniquely determined by its action on {j;, and is
given by 0({;) = L, where t is an integer that is uniquely defined modulo 7. Hence ¢
corresponds to an element of the multiplicative group of units Z7%, and there is an injective
group homomorphism:

{4): Gal(F(Gq)/F) — Zj; (2.23)

o—t,

defined by ¢(0) = t. We now recall the definition of F-conjugacy class.
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(a) If f,g are elements of G, we say that they are F-conjugate if there exists t € Im(¢) and
a € G such that f* = aga~!. The F-conjugacy relation is an equivalence relation on G, and
the F-equivalence class of f in G will be denoted by [f]r.

(b) Let

G, =1{geG | ged(p,o(g)) =1},

be the set of p-reqular elements of G, where 0(g) denotes the order of ¢ € G. An F-conjugacy
class of G is said to be p-regular if it is contained in G),.

If f € G then we denote its usual conjugacy class by [f].

Remarks 21.
(a) It follows from the definition that

fe= U ] (2.24)

teIm(¢p)

in other words, an F-conjugacy class is a union of normal conjugacy classes. In particular,
[f]lr = [f]- Further, the number of F-conjugacy classes of elements of order n is bounded
above by the number of usual conjugacy classes of elements of order n.

(b) If F = Q then ¢ is an isomorphism [70, Theorem 1.5], and f, g € G are F-conjugate if and
only if (f) and (g) are conjugate subgroups of G.

By the Witt-Berman Theorem, we have the following result that will be used to compute
rr for our groups.

Theorem 22 ([22, Theorems 21.5 and 21.25]). Let G be a finite group, and let F be a field of
characteristic p = 0, where p is prime if p > 0.

(a) If p = O, then rr is equal to the number of F-conjugacy classes in G.

(b) If p > 0, then rr is equal to the number of p-regqular F-conjugacy classes in G.

We also need the following results concerning the structure of the Galois groups.

Theorem 23 ([72]). Suppose that n is odd or divisible by 4. Then Q,({n)/Qyp is a Galois extension
of Qp, and its Galois group G is as follows.

(a) If p does not divide n then G is cyclic, and there exists an element o € G, the Frobenius element
of the extension satisfying o({,) = {}, that generates G. Further, the order of o is the order of p
considered as an element of 7.

(b) Ifn = p™, m =1, then G is of order p"~(p — 1), and we have a group isomorphism G = Lgpn.
Hence G is cyclic if p is odd or if p = m = 2, and is isomorphic to the direct product Z, (generated
by the class of —1) and Z,m—2 (generated by the class of 5) if p = 2 and m = 3.

(c) Suppose that n = p™ny, where ny > 2 and p does not divide ny. Let {y be a primitive ni" root
of unity, and let p be a primitive p™*" root of unity. Then G = Gal(Qp(21)/Qp) x Gal(Qp(0)/Qp).

Theorem 24 ([19]). Let k denote the order of p considered as an element of Z;,. Then the group
Gal(Fy(Zn)/Fp) is isomorphic to Zy.

We suppose in what follows that G is dicyclic of order 4m. We first apply the above
results in order to determine the rank of K_1(Z[G]) where m is an odd prime. We then go on
to to study the case where m is a power of 2.
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Theorem 25. Let m be an odd prime, and let A be the number of Q2-conjugacy classes (or equival-
ently Fy-conjugacy classes) of the elements of Dicyy, of order m. Then
. 7 7, ifm=1mod 4
K_1(Z|D =
1(Z[Dican]) {ZA if m =3 mod 4.

Proof. Let G = Dicy,, be given by the presentation (2.1). By Proposition 16 and equation (2.9),
it suffices to show that the rank of K_;(Z[Dicyy,]) is equal to A. The group G has one element
each (e and x™ respectively) of order 1 and 2, (m — 1) elements of order 2m, of the form xt, i
odd,1 <i<2m—1,and i # m, (m — 1) elements of order m, of the form xieven, 2 <i<
2m — 2, and 2m elements of order 4, of the form v, xy, ..., xzm*ly. The elements of order 1
and 2 each form a single (usual) conjugacy class, those of order 4 form 2 conjugacy classes,
{x'y | 0<i<2m—2,ieven}and {x'y | 1 <i<2m—1,iodd}, while those of order m and
2m form (m — 1) conjugacy classes of the form {xi,x_i} fori = 1,...,m —1. Since rq is
equal to the number of simple components in the Wedderburn decomposition of Q[Dicyy,],
it follows from equation (2.13) that g = 5. This may also be obtained by observing that the
subgroups of Dicy,, of order 4 are its Sylow 2-subgroups, and so Dicy,, possesses a single
conjugacy class of subgroups of order 4.

We must thus calculate rg, and r, for p € {2, m}, which we do using Theorem 22. Since
there is a unique conjugacy class of elements of order 1 and 2, these elements contribute 1 to
each of rQ, and 'F,, except in the case of ry,, where the element of order 2 is not 2-regular,
so contributes zero. We thus focus on the elements of order 4, m and 2m. According to [70,
page 26], it suffices to analyse the F-conjugacy classes of the elements of order 4, m and 2m
adjoining an nth root of unity to F for n = 4,m,2m, where F = Q2 or Q.

* Qp-conjugacy classes of the order 4 elements: by Theorem 23(b), the monomorphism
¢: Gal(Q2(C4)/Q2) — Zj is anisomorphism and Im(¢) = {1,3}. By equation (2.24), [y]q, =
[v] U [y®] = [y] v [x™y] as y*> = y>.y = x™y, and so there is a single Q,-class of order 4 ele-
ments because m is odd.

* (Qp-conjugacy classes of the elements of order m and 2m: by hypothesis, the number of
Q7-conjugacy classes of the elements of order m is equal to A. Theorem 23(c) implies that the
number of Q;-conjugacy classes of the elements of order 2m is also equal to A.

We conclude that rg, = 2A +3.

* Q-conjugacy classes of the order 4 elements: by Theorem 23(a), we have a monomorph-
ism¢: Gal(Qw(l4)/Qm) — Zj, Gal(Q1(C4)/Qum) is cyclic, and its order is equal to that of m
considered as an element of Zj. If m = 3 mod 4 then ¢ is an isomorphism and Im(¢) = {1, 3}.
By equation (2.24), [y, = [v] v [v’] = [y] v [x"y] as y® = y*>.y = x™y, and so there is a
single QQy,-class of order 4 elements since m is odd. If m = 1 mod 4 then Gal(Q,(C4)/Qm)
is trivial and Im(¢) = {1}. In this case, the Q,-conjugacy classes coincide with the usual
conjugacy classes, so there are two Q;,-conjugacy classes of elements of order 4.
* Q-conjugacy classes of the elements of order m: by Theorem 23(b), the monomorph-
ism ¢: Gal(Qw(Cm)/Qm) — Zj, is an isomorphism and Im(¢) = {1,...,m —1}. By equa-
m—1
tion (2.24), [x2]Qm = U [x%], so there is a single Q,~class of order m elements.
i=1
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* Qy-conjugacy classes of the elements of order 2m: as m is an odd prime, we have that

Qum(Com) = Qu(lm), so ¢: Gal(Qw(Cm)/Qum) — Z;, = Zy—1 is an isomorphism, and we
conclude that there is a single QQ;;,-class of order 2m elements.

It thus follows that rg, = 6if m =1 mod 4, and rg,, = 5if m = 3 mod 4.

¢ 2-regular [F-conjugacy classes: we have G} = {e,x?,x%, ..., x?" =2},

joint union of (m + 1)/2 (usual) conjugacy classes in Dics,,, comprised of {e}, and {x?, x>~}
fori =1,...,(m—1)/2. We thus need to study the F»-conjugacy classes of the elements of or-
der m. By Theorem 24, we have ¢: Gal(F»({w)/F2) — Z;,, where Gal(F, () /F2) is cyclic,
of order that of 2 considered as an element of Z},, and Im(¢) = (2).

We return for a moment to the (Q;-conjugacy classes of the elements of order m. Re-
placing ¢ by ¢ to distinguish it from the monomorphism ¢ of the previous paragraph, by
Theorem 23(a), we have ¢1: Gal(Q2(Cn)/Q2) — Z;,, and Gal(Q2(m)/Q2) is cyclic, of or-
der that of 2 considered as an element of Z;,. Thus Im(¢;) = (2) also. In particular, the
[F>-conjugacy class of an element of Dicy,, of order m is equal to its (Q,-conjugacy class, and
thus the number of F-conjugacy classes of elements of order m is equal to A. We deduce
that rp, = A + 1.
¢ m-regular [F;;,-conjugacy classes: we have

which splits as the dis-

Gy, = {e,x",y, xy, x3y,..., x*m2y, xzm_ly}.

The four (usual) conjugacy classes in Dicy, are:

{e}, {x"}, {y, ¥*y, ..., x*" 2y} and {xy, 2%y, ..., x*" 1y}

It is thus necessary to study the IF;;,-conjugacy classes of the latter two classes, which are
those of the elements of Dicy,, of order 4. By Theorem 24, we have the monomorphism
¢: Gal(Fy,(C4)/Fr) — Zj, and Gal(F,(C4)/Fn) is cyclic, of order that of m considered as
an element of Zj. As in the case of the Q,-conjugacy classes of the order 4 elements, if
m = 3 mod 4, there is a single [F;;-class of order 4 elements, while if m = 1 mod 4, the
F;,-conjugacy classes coincide with the usual conjugacy classes, and so there are two [,;-
conjugacy classes of order 4 elements. Hence rp, = 4if m = 1mod4and ry, = 3if m =
3 mod 4.

So by equation (2.10), the rank r of K_1(Z[Dicy,,]) is given by:

r=1-rg+ (rq, —r,) + (rQ, —F,,)

1-5+2A+4+3)-(A+1)+(6—4) ifm=1mod4
1-5+2A+3)—(A+1)+(5-3) ifm=3mod4

= A O

If m is an odd prime, the proof of Theorem 25 indicates that the number A of Q2-conjugacy
classes of the elements of Dicy,,, of order m is related to the order of the subgroup (2) in Z,.
The question of when 2 generates Z;, is open and constitutes a special case of Artin’s primit-
ive root conjecture. The following proposition shows that it is also interesting for us to know
whether —1 belongs to (2), and enables us to determine the rank of K_1(Z[Dicy,,|) solely in
terms of [(2)]|.
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Proposition 26. Let m and A be defined as in the statement of Theorem 25. Then

L {(m—1>/|<2>| if—1e)
(m—1)/2[2) if-1¢2).

Examples.

(a) Suppose that m is a Fermat number, of the form 22 + 1, where s € N. Then |(2)| = 251
and —1 € (2), so the rank of K_;(Z[Dicy,]) is equal to A = 2% ~5~1. For example, if m = 257
then A = 16 and K_l(Z[Dicl 028]) = Zz @ Zl6.

(b) Suppose that m is a Mersenne prime, of the form 27 — 1, where p is prime. Then [(2)| = p

and —1 ¢ (2), so the rank of K_;(Z[Dicyy]) is equal to A = 22;2 = zp_; =1, For example,

if m = 127 then A = 9 and K_;(Z[Dicsg]) = Z’, and if m = 8191 then A = 315 and
K_1(Z[Dicsa728]) = Z°.

Proof of Proposition 26. Using equation (2.1), the elements of Dicy,, of order m are of the form
x%,1 <i<m-—1,and [x¥] = {x¥, x~%}, in particular, they form (m — 1)/2 distinct (usual)
conjugacy classes in Dicy,,. Let 1 < i < m — 1. Since m is prime, there exist T, u € Z such that
Ti + ym = 1. One may check easily that the maps [x?]g, — [x%]g, and [x*]g, — [x*]q,,
defined respectively by w — w’ and z — z7, are mutual inverses, and hence [x%]g, has
the same number of elements as [x%]g,. Thus the number of Q,-conjugacy classes of the
elements of order m, which is equal to A, is just (m — 1) divided by the cardinal of [x?]q,.
Theorem 23(a) and equation (2.24) imply that:

[*]g, = U (] = {x¥|ie @} u{xH|ie(2)}
te(2)

= (i e @} u{ie - @)}

Now —(2) is the (2)-coset of —1in Z, so {x* | i € (2)} and {x* | i € —(2)} have the same
cardinality |[(2)|, and are either equal or disjoint. Since —1 € —(2), they are equal if and
only if —1 € (2). This being the case, the cardinality of [x?]q, is equal to [(2)|, and A =
(m—1)/](2)|. If =1 ¢ (2), the two cosets (2) and — (2) are disjoint, thus the cardinality of
[x%], is equal to 2 [(2)], and A = (m — 1)/2 |(2)| as required. O

The methods used above allow us in theory to calculate K_1(Z[Dicyy,]) for any m > 2,
not just for m an odd prime. As another example, consider the case where m is a power of 2,
so G = Q. is the generalised quaternion group of order 2¥, where m = 252,

Proposition 27. K_1(Z[Qxx]) is trivial if k = 3, and is isomorphic to Z; if k > 4.

Proof. By Theorem 15 and Proposition 17, it suffices to show that for all k > 3, the rank of
K_1(Z[Qx]) is zero, which we do using Theorem 22. We must calculate rq, rg, and ry,.
Using the presentation (2.1) of Q,, we see that O, = (x)[ [{x)y, and that the elements of
(x)y are all of order 4. So G} consists of the identity element, whence rp, = 1.

We now determine the number rg of Q-conjugacy classes, which by Remark 21(b), is
equal to the number of conjugacy classes of cyclic subgroups in Q,«. The elements of Q.
are of order 2/, 0 < I < k—1, and if I # 2 then the elements of order 2! are contained
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entirely within (x). Thus there is just one subgroup of order 2 for each such I, and so these
subgroups contribute k — 1 to rg. Suppose then that [ = 2. Using the relations

y(x'y)y ™ = 27y, x(xy)x !t = X2y and (xy) ! = 22y (2.25)

in Oy, we see that there are at most three conjugacy classes of cyclic subgroups of order
4, represented by the subgroups (¥ ), (y> and (xy). Since (x> ) is contained in the
normal subgroup (x) of Q., it cannot be conjugate to the two other subgroups, and using
relations (2.25), we see that (y) and (xy) are non conjugate. We thus conclude that rg = k + 2.
This number may also be obtained by counting the number of simple components in the
Wedderburn decomposition (2.11) of Q[ Q]

Finally we calculate rg,. Consider the elements of Q,« of order 2! where0 < <k—1.
If | € {0,1} then there is just one element of order 2/, and so the contribution to rq, is one
in each case. If | = 2 then Gal(Q2(052)/Q2) = Z3, = {1,3} by Theorem 23(b). Hence for
every element z of Qy of order 4, [z]g, = [z] U [2°] = [z] U [z7!] = [z] since in Qx, every
element is conjugate to its inverse. Thus the elements of Q,« of order 4 contribute 3 to rg,.

Suppose then that I > 3. The elements of order 2 are contained in (x), are elements of
the subgroup <x2k7H> of the form xz(ka)’, where gcd (7, 2)) = 1, and so are of the form
25 where ¢ e {1,3,.. L 1}. On the other hand, applying Theorem 23(b), we see
that Gal(Q2(Z,)/Q2) = Z3. Now Z3 = {1,3,...,2! =1}, and thus

zkflfl 2k7[71 3 2k7171 21_1 2k7[71
[ Mg, = [T O [P o [pEDETT),
From above, this is precisely the set of all elements of order 2! and hence for each 3 < I <
k — 1, the elements of order 2/ contribute one to rg,. Summing over all possible values of I
yields rg, = k + 2, and applying equation (2.10), we obtain r = 1 — rg + rg, — rr, = 0, which
proves the proposition. [

We now turn to the calculation of K_1(Z[G]), where G is a binary polyhedral group.
Proposition 28. K_{(Z[T*]) = Z, K_1(Z[O*]) = Zo ® Z and K_1(Z[1*]) = Z, ® Z>.

Proof. Let G be a binary polyhedral group. By Proposition 18, it suffices to calculate the

rank of K_1(Z[G]), which we do using (2.10) and Theorem 22. From Remark 21(b) and the

notation of Section 2.2, rg = Z r2(d), and it follows from Proposition 7 that rg = 5 if
d[[G|

G = T* and rg =7ifG = O* or I*. These values of rg may also be obtained from the

corresponding Wedderburn decompositions given in (2.18)—(2.20).

(a) We first calculate the rank of K_;(Z[T*]), where a presentation of T* = (P, Q, X) is given
by the first line of equation (2.2).

* The set G; consists of the union of the elements of T* of order 1, 2 and 4. By Proposi-
tion 7(a), if m € {1,2,4}, the elements of order m form a single conjugacy class, and thus
form a single Q-conjugacy class for p € {2,3}, whence ry, = 3.
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* The set G} consists of the identity and the 8 elements of T* of order 3, and by Proposi-
tion 7(a), there are two conjugacy classes of the elements of order 3, of which X and X! are
representatives. By Theorem 24, we have an isomorphism ¢: Gal(F»({3)/F2) — Z3, and
Im(¢) = {1,2}. Thus [X]p, = [X] v [X?] = [X] U [X!]. It follows that there is a single
[F>-conjugacy class of elements of order 3, and so 1y, = 2.

* Since there is a single conjugacy class of elements of order d, where d € {1, 2,4}, it remains
to determine the number of Q,-conjugacy classes, p € {2, 3}, of the elements of T* of order 3
and 6. We first calculate the number of Q,-conjugacy classes of the elements of order 3. By
Theorem 23(a) and (b), ¢: Gal(Q,({3)/Qp) — Z3 is an isomorphism, Im(¢) = {1,2}, and
[X]g, = [X]v [X2] = [X] u [X~1!], which is the union of the two (usual) conjugacy classes of
elements of order 3. We have the same result for the elements of order 6 of T*, since they are
obtained from those of order 3 by adjoining the central element of T* of order 2. So for all
de{1,2,3,4,6} and p € {2,3}, there is a single Q,-conjugacy class of the elements of order d,
and hence rg, = rg, = 5.

* By equation (2.10), therank r of K_; (Z[T*])isequaltor = 1 —rg +rg, —F, +7Q, —F; = 1,
and thus K_1(Z[T*]) = Z.

(b) We now calculate the rank of K_(Z[O*]).

* Recall first that T* is a subgroup of O* of index 2, and that O*\ T* consists of twelve
elements of order 4 and of order 8. So G} is contained in T*, and as in case (a) we obtain
rr, = 2. Further, the elements of O of order 1,2,3 and 6 each give rise to a single Qyp-
conjugacy class of O* for p € {2,3}. It remains to calculate the number of Q,-conjugacy
classes of the elements of order 4 and 8, as well as r,.

* To calculate the number of Qy-conjugacy classes of the elements of order 8, recall from
Proposition 7(b) that there are two conjugacy classes of elements of order 8, for which rep-
resentatives are ¢ and ¢°, where ¢ is any element of O* of order 8. By Theorem 23(a) and (b),
¢: Gal(Qy(Cs)/Qp) —> Zg satisfies Im(¢) = {1,3}, hence [g]g, = [g] v [¢%], and there is a
single Q,-conjugacy class of elements of order 8.

* To calculate the number of Qy-conjugacy classes of the elements of order 4, recall from
Proposition 7(b) that there are two conjugacy classes of elements of order 4, C; and C,, where
C; (resp. Cp) is the intersection of the set of elements of O of order 4 with T* (resp. with
O*\ T*). In particular, if g € C; U C; then ¢ and ¢~ ! are conjugate. By Theorem 23(a) and (b),
¢: Gal(Qy(G4)/Qp) — Zj is an isomorphism, Im(¢) = {1,3}, and [glg, = [g] v [¢7'] = [g]
for all g € O of order 4. So the number of QQ,-conjugacy classes of elements of order 4 is
equal to 2.

* From the above computations, if d € {1,2,3,6,8} and p € {2,3}, there is a single Q-
conjugacy class of elements of order d, and there are two Q,-conjugacy class of elements of
order 4, whence rQ, = 7.

* To calculate rp,, first note that G} consists of the union of the elements of O* of order
1,2,4 and 8, and that there is a single conjugacy class of elements of order 1 and 2. Let
m € {4,8}. By Theorem 24, ¢: Gal(IF3(()/F3) — Z;, satisfies Im(¢) = {1,3}, and we see
that the number of F3-conjugacy classes of elements of order m is just the number of Q-
conjugacy classes of these elements, i.e. there are two [F3-conjugacy classes of elements of
order 4, and one F3-conjugacy class of elements of order 8. We conclude that rp, = 5.

* By equation (2.10), the rank r of K_1(Z[O*]) isequaltor = 1 —rg + rg, — 1'r, + 1Q, — I'Fy =
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1, and thus K_1(Z[O*]) = Z, ® Z.

(c) Finally, we determine the rank of K_; (Z[I*]).

* By Proposition 7(c), rp(I) = 1forall I € {1,2,3,4,6}, so there is a single conjugacy class
of elements of order I, and there are two conjugacy classes of elements of order 5 and 10.
Hence it suffices to study the various F-conjugacy classes for the elements of order 5 and 10.
* We compute the number of the elements Q,-conjugacy classes of elements of order 5 for
p € {2,3,5}. By Proposition 7(c), if ¢ € I* is of order 5, g and g? are representatives of the two
conjugacy classes of elements of order 5. Using Theorem 23(a) and (b), the homomorphism
¢: Gal(Qy(l5)/Qp) — Zz is an isomorphism, and so there is a single Q,-conjugacy class of
elements of order 5in I* for all p € {2,3,5}. By adjoining the central element of I* of order 2
to g, it follows that the same is true for the elements of order 10, from which it follows that
rg, =7 forall p € {2,3,5}.

* To compute the number of [F»- and [F3-conjugacy classes of I*, note that G} is the union
of the elements of I* of order 1,3 and 5, and Gj is the union of the elements of I* of order
1,2,4,5 and 10. By Proposition 7(c), there is a single conjugacy class in I* of elements of
order 1,2,3 and 4. By Theorem 24, for p € {2,3}, the homomorphism Gal(F,(Zs)/Fy) — Z;
is an isomorphism, and Im(¢) = {1,2,3,4}. Thus there is a single [F ,-conjugacy class of the
5-regular elements of order 5. By adjoining the central element of I* of order 2 to g, it follows
that the same is true for the elements of order 10 in the case p = 3. We conclude that ry, = 3
and rp, = 5.

* To compute the number of F5-conjugacy classes of I*, the set G{ is the union of the ele-
ments of I* of order 1,2, 3,4 and 6. Since there is a single conjugacy class in I* of elements of
each of these orders, it follows that rp, = 5.

* By equation (2.10), the rank r of K_{(Z[I*]) isequaltor = 1 —rq +rg, —F, +rQ, — IF, +
rgs — iy = 2, and thus K_q(Z[I*]) = Z, ® Z*. O

As we mentioned in Section 2.5.2, in order to prove Theorem 31 and to obtain Table 2.1,
we need to compute K_1(Z[Dicy,]) for u € {6,9,10}. The torsion of these groups was already
determined in Proposition 20. To end this section, we calculate their rank.

Proposition 29. If u € {6,9,10}, the rank of K_1(Z[Dicyy]) is equal to 2.

Proof.

(a) We first consider the cases where y € {6,10}, so /2 is an odd prime. Making use of the
presentation of the form (2.1) of Dicy,, the following table summarises the elements of each
order of Dicyy,.

order d elements of order d number of elements
1 e 1
2 xH 1
4 X2, 232, ¥y, i€ {0,1,...,2u —1} 2u +2
12 xt a8, 2 2) (y—2)/2
u x2,x0,. .. xh—4 xhtd ut8 4 2(n-2) (n—2)/2
2u xi,ie{1,3,...,2u — 13\ {1/2,3u/2} -2
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We compute the number of F-conjugacy classes for each of the fields F that appear in (2.10).

* From the above table, Dicy, possesses a single cyclic subgroup of order r for all r €
{1,2,1/2, u,2u}, and using (2. 1) it has three conjugacy classes of elements of order 4, namely
{xP‘/Z 32y {xly|ie{1,3,...,2u—1}} and {x'y | i€ {0,2,...,2u — 2}}. So Dicy, has three
conjugacy classes of (cyclic) subgroups of order 4. We conclude that Dicy, has eight con-
jugacy classes of cyclic subgroups, hence rg = 8.

* The set of 2-regular elements of Dicy, consists of e and the (u — 2)/2 elements of order
14/2. Since the order of 2 in Z; 1 is equal to (4 — 2)/2, which is the order of Z; J2r the injective
homomorphism ¢: Gal(F2(Z,2)/F2) — Z; 1 is an isomorphism. Using (2.24), it follows

that the F,-conjugacy class of x* is equal to {x*, x5, .., x2(m=2) }, and thus rp, = 2.
* The set of y/2-regular elements of Dicy,, consists of e, x¥, which is of order 2, and the 2y + 2
elements of order 4. The image of the injective homomorphism ¢: Gal(F}»(Ca)/F)2) — Zj

is contained in {1,3}, and so is equal to {1} or {1,3}. But (x?‘/z) — x3/2, and for all
ie{0,1,...,2u—1}, (x'y)® = (x y) =y a7 = ylxTly.y2y = x'Hy. Tt follows that
ifze DiC4V is of order 4, [z] = [z°], and by (2.24), we have [z] c [z ]sz c [z] € [2%] = [z], so
z]F,,, = [z]. Thus the F2-conjugacy classes of the yi/2-regular elements of Dicy, of order 4
coincide with the usual conjugacy classes, whence 1F,, = O

We now compute rg,. To do so, we need to determine the number of Q,-conjugacy
classes of the elements of order 4, 31/2, 1 and 2.

* We calculate the number of Q;-conjugacy classes of the elements of order 4. By The-
orem 23(b), the injective homomorphism ¢: Gal(Q2(4)/Q2) — Zj is an isomorphism, and
Im(¢) = {1,3}. Asin the analysis of the y/2-regular elements of order 4, it follows that
[z]g, = [z] for every element z € Dicy,, of order 4, and so the Q>-conjugacy classes of the
elements of order 4 coincide with the usual conjugacy classes, and hence there are three
Qy-conjugacy classes of elements of order 4.

* We determine the number of (Q;-conjugacy classes of the elements of order /2, 1 and 2.

Let j € {0,1,2}. Then the injective homomorphism ¢: Gal(@z(gzjy 12)/Q2) — Z;H P is an

isomorphism using Theorem 23(b) and (c) because Gal(Q2(l2/Q>) is trivial and the group
Gal(Q2(04/Q») is of order 2. Thus there is a single (Q;-conjugacy class of elements of order
2/y/2 for all j € {0,1,2}.

¢ It follows from these calculations that there is a single Q;-conjugacy class of elements of
order r for all r € {1,2, u/2, u,2p}, and three Qp-conjugacy classes of elements of order 4, so

1’@2 = 8.
We now compute rq, ,. To do so, we need to determine the number of Q, »-conjugacy
classes of the elements of order 4, y1/2, 1 and 2.

* Let us determine the number of Q, >-conjugacy classes of the elements of order /2 and
u. If j € {0,1}, using Theorem 23(b) and (c), we see that the injective homomorphism

P Gal(Qy/z(CszZ)/Qy/z) — Z;]»WZ is an isomorphism because Gal(Q,,2($2/Q2) is trivial.
Thus there is a single Q,, ,-conjugacy class of elements of order 2iu/2 forall j € {0,1}.

* To calculate the number of Q, ,-conjugacy classes of the elements of order 2y, consider
the injective homomorphism ¢: Gal(Qy2(C2)/Qy,2) — 25, By Theorem 23(c), the group
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Gal(Qy/2(82)/Qy2) is isomorphic to the direct product

Gal(Qy2(81/2)/Qp2) x Gal(Qy,2(Ca)/Qpy2),

which by Theorem 23(b) is isomorphic to Z’; n X Zy (resp. Z; /2) if /2 = 3 mod 4 (resp. if
#/2 =1 mod 4). We now distinguish the two cases y = 6 and y = 10.

— If y = 6, ¢ is an isomorphism, and there is a single Q3-conjugacy class of elements of order
12.

— If u = 10, Gal(Q5(g20)/Qs) is isomorphic to Z4 by Theorem 23(b) and (c), so the image of
¢ is a subgroup of Z3,. Now Z3, is isomorphic to Z; x Zj, so it possesses two subgroups
isomorphic to Z4. A calculation shows that these two subgroups are of the form {1,3,7,9}
and {1,9,13,17}. Using the table given at the beginning of the proof and (2.24) and the fact
that x¥ is conjugate to x20-k forall k e {1,3,7,9,11,13,17,19} by (2.1), it follows in either case
that there is a single (Q5-conjugacy class of elements of order 20.

* It follows from these calculations that there is a single Q, ,-conjugacy class of elements of
order r for all r € {1,2, u/2, u,2u}, and three @V 2-conjugacy classes of elements of order 4,
501Q,, =8 for u € {6,10}.

* Using (2.10), we conclude thatr = 1 —rg +rg, — rF, + 1Q,, ~TF,, = 1-8+ (8—-2)
5) = 2 as required.

+ (8 —

(b) Now suppose that u = 9. Using the presentation of the form (2.1) of Dicy,,, the following
table summarises the elements of each order of Dicyy,.

order d elements of order d | number of elements
1 e 1
2 x? 1
3 x0, x12 2
4 xy,ie{0,1,...,17} 18
6 x3, x1° 2
9 x%,ie{1,2,4,5,7,8} 6
18 || x,ie{1,5,7,11,13,17} 6

In order to apply (2.10), we compute the number of F-conjugacy classes for each of the fields
F that appear in that equation.

* By (2.1), there are two conjugacy classes of the elements of order 4, { xiy |i€{0,2,...,16}}
and {x'y|ie{1,3,...,17}}, and the remaining conjugacy classes are of the form {x', x!8-'}
fori € {0,1,...,9}. Recall that rq is given by the number of factors in equation (2.22), so
rg = 7 (this may also by verifying that there is a single conjugacy class of cyclic subgroups
of order d for each d € {1,2,3,4,6,9,18}).

e If d € {1,2,3,6}, there is a single conjugacy class of elements of order d. Thus there is a
single Qy-conjugacy class of elements of order d by (2.24), where p € {2,3}. Similiarly, if
d € {1,2} (resp. d € {1,3}), there is a single F3-conjugacy class (resp. Fp-conjugacy class) of
elements of order d. So it suffices to determine:

(i) the number of F-conjugacy classes of elements of order 9.
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(ii) the number of F3-conjugacy classes of elements of order 4.
(iii) the number of Q,-conjugacy classes of elements of order d, where d € {4,9,18}, and

p € {2,3}.
We consider these cases in turn.

* By Theorem 24, the injective homomorphism ¢: Gal(F(J9)/F2) — Z§ is an isomorph-
ism, and so there is a single Fp-conjugacy class of elements of order 9. Now the set G}, of
2-regular elements of Dicse is given by the union of the elements of order 1, 3 and 9, and
since there is a single (usual) conjugacy class of elements of order 1 and 3, we conclude that
g, = 3.

. 2By Theorem 24, the injective homomorphism ¢: Gal(F3((4)/F3) — Zj is an isomorph-
ism, and so there is a single F3-conjugacy class of elements of order 4. Now the set G} of
3-regular elements of Dicsg is given by the union of the elements of order 1, 2 and 4, and
since there is a single (usual) conjugacy class of elements of order 1 and 2, we conclude that
T, = 3.

. 3Qz—conjugacy classes of elements of order 4: by Theorem 23(b), the injective homomorph-
ism ¢: Gal(Q2(g4)/Q2) —> Zj is an isomorphism, and Im(¢) = {1,3}. Thus [y]g, = [y] U
[*] = [y] U [xy], where y is the element of Dicss appearing in (2.1), so [y]g, is the union
of the two conjugacy classes of elements of order 4. Consequently, there is a single Q,-
conjugacy class of elements of order 4.

* (Q2-conjugacy classes of elements of order 9: by Theorem 23(a), the injective homomorph-
from the above table of elements of Dicss and (2.24) that there is a single (Q,-conjugacy class
of elements of order 9.

* (Q2-conjugacy classes of elements of order 18: by Theorem 23(c),

Gal(Q2(Z18)/Q2) = Gal(Q2(Z9)/Q2) x Gal(Q2(£2)/Q2) = Gal(Qa(Z9)/Q2),
which is cyclic of order 6. Thus the injective homomorphism ¢: Gal(Q2(18)/Q2) — Zig

elements of Diczs and (2.24) that there is a single (Q2-conjugacy class of elements of order 18.
¢ From the above computations, for all d € {1, 2,3,4, 6,9, 18}, there is a single Q,-conjugacy
class of elements of order d, and hence rg, = 7.

* (Q3-conjugacy classes of elements of order 4: by Theorem 23(a), the injective homomorph-
ism¢: Gal(Q3(C4)/Q3) — Zj is anisomorphism. As in the case of the (Q>-conjugacy classes
of elements of order 4, we see that there is a single (Q3-conjugacy class of elements of order
4.

* Q3-conjugacy classes of elements of order 9: by Theorem 23(b), the injective homomorph-
ism ¢: Gal(Q3(J9)/Q3) — Zjg is an isomorphism (both groups are of order 6), and Im(¢) =
there is a single Q3-conjugacy class of elements of order 9.

* (Q3-conjugacy classes of elements of order 18: by Theorem 23(c),

Gal(Qs3(418)/Q3) = Gal(Q3(39)/Q3) x Gal(Q3(32)/Qs3) = Gal(Q3(Ly)/Q3),

which as we saw above is cyclic of order 6. It follows that the injective homomorphism
¢: Gal(Q3(¢18)/Q3) — Zjg is an isomorphism. As in the case of the (Q,-conjugacy classes
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of elements of order 18, we see that there is a single Q3-conjugacy class of elements of order
18.

* From the above computations, for all d € {1, 2,3,4, 6,9, 18}, there is a single Q3-conjugacy
class of elements of order d, and hence rg, = 7.

* Hence the rank of K_;(Z[Dicsg]) is givenby r = 1 —rg +rg, — 1%, +7Q, —1Fy, = 1 =7 +
7 —3+7—3 = 2 as required. O

We complete this section by computing K_1(Z[G]), where G is a cyclic group of order p*
or 2p¥, where p is prime and q € N, or of order 12 or 20. These results will also be used in
the proof of Theorem 31.

Proposition 30. Let g € N, and let p be a prime number.
(a) The group K_1(Z|Z]) is trivial.
(b) If p is odd then K_1(Z|Zop)) = Z', where r = 2721 [Z;j : <§>Z:/]' and where <§>Z:j denotes

the subgroup of Z;j generated by 2.
(c) The group K_1(Z[Z13]) is isomorphic to Z?, and the group K_1(Z[Z0)) is isomorphic to 7.

Proof. As we mentioned at the beginning of Section 2.5.1, if G is Abelian then the group
K_1(Z|G]) is torsion free. So if G is one of the given groups, by (2.9), it suffices to calculate
the rank r of K_1(Z[G]).

(a) Let p be prime, and let g4 € N. Since Zq is cyclic, rq is equal to the number of divisors of
p7, hencerg = g+ 1. The elements of Ly are of order pf ,whereje {0,1,...,q},and the set G;,
of p-regular elements of Zs is equal to {e}, hence rr, = 1. We now determine the number
of Qp-conjugacy classes. If 1 < j < g, by Theorem 23(b), the injective homomorphism
¢: Gal(@p(gpj) /Qp) — Z;j is an isomorphism, so Z,q possesses a single Q,-conjugacy of
elements of order pj , and thus rg, =4 +1 Hencer =1—rg + rq, — 1w, =0 by (2.10), and
K_1(Z|Z 1)) is trivial.

(b) Let p be an odd prime, let g € N, and let x be a generator of Z,. In order to apply (2.10),
we compute rq, 1'r,, I'F,, 'Q, and rQ,-

* Since Zgy is cyclic, we have rg = 2(g + 1).

* The set G, of p-regular elements of Zyq is equal to {e,x"}, thus F, = 2.

e We now determine rQ,- Since Zyp1 possesses a single element of order m, where m € {1, 2},
it suffices to compute the number of Qp-conjugacy class of elements of order 2¢p/, where
e €{0,1},and 1 < j < g. By Theorem 23(b), for all j € {1, ..., g}, the injective homomorph-
ism ¢: Gal(Qp(ng-) /Qp) — Z;]. is an isomorphism, and so there is a single Q,-conjugacy
class of elements of order p/. By Theorem 23(c), Gal(Qp(05,1)/Qp) = Gal(Qp(Z,;)/Qp) x
Gal(Qp(22)/Qp) = Gal(Qy(Z pj) /Qyp), and by Theorem 23(b), the injective homomorphism
¢: Gal(Qp@zp;) /Qp) — Z;p]. is an isomorphism. Thus for all 1 < j < g, there is a single
Qp-conjugacy class of elements of order 2p/. It follows that for every divisor m of 2p1, there
is a single Qp-conjugacy class of elements of order m, whence rg, = 2(q + 1).

* To compute rr, where F = Q7 or [, we first make the following general remark. Since
Znp is Abelian, for all f € Z,q, the (usual) conjugacy class [f] of f is equal to {f}. With the
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notation of Section 2.5.2, it follows from (2.24) that the cardinality of the F-conjugacy class
[f]F is equal to |Im(¢)|, where ¢ is as defined in (2.23). Since the F-conjugacy classes are
pairwise disjoint, if f € Z, we conclude that there are [Z, : Im(¢)] F-conjugacy classes of
elements whose order is that of f. With this in mind, we compute rg, and r,.

* To calculate rq,, first observe that since Zzpq possesses a single element of order m, where
m € {1,2}, it suffices to compute the number of Q,-conjugacy class of elements of order
2¢pl, where ¢ € {0,1}, and 1 < j < g. Theorem 23(a) imples that the image of the in-
jective homomorphism ¢: Gal(Q2(Z,)/Q2) — Zy; is equal to <§>Z*j. By the above re-

P

mark, it follows that the number of Q,-conjugacy classes of elements of order p/ is equal to

|z, <§>Z*j]- By Theorem 23(c), Gal(Q2(0,,/)/Q2) = Gal(Qx(§,)/Q2) x Gal(Q2(32)/Q,) =
Gal(Qq(¢ pi )p/ @2). So the image of the injective homomorphism ¢: Gal(@z(gzpj) /Q2) — Z;]-
is of order ‘<§>Z*A . Now ‘Z;pq‘ = ‘Z;E,

number of Qy-conjugacy classes of elements of order 2p/ is also equal to [Z;j : <§>Z*j]'

Since the elements of Zzpq are of order 1, 2, pj or pr, where 1 < j < g, we deduce that
q * . /7
ro, =2+2%0, |2 : <2>z*].]-
P
* To calculate ry,, observe that the set of 2-regular elements of Z,q is equal to the union of

e with the elements of order p/, where j € {1,...,q}. By Theorem 24, forall j € {1,...,q}, the
image of the injective homomorphism ¢: Gal(F»(Z,;)/F2) — Z* is equal to <2>Z* . Using

the above remark once more, we see that the number of 2- regular [F>-conjugacy classes of
elements of order p/ is given by [Z’;]- : <2>Z:j]’ and thus rp, = 1 + Z]-:1 [Z;j : <2>Z:j]'

* To conclude, by (2.10), we have r =1 —rq +rq, — 1, + 1@, — 17, = Z?zl [Z;j : <§>Z*.] as
v

required.

(c) Let m = 4p, where p € {3,5}. In order to apply (2.10), we now proceed to determine rg,
T'F,, T’FP, rQ, and T’Qp.

* Since Zy, is cyclic, r is equal to the number of divisors of 4p, so rg = 6.

* The set G} of the 2-regular elements of Zy, consists of the trivial element and the elements
of order p. By Theorem 24, the injective homomorphism ¢: Gal(F2(Zy)/F2) — Zj is an
isomorphism, so there is a single F>-conjugacy class of elements of order p, and hence rp, =
2.

* The set G, of the p-regular elements of Zy, consists of the trivial element, the unique ele-
ment of order 2, and the two elements of order 4. By Theorem 24, the injective homomorph-
ism¢: Gal(F,(C4)/Fy) — Zj is an isomorphism if p = 3, and the image of ¢ is equal to {1}
if p = 5. As in the remark regarding the F-conjugacy classes used in part (b), we conclude
that there is a single IF,-conjugacy class of elements of order 4 if p = 3, and two F,-conjugacy
classes of elements of order 4 if p = 5. It follows that rp, = 3if p =3 and rp, = 4if p = 5.

* We now compute rg,. Since there is a single element of order 1 and 2, it suffices to
determine the number of Q,-conjugacy classes of elements of order 4 and of order 2'p,
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where i € {0,1,2}. By Theorem 23(c) (resp. Theorem 23(a)), the injective homomorphism
¢: Gal(Q2(0s)/Q2) — Zj (resp. ¢: Gal(Q2(fp)/Q2) — Zj) is an isomorphism, so there
is a single (Q2-conjugacy class of elements of order 4 (resp. of order p). If i > 1 then
Gal(Q2(3pip)/Q2) = Gal(Q2(Zp)/Q2) x Gal(Q2({yi-1)/Q2), and so the injective homomorph-
ism ¢: Gal(@z(cz,'p) /Qr) — Z;ip is an isomorphism by Theorem 23(a) and (c). Hence there

is a single Q,-conjugacy class of elements of order 2'p. So for any divisor d of 4p, there is a
single (Q;-conjugacy class of elements of order d, hence rg, = 6.
* We now compute rg,. Since there is a single element of order 1 and 2, it suffices to de-

termine the number of Q-conjugacy classes of elements of order 4 and of order 2’p, where
i € {0,1,2}. By Theorem 23(a), the injective homomorphism ¢: Gal(Q,(4)/Qp) — Zj isan
isomorphism if p = 3, and the image of ¢ is equal to {1} if p = 5. As in the remark regarding
the F-conjugacy classes used in part (b), we conclude that there is a single Q,-conjugacy
class of elements of order 4 if p = 3, and two QQp-conjugacy classes of elements of order
4if p = 5. Since the injective homomorphism ¢: Gal(Q,(Zy)/Qp) — Zj, is an isomorph-
ism by Theorem 23(b), there is a single Q,-conjugacy class of elements of order p. Further,
since Gal(Qy(%2,)/Qp) = Gal(Qy(Zp)/Qp) by Theorem 23(c), it follows from Theorem 23(b)
that there is a single Q,-conjugacy class of elements of order 2p. Finally, by Theorem 23(c),
since Gal(Qp(Z4p)/Qp) = Gal(Qp(Zp)/Qp) x Gal(Qy(4)/Qp), it follows from Theorem 23(a)
and (b) that the injective homomorphism ¢: Gal(Q,(l4p)/Qp) — ZZP is an isomorphism
if p = 3, and the image of ¢ is isomorphic to Zj, if p = 5. As in the remark regarding the
F-conjugacy classes used in part (b), we conclude that there is a single Q,-conjugacy class of
elements of order 4p if p = 3, and two Q,-conjugacy classes of elements of order 4p if p = 5.
Hencerg, = 6if p = 3,and rg, = 8if p = 5.

* Using (2.10) and the above computations, the rank r of K_1(Z[Zy4y]) is givenby r = 1 —
rQ+rq, —tm, +1Q, —1F, sor =2if p=3andr =3if p =5 as required. O]

2.6 The lower algebraic K-theory of the finite subgroups of
B,(S?) for4 <n <11

In this section, we bring together the results of the previous sections to compute the lower
algebraic K-theory of the finite subgroups of B,,(S?) for 4 < n < 11. The results are summar-
ised in the following theorem.

Theorem 31. For 4 < n < 11, the lower algebraic K-theory of the finite subgroups of B,(S?) is as
given in Table 2.1.

Remark 32. It was proved in [16, Theorem 3] that K_;(Z[G]) = 0 for any finite group G and
foralli > 2.

Remark 33. Although the results of Theorem 31 deal with the lower algebraic K-theory of the
finite subgroups of B,,(S?) for 4 < n < 11, these groups also occur as subgroups of B, (S?) for
larger values of n. These values are given in the last column of Table 2.1, and are obtained
from Theorem 2.
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Finite group G || Wh(G) | K_1(Z[G]) Ko(Z[G]) | values of n > 4 for which
G is realised in B, (S?)
L, me {1,2,3,4} 0 0 0 all
Zs Z 0 0 n=0,1,2mod5
Zig 0 YA 0 all
Zy Vi 0 0 n=0,1,2mod 7
Zg Z 0 0 n # 3 mod 4
Zg 7?2 0 0 n=0,1,2mod 9
Z10 Z? Z 0 n=0,1,2mod 5
711 Z* 0 0 n=0,1,2mod 11
Z1» Z 7? Zo n=0,1,2mod 6
74 74 7? 0 n=0,1,2mod 7
Z16 Z* 0 Zs n=0,1,2 mod 8
Z1s Z* 7?2 Zs n=0,1,2mod9
Zoo Z° Z3 73 n=0,1,2 mod 10
Zo> 78 Z Zs n=0,1,2mod 11
Qg 0 0 Zo n even
Dicyp 0 7 Loy n=0,2mod 3
Q16 Z 2y Zo n even
Dicyg 7? Zo®7 Zo n=0,2mod5
Dicyy Z Zoy ® 7> Z3 n=0,2mod 6
T* 0 Z Zo n even
Dicyg Z* Z Zo n=0,2mod7
Qs 74 Zo Zo n=0,2mod 8
Dicsg 74 7? Z% n=0,2mod?9
Dicyg Z° Zo @ 72 73 = 0,2 mod 10
Dicyy 78 Z Zo n=0,2mod 11
O* Z Zo®7L Z% n=0,2mod6

Table 2.1: The lower algebraic K-theory of the finite subgroups of B, (S?), n < 11.

34



CHAPTER 2. K-THEORY OF THE FINITE SUBGROUPS OF B,,(S?) 35

Proof of Theorem 31. By Theorem 2, the isomorphism classes of the maximal finite subgroups
of B,,(S?), where n runs over the elements of {4,...,11}, are Dicy,, where m € {3,4,...,11},
Zog, where g € {4,5,...,10}, T* and O*. If we remove the condition of maximality of these
subgroups, then we must also add Qg and Z, to the list, where r € {1,2,...,7,9,11,22}. We
thus obtain the groups of the first column of Table 2.1 that are subgroups of B,(S?) for the
values of 7 given in the last column. We divide the proof into several parts.

(a) If G is one of the groups appearing in Table 2.1 then Wh(G) is obtained by applying
Proposition 10.

(b) We determine Ko(Z[G]), where G is one of the groups appearing in Table 2.1. By The-
orem 11, IEO(Z[G]) is trivial if G is isomorphic to Z,, where n € {1,...,11,14}, and is non
trivial if G is isomorphic to Z,, where n € {12,16, 18,20,22}. By [73, page 126, line 16], if G is
isomorphic to Zi, then KO(Z[ZH]) ~ Z,. Suppose that G = Z¢. From [58, Page 416], there
is a surjective homomorphism from Ko(Z[Z1g]) to ]_[3:1 Ko(Z[Z,]), where 7, is a primitive
2vth root of unity, and whose kernel, denoted by Wj3 in [58], is isomorphic to Z;. From The-
orem 11, K(Z[Z,]) is trivial for all n = 1,...,4, and so Ko(Z[Zs]) = Zo. By Theorem 14,
KO(Z[ZH]) is isomorphic to Zs if n € {18,22}, and to Z3 if n = 20. If G = Dicyy,, where
2 <m <11, o0rif G = T* or O* then Ky(Z[G]) is given by Theorem 12.

(c) We determine K_1(Z|G]), where G is one of the groups appearing in Table 2.1. We con-
sider several cases.

(i) f G = Zy, where m € {1,2,3,4,5,7,8,9,11,16}, then K_1(Z[G]) is trivial by Proposi-
tion 30(a).
(ii) Let G = Zy, where m € {6,10,14,18,22}. Then m is of the form m = 2p7, where g € N

and p is an odd prime. By Proposition 30(b), K_1(Z[G]) =~ Z", where r = ;.7=1 [Z‘;j : <§>Z*.]'
p]

A straightforward computation shows that K_1(Z[Zg]) =~ K_1(Z|Z10]) = K_1(Z|Zy)) = Z,
and K_1 (Z[Zm]) = K_l(Z[Zlg]> = Zz.

(iii) If G = Zy,, where m € {12,20}, the results for K_1(Z[G]) are obtained from Proposi-
tion 30(c).

(iv) K_1(Z|G]) for G = Dicy,,, where 2 < m < 11: we distinguish the following cases.

e If me {2,4,8}, the results are a consequence of Proposition 27.

e If m € {3,5,7,11}, the results follow from Theorem 25 and Proposition 26 (observe that if
m € {3,5,11}, 2 generates Z%, so A = 1, while if m = 7, =1 ¢ (2), but [(2)| = 3,s0 A =1
also).

e If m € {6,9,10}, by Propositions 20 and 29, it follows that K_;(Z[Dicss]) = Z?, and
K_1(Z|Dicyn)) = Zp ® Z? if m € {6,10}.

(v) If G = T* or O then the results follow from Proposition 28.
This completes the proof of the results given in Table 2.1. O



Chapter 3

The braid group B,(S?), and the conjugacy
classes of its maximal virtually cyclic
subgroups

In this chapter, we focus our attention on the braid group B4(S?) of the sphere on four strings.
The aim is to understand the structure of its maximal virtually cyclic subgroups. These
results will be used in Chapter 4 to compute the lower algebraic K-theory of B4(S?), and to
prove Theorem 1.

In Section 3.1, we start by recalling some properties of B4(S?). We then study the algeb-
raic description of the finite subgroups of B4(S?) given by Theorem 2, which enables us to
prove in Proposition 37 that B4(S?) may be expressed as an amalgamated product of T* and
Q16 along their common normal subgroup that is isomorphic to Qg. This will alow us to
show that B4(S?) is hyperbolic in the sense of Gromov (as we shall see in Proposition 49,
B4(S?) is virtually free). In order to do this, in Section 3.2, we study the structure of the max-
imal virtually cyclic subgroups of B4(S?), our main result being Theorem 41. Using [54], in
Section 3.3, we show that the maximal infinite virtually cyclic subgroups of B4(S?) possess
an infinite number of conjugacy classes.

3.1 Generalities about By(S?)

In this section, we state several results concerning B4(S?). Some basic facts and results about
Artin (pure) braid groups and (pure) braid groups of surfaces may be found in Appendix B.
As we shall see, B4(S?) is rather special, and possesses some very interesting properties that
will allow us to calculate its lower K-theoretical groups. Unfortunately, if n > 5, B, (S?) does
not share these properties. We start by recalling a presentation of B4(S?).

Theorem 34 ([30]). The group B4(S?) admits the following presentation:
generators: 0y, 0y, 03.

36
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relations:

0103 = 0307
0102071 = 0201072
020302 = 0302073

01020§0201 =1. (3.1)

The first three “Artin relations’ (also known as braid relations) will be used freely and
without further comment in what follows. Since the given generators together with these
three relations constitute a presentation of the Artin braid group B (see (B.1) and (B.2)),
B4(S?) is thus a quotient of By.

Remark 35. It follows easily from Theorem 34 that the Abelianisation of B4(S?) is isomorphic
to Zg, and that the Abelianisation homomorphism 7t: By(S?) — Zg identifies the three gen-
erators to the single generator 1 of Z.

We may determine generators of representatives of the conjugacy classes of the finite
subgroups of B4(S?) in terms of the generators of Theorem 34 as follows. First, according to
Murasugi [68, Theorem A], any finite order element of B4(S?) is conjugate to a power of one
of the following elements:

xg = 010203 (of order 8)
N = 01(72(7§ (of order 6) (3.2)
ny = (71(722 (of order 4).
Let
Ay = 010903010007 (3.3)

denote the ‘half twist’ braid on four strings. It is a square root of the full twist braid Aj
described in (B.3) (see also Figures B.2(a) and (b) for illustrations of the half and full twist
braid on six strings). The braid AZ generates the centre of B4(S?) and is the unique element
of B4(S?) of order 2 (this is true in general, see [38]). Using (3.2), this latter fact implies that:

AN; = af = af = ad. (3.4)

Let Q = (a3, Ay). By [44, Theorem 1.3(3)], Q is isomorphic to Qg, and is a normal subgroup
of B4(S?). Further, it is well known (see [47, Lemma 29] for example) that:

0600'1'0661 =0i11 fori = 1, 2, and 06%0'30(62 = 01, (35)
and that:
AN =04 ; foralli=1,2,3 (3.6)

Note that relations (3.5) and (3.6) hold in B,, and are special cases of more general relations
in B, (S$?).
Remarks 36.

(a) By Theorem 2, the isomorphism classes of the maximal finite subgroups of B4(S?) are T*
and Qgg.
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(b) Within B4(S?), there is a single conjugacy class of each isomorphism class of T* and
Q16 [47, Proposition 1.5(1)]. These subgroups may be realised algebraically as follows:

(i) Q16 may be realised in B4(S?) as the subgroup (wg, Ay) (1 is of order 8 and Ay is of order
4) [42]. In particular,
A4ac0Agl = zxal and «af = AJ. (3.7)

(ii) By [47, Remark 3.2], T* may be realised in B4(S?) as the subgroup (105 %, Ay) x (a2} =
Qg x Z3. Note that the first factor of the semi-direct product is Q, since by equations (3.2)
and (3.3), we have:

oc0_2A4 = (73_102_1(71_1(73_1(72_101_1.01(7203(7102(71 = (71(73_1. (3.8)

1,2

The action in the semi-direct product is given by a%AMf 2 = 0105 I and 0(%0’1(7; ayc =
A4o10; ' = a2, The only other isomorphism class of finite non-Abelian subgroups of By(S?)
is that of Qg: the subgroups Q = (a3, A4) and Q" = (a3, agA4) of {xy, As) are isomorphic
to Qg and realise the two conjugacy classes of Qg in B4(S?) [47, Proposition 1.5(2) and The-
orem 1.6].

(c) By Theorem 2, the remaining finite subgroups are cyclic, and as we mentioned previ-
ously, are realised up to conjugacy by powers of the «;, i € {0,1,2}. For each finite cyclic
subgroup, there is a single conjugacy class, with the exception of Z,, which is realised by
both of the non-conjugate subgroups (a3 and (a») [47, Proposition 1.5(2) and Theorem 1.6].

As we mentioned above, Q is a normal subgroup of B4(S?). From this, we obtain the
following decomposition of B4(S?) as an amalgamated product of two finite groups.

Proposition 37. B4(S?) = Q¢ kg, T*.

Proof. Let T = By(S?)/Q. Since o105 ' € Q and (o035 ") is not normal in By(S?) by Re-
marks 36(b)(ii), it follows that the normal closure of 705 Lin B4(S?) is Q, and that a present-
ation of T is obtained by adjoining the relation 07 = 03 to the presentation of B4(S?) given
in Theorem 34. Thus T is generated by elements o7 and 07, subject to the two relations
102071 = 020103 and (1 0207)* = 1. Let A = {a,b|a® = b® = 1) denote the free product
Zy * Z3, and consider the map ¢: A — I defined on the generators of A by ¢(a) = 0702 01
and ¢(b) = 77 07. Since (¢(b))® = (0102)® = (G10207)% = (¢(a))? = 1, ¢ extends to a ho-
momorphism that is surjective since ¢(b~'a) = o7 and @(a~'b?) = 7. Conversely, the map
¢: T —> A defined on the generators of I' by ¢(77) = b~ 'a and y(03) = a~'b? extends to a
homomorphism since:

P(07) (@2) (1) = b laa b la = a
= a 0P laa” ' = (03) Y(07) $(@2) and
(p(o1) Y(2) Y(o7))* = a* = 1,

and is surjective because (07 02 07) = a and ¢(07 02) = b. Hence ¢ is an isomorphism, and
' = Zy % Zs.
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Let G = Qi kg, T%, and consider the following presentation of G with generators
u,v,p,q,r that are subject to the relations:

{pz =% qpg t=p Lrprt=q gt =pg =1

u* = Uz, ouv 1 = u_l, u? = p,v=4q,

so that (p,q,r) = T*, (u,v) = Q14, and {p,q,7r) n{u,v) = H, where H = (p,q) = Qs. It fol-
lows from this presentation that H is normal in G and G/H = Z, % Z3. Let f: G — By(S?)
be the map defined on the generators of G by f(u) = txal, f(p) = (xaz, f(v) = f(g) = Ay and
f(r) = a?. Using Remarks 36(b), we see that f respects the relations of G, and so extends to
a homomorphism that sends H isomorphically onto Q. Further, aJ = A% by equation (3.4).
Thus a; = Aja] 2, and since B4(S?) = {(ap,a1) by [41, Theorem 3], we conclude that f is
surjective. We thus obtain the following commutative diagram of short exact sequences:

1 H G G/H—1
stH Lf Lf
1——=Q—— By($?) r 1,

where j?is the homomorphism induced by f on the quotients. Since f is surjective, j? is too,
and the isomorphisms G/H =~ Z; % Zz =~ I and the fact that Z, * Z3 is Hopfian (see [25]

for example) imply that f is an isomorphism. The result is then a consequence of the 5-
Lemma. [

Remark 38. By Proposition 37, B4(S?) is isomorphic to an amalgam of finite groups. Using
Bass-Serre theory of groups acting on trees, it follows that it is a virtually free group, and so
is hyperbolic in the sense of Gromov (see [50] and [54, Section 1.1]). This important fact will
be crucial in the computation of the lower algebraic K-theory of B4(S?).

3.2 Maximal virtually cyclic subgroups of B4(S?)

As we mentioned at the beginning of Section 2.1, an infinite virtually cyclic group I’ is iso-
morphic to one of the following:

(I) a semi-direct product of the form I' =~ F x, Z, where F is a finite group and the action «
belongs to Hom(Z, Aut (F)). Such a group I surjects onto Z with finite kernel F.

(II) an amalgamated product of the form I' = G; *%r G,, where G; and G, are finite groups
containing a common subgroup F of index 2 in both G; and G;. Such a group I surjects onto
the infinite dihedral group Dih,, with finite kernel F.

We shall say that these infinite virtually cyclic groups are of Type I or of Type II respectively.

Recall from Remarks 36(a) and (b) that up to isomorphism, the maximal finite subgroups
of B4(S?) are Q16 and T*, and that there exists a single conjugacy class of each. Since
Out(Qg) =~ Sz, there are three isomorphism classes of Type I groups of the form Qg x Z,
and that we denote by Qg x iZ, where j € {1,2,3}, and for which the action is of order j [47,
Definition 4(1)(e)]. More precisely, if we take the presentation of Qg given by (2.1) and adjoin
a new generator z:
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(i) Qg x1 Z is the group obtained by adding the relations [z, x| = [z,y] = 1, where [u,v] =
uvu~lv~1 denotes the commutator of the elements u and v, so Qg x1 Z =~ Qg x Z.

(i) Qg %2 Z is the group obtained by adding the relations zxz~! = y and zyz~! = x (so
zxyz 1 = (xy) ).

(iii) Qg x3 7Z is the group obtained by adding the relations zxz~! = y and zyz~! = xy (so
zxyz~! = x).

Up to a finite number of exceptions, the isomorphism classes of the infinite virtually cyclic
subgroups of B,(S?) were classified in [47] for all n > 4. In the case n = 4, the classification
is as follows.

Theorem 39 ([47, Theorem 5]). Every infinite virtually cyclic subgroups of By(S?) is isomorphic
to one of the following groups:

(a) subgroups of Type I: Zy x Z, k € {1,2,4}; Zy x 7 for the non-trivial action; and Qg x Z for
je{1,2,3}).

(b) subgroups of Type II: Zy %7, Z4, Zg %7, Zs, 1 %7, Qs, Ls *z, L8, Q16 * gz Q16

For each of the Type II subgroups given in Theorem 39(b), abstractly there is a single
isomorphism class, with the exception of Q1 % g, Q16 for which there are two isomorphism
classes [47, Proposition 11]. In this exceptional case, we recall the following result concern-
ing the structure of the two classes, and their realisation in B4(S?).

Proposition 40 ([47, Propositions 11 and 78]). Abstractly, there are exactly two isomorphism
classes of the amalgamated product Q6 % g, Q16, possessing the following presentations:

I ={a,b,xy| a*=b?, x* =%, bab t=a!, yxyt=x"1, ¥%=a?, y= by (3.9)
and
Iy={a,b,x,y] a* =02, x*=y?, bab t=a"!, yxyl=x"1, ¥*=b, y= a2b>. (3.10)
Further, for i € {1,2}, B4(S?) possesses a subgroup G; isomorphic to T';.

With Chapter 4 in view, most of the rest of this chapter will be devoted to the problem
of deciding which subgroups of B4(S?) are maximal within the family of virtually cyclic
subgroups. In what follows, we refer to such a subgroup as a maximal virtually cyclic group
(thus the word ‘maximal” will be used to qualify the notion of virtually cyclic group).

Theorem 41.

(a) Let G be a maximal infinite virtually cyclic subgroup of B4(S?). Then G is isomorphic to one of
the following groups: Qg x Z for one of the three possible actions, or Q16 % g, Q16

(b) If G is a subgroup of By4(S?) isomorphic to T* then it is maximal as a virtually cyclic subgroup.
(c) Foreach j € {1,2,3}, there are subgroups of By(S?) isomorphic to Qg x j Z that are maximal as
virtually cyclic subgroups, and others that are non maximal.

(d) There exist subgroups of B4(S?) isomorphic to Q14 * o4 Q1 that are maximal as virtually cyclic
subgroups, and others that are non maximal.
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The proof of Theorem 41 is long, and will be split into three sections, Section 3.2.1, where
we shall prove parts (a) and (b), Section 3.2.2, where we shall prove parts (c) and (d), with
the exception of the case j = 1 in part (c), and Section 3.2.3, where we prove part (c) in
this exceptional case. As we mentioned in Remark 38, B4(S?) is hyperbolic in the sense of
Gromov. The following proposition implies that there are no infinite ascending chains of
infinite virtually cyclic subgroup of By(S?).

Proposition 42 ([55, Propositions 5,6 and Remark 7]). Every infinite virtually cyclic subgroup
of a Gromov hyperbolic group is contained in a unique maximal virtually cyclic subgroup.

3.2.1 Proof of parts (a) and (b) of Theorem 41
The statement of the following proposition is that of parts (a) and (b) of Theorem 41.

Proposition 43.

(a) Let G be a maximal virtually cyclic subgroup of B4(S?). Then G is isomorphic to one of the
following groups: T*, Qg x Z for one of the three possible actions, or Q16 * g, Q16
(b) If G is a subgroup of B4(S?) isomorphic to T* then it is maximal as a virtually cyclic subgroup.

Before proving Proposition 43, note that if G is infinite in part (a), we will prove that G
cannot be isomorphic to one of the other infinite virtually cyclic groups of B4(S?) given in
Theorem 39. The question of whether there actually exist maximal virtually cyclic subgroups
of B4(S?) isomorphic to Qg x Z or to Q14 %k o, Q16 Will be dealt with in Section 3.2.2.

Proof of Proposition 43. Suppose that G is a maximal virtually cyclic subgroup of B4(S?).

(a) (i) First assume that G is finite. Then G is a maximal finite subgroup of B4(S?), so is iso-
morphic to either Q4 or T* by Theorem 2. Suppose that G =~ Q4. Since B4(S?) possesses a
single conjugacy class of subgroups isomorphic to Q14 by Remarks 36(b), by Proposition 40,
there exists a subgroup of B4(S?) isomorphic to the amalgamated product Q14 % g, Q16, Of
which one of the factors is G, so G is not maximal as a virtually cyclic subgroup. So G must
be isomorphic to T*.

(i) Now assume that G is infinite. We separate the cases where G is of Type I and Type II
respectively.

(A) We first suppose that G is of Type I, so G = F x Z, for some action of Z on F, where F is
finite and is the torsion subgroup of G. Suppose that F is either trivial or is isomorphic to Z,
or Z4, and let u be a generator of the Z-factor of G. Up to conjugation, we claim that F < {a3).
If F is trivial or isomorphic to Z, then F < (A]) < {(a3) since aj = AJ. So suppose that
F ~ Z4. By Remarks 36(c), B4(S?) admits two conjugacy classes of subgroups isomorphic to
Z4, generated respectively by a3 and a,. But since u normalises F and the normaliser of (a2)
in B4(S?) is finite [47, Proposition 8(b)], it follows that F is conjugate to {a3). This proves
the claim, and so conjugating G if necessary, we may suppose that F < (a3). Since Q =
(a, Ay isnormal in B4(S?) and Q =~ Qg by [44, Theorem 1.3(3)], the subgroup (a3, Ay, u) is
isomorphic to one of the three Type I groups Qg x; Z of Theorem 39(a), where j € {1,2,3},
and admits (a3, u) as a proper subgroup. Now G is a subgroup of (a3, u), so G is non
maximal as a virtually cyclic subgroup of B4(S?). The result in this case is then a consequence
of Theorem 39(a).
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(B) Now suppose that G is a Type II subgroup of B4(S?) that is non isomorphic to Q14 * g,
Q16 By Theorem 39(b), we may write G = Gy sk Gy, where either:

(1) Gy and G, are subgroups of B4(S?) isomorphic to Qg or Zg, and H = Gy n Gy is iso-
morphic to Zy, or

(2) Gy and G, are subgroups of By(S?) isomorphic to Zs, and H = G; n G, = (A?).

Note that G; and G, are not necessarily isomorphic. By Remarks 36, in By(S?), there are two
conjugacy classes of subgroups isomorphic to Qg represented by Q and Q’, one conjugacy
class of subgroups isomorphic to Zg, represented by («), and two conjugacy classes of sub-
groups isomorphic to Zy, represented by {a3) and {xgAy) (this is because the elements xgA4
and ap generate conjugate subgroups of order 4). Conjugating G if necessary, we may sup-
pose that Gy is equal to Q, Q' or {(wp) in case (1), and is equal to <1x%> or {apAy4) in case (2).
Furthermore, there exists A € B4(S?) such that G, = /\Gé)\_l, where G} is equal to Q, Q' or
{ap) in case (1), and is equal to (a3 ) or {xpA4) in case (2). Set L = {ag, As). Then G; and G}
are subgroups of L, and Q is a subgroup of L that is normal in B4(S?), so Q is a subgroup
of LA ALA™L Since L = ALA™! =~ Qigand G = (G U Gy) & (LU ALA™Y), it follows that
(LUALA™Y) is infinite and L n ALA™! = Q because Q is of index 2 in both L and ALA™1.
We conclude from [45, Lemma 15] that (L UALA™!) = Lkg L > Q4 %k g, Q1. Thus Gisa
non-maximal virtually cyclic subgroup of B4(S?), and it follows from Theorem 39(b) that any
maximal virtually cyclic subgroup of B4(S?) of Type Il must be isomorphic to Q14 % g5 Q16

(b) By Theorem 39, none of the infinite virtually cyclic subgroups of B4(S?) admit subgroups
isomorphic to T*, so any subgroup of B4(S?) isomorphic to T* is maximal as a virtually cyclic
subgroup. Combined with part (a)(i) of the proof, this shows in fact that G is a finite maximal
virtually cyclic subgroup if and only if G =~ T*. O

This completes the proof of parts (a) and (b) of Theorem 41.

3.2.2 Proof of parts (c) and (d) of Theorem 41

We now turn to parts (c) and (d) of Theorem 41, which may be regarded as a converse of
part (a) in the case that G is infinite. We first prove part (c) of Theorem 41 with the exception
of the existence of Qg x Z as a maximal virtually cyclic subgroup of B4(S?), which will be
dealt with in Section 3.2.3. Before doing so, we state and prove the following lemma.

Lemma44. Let 71: By(S?) — Zg denote the Abelianisation homomorphism described in Remark 35.

(a) If H is a subgroup of B4(S?) that is isomorphic to either Zs, Qg or Q16 then (H) = (3).
(b) If G is a subgroup of B4(S?) that is isomorphic to an amalgamated product of one of the groups
Q16 k05 Q16 Qs ¥z, Qs, Qg k7, Zg or Zg 7, Zg then 1(G) < (3).

Proof.

(a) Consider the subgroup K = {ag, Ay). As we mentioned in the proof of Proposition 43,
K contains representatives of the conjugacy classes of all subgroups of B4(S?) that are iso-
morphic to Zg, Qg or Q1e. So there exists A € B4(S?) such that \AHA™! = K. Now 7t(ag) = 3
and 71(A4) = 0, thus 77(K) < (3), which yields the result.
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(b) If G is a subgroup of B(S?) that is isomorphic to one of the given amalgamated products
then by Remarks 36(c), the factors appearing in the amalgamation are subgroups of conjug-
ates of K, and thus 71(G) < 7(K) = (3) by part (a). N

To prove Theorem 41(c), for each j € {1,2,3}, we shall exhibit two subgroups of B4(S?)
that are isomorphic Qg x; Z, one of which is maximal as a virtually cyclic subgroup of B4(S?),
and the other of which is non maximal. For the case j = 1, the proof of the existence of a
maximal virtually cyclic subgroup of B4(S?) that is isomorphic to Qg x Z is long, and will
be treated separately in Section 3.2.3. With the exception of this case, the statement of the
following proposition is that of parts (c) and (d) of Theorem 41.

Proposition 45.

(a) Foreach j e {1,2,3}, there are subgroups of B4(S?) isomorphic to Qg x j Z that are non maximal
as virtually cyclic subgroups.

(b) For each j € {2,3}, there are subgroups of B4(S?) isomorphic to Qg xj Z that are maximal as
virtually cyclic subgroups.

(c) There exist subgroups of B4(S?) isomorphic to Q14 * o, Q16 that are maximal as virtually cyclic
subgroups, and others that are non maximal.

Proof of Proposition 45.

(a) By Proposition 40, for i = 1,2, B4(S?) possesses a subgroup G; that is isomorphic to the
amalgamated product I'; given by equations (3.9) and (3.10), and so admits a presentation
given by the corresponding equation. The amalgamating subgroup I' = {(a?,b) = {(x?,y)
is isomorphic to Qg, and the element a—'x is a product of elements chosen alternately from
the two sets (a,b)\ {a?,b) and (x,y)\ {x?,1 ), so is of infinite order by standard properties of
amalgamated products. Consider the subgroup H; = (I; u {a~!x}) of G;. One may check
that (a~!x) acts by conjugation on (a?,b). If i = 1 then:

a_lx. az.x_la = az

1

atx.b.xla=atxyxta = ateyx Ty lya = a'x?ya = abab™ b = b (3.11)

a Yx.a%b. x 1a = a?b,
and hence H; =~ Qg x Z. If i = 2, a similar computation shows that conjugation by a~'x
permutes cyclically a?,b=1 and a=2b~!, and thus Hy ~ Qg x3Z. In each case, H; & G;
because [G; : H;] = 2. Now G; is isomorphic to Q1 3k o, Q16, and so H; is non maximal as a
virtually cyclic subgroup of B4(S?), which proves the statement for j € {1,3}. It thus remains

to treat the case j = 2. Using equation (3.11), note that in Gy, the action by conjugation of
1

xa ‘x on T is as follows:
xa tx.a? x laxl = xa?x7t = 42
xa tx.boxtax Tt = xyx Tt = xyx Ty ly = 2Py = 2% (3.12)

xa tx.a?b.x tax P = atb = b L.

Now xa~lx is of infinite order, so we conclude from equation (3.12) that the subgroup

(T'u {xa~'x}) is isomorphic to Qg x> Z. Furthermore, this subgroup is contained (strictly)
in G1, so is non maximal.
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(b) Firstlet j = 2. Consider the subgroup H = (Q U {01} of B4(S?). By Proposition 42, H is
contained in a maximal virtually cyclic subgroup M of B4(S?). Since Q is normal in By(S?)
and o7 is of infinite order, H must be isomorphic to a semi-direct product of the form Qg x Z
for some k € {1,2,3}. To determine k, we study the action by conjugation of ¢; on Q. Using
equation (3.8), we have:

( — — — — .
1. 43, 0y e (7106%0'1 10c0 2q3 = 0105 a2 by equation (3.5)

= aazAw% = 0464A4 = A;l by equation (3.7)
oA ot = A o AL = o5 TALY by equation (3.6) (3.13)

= ay 2 by equation (3.8)

2 -1 _ A-1,2 _ .2
\Ul'“OAﬁl'O—l - A4 060 - 060A4

Since o7 is of infinite order, H is thus isomorphic to Qg x, Z because the action fixes the
subgroup {a3A4) of order 4 of Q, and exchanges {a3) and A4. But 7t(07) = 1 ¢ (3), so
H is not contained in any subgroup of the form Qg k7, Qg, Ug %z, Zg or Qi * gz L1 by
Lemma 44(b). It cannot be contained either in a subgroup isomorphic to Qg x Z or Qg x3 Z
because the actions on Q are not compatible. This implies that M, which is maximal in
B4(S?) as a virtually cyclic subgroup, must also be isomorphic to Qg x Z.

Now letj = 3. Asin the case j = 2, if there exists a subgroup L of B4(S?) that is isomorphic
to Qg x3 Z, it cannot be contained in a subgroup of B4(Sz) isomorphic to Qg x Z or to Qg x»
Z. Moreover, by Lemma 44(b), if 77(L) ¢ (3) then L is not contained in any subgroup of
B4(S?) isomorphic to Og k7, 98, Lg %7, Zg, Qg %7, Zg or Q16 * g, D16 As in the previous
paragraph, we conclude using Proposition 42 that L is contained in a maximal virtually
cyclic subgroup of B4(S?) that must also be isomorphic to Qg x3 Z. To prove the result, we
exhibit such a subgroup L. Consider the action by conjugation of ¢, on Q:

-

1 1

0p. 0. 05 ! = g g oo ooy tag . g

= ap0103 'y by equation (3.5)

= oy 2Asxg by equation (3.8)

= &g *Ay = (ajAg)"" by equation (3.7)

02 Dy 051 = a0y TAL Ay = DAy
1

(3.14)

2 — -2 2
\Uz.DCOA4.0'2 = Q& A4.A4 = Ky

4 7

In particular, o5 x0; * = x forall x € Q. This implies that the action by conjugation of z = 0307
on the elements of Q is the same as that of (75’(71. By equations (3.13) and (3.14), this action is
as follows:
I T
(XO — A4 — A4
3
A ag? 2 (03Ay) !

3
24 \—1 D01 1 _2 2
(agAg) ™" — Ay ag“Ay = ap.
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Hence the action by conjugation of z on Q is of order 3. Further, 71(z) = 2 ¢ (3), which
shows that L = (Q u {z}) is not contained in any subgroup isomorphic to an amalgamated
product of the form Qg k7, Qg, Zg %7z, Zs, Qg *7, Zg or Q16 *k g, Q16 by Lemma 44(b). Ob-
serve that by (B.5), the permutation associated to z is (1,2,3), and so z3 € P4(Sz). To prove
that L ~ Qg x3 7Z, it remains to show that z is of infinite order. To achieve this, we shall write
z% in terms of the direct product decomposition (B.10) of P4(S?), which comes down to ex-
pressing z3 in terms of the basis (A1 4, A2 4) of the free group 71 (S?\ {z1, 22,23} , z4) that is the
kernel of the homomorphism (p43)+« of (B.9). Geometrically, this homomorphism is given
by forgetting the last string (see (B.6) and (B.7)). As mentioned in Appendix B, the group
Py(S?) is generated by the set {4;;}, cicje where A; ; is defined by (B.4), A1 = o7 for
i €{1,2,3}, and the A; ; satisfy the “surface relations’ (B.8) (the relations are not complete).
For the convenience of the reader, we write out these relations in full:

A1pA13A14 =1 (3.15)
A1pAr3A24 =1 (3.16)
A13A23A34 =1 (3.17)
A1aAzaAsy = 1. (3.18)

Using (B.3) and (B.4), one may also see that:
A1pA13A14A23A04 A5, = A (3.19)

The reader may also convince himself or herself of the validity of this relation by drawing a
picture similar to that of Figure B.2(b). It follows from relations (3.15), (3.18) and (3.19) that

Aoz = NA A, = NA1, (3.20)
from relations (3.17), (3.18) and (3.20) that
Az = A;iAg,é = A1,4A2,4A1_’iAﬁ, (3.21)
and from relations (3.16) and (3.20) that
Arp = Ay, Ass = Ay ATIAL (3.22)
If i € {1,2}, it follows from the braid relations in B4(S?) that 0'i0'i+10’l-_1 = (Tijrllaiaiﬂ, and
hence 030’}110;1 = ijrllaf‘aiﬂ for all k € Z. We thus obtain:

3 7 \3 3 7 -1 2.7 3 7. 27
27 = (0301)” = A3 30201050, . 070501 = A3 30102010501

= A3/3Ai”2(71¢720%027(71 = A§/3Ai”201. (72(7%(72_ 1 (73(71
= A}3AT ,Ar 310801 = A3 3 AT, Ao 3 Arpoy L ohoy
= AS3AT 5 Ar 3 A1 000010yt = A3 AT ) A3 A1 AT 5
= (AJA14)° (A5 AT JAD AT AL AL L AT N (A1 aAr s AT AT
= AL AL AL AL ATIAS LAY
by equations (3.20) — (3.22). But (A1 4, Ap4) is a basis of the free group 7; (S2\{z1, 22,23}, 24),

so z% # 1, and since z° € (A14, Az a), it is of infinite order. We conclude that L =~ Qg %3 Z,
which completes the proof in this case.
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(c) The existence of subgroups of B4(S?) isomorphic to Q14 o, Q16 that are non maximal
as virtually cyclic subgroups is actually a consequence of the structure of the amalgamated
product. Indeed, consider the following short exact sequence:

1—’Q8—>Q16*Q8Q16L’ZZ*ZZ—>1-

Now Z; * Zj is isomorphic to the infinite dihedral group Dihy, = Z x Zy. So for all n € N,
n > 2, the subgroup nZ x 7Z, is abstractly isomorphic to Z x Z, while being a proper sub-
group (in other words, it is non co-Hopfian). Thus p~!(nZ x Z) is isomorphic to Q16 % o, Q16
while being a proper subgroup (of index n). In particular, since B4(S?) contains a subgroup
I" that is isomorphic to Q14 * g, D16, I’ admits proper subgroups that are also isomorphic to
Q16 * g4 D16, and any one of these subgroups is a non-maximal virtually cyclic subgroup
that is isomorphic to Q14 %o, Q16. Conversely, let G be a subgroup of B4(S?) that is iso-
morphic to Q14 * o, Q16. By Proposition 42, G is a contained in a subgroup M of B4(S?) that
is maximal as a virtually cyclic subgroup. But Theorem 39 implies that the only isomorph-
ism class of infinite virtually cyclic subgroups of B4(S?) that contains Q14 is Q16 * 0, Q16,
and so we conclude that M = Qq¢ %k o, @16, which completes the proof. O]

This proves parts (c) and (d) of Theorem 41, with the exception of the statement of part (c)
that pertains to the existence of maximal virtually cyclic subgroups in the case j = 1.

3.2.3 Proof of the existence of maximal subgroups Qg x Z in part (c) of
Theorem 41

We now complete the proof of Theorem 41(c) by proving the existence of maximal virtually
cyclic subgroups of B4(S?) that are isomorphic to Qg x Z.

Proposition 46. The group B(S?) contains maximal virtually cyclic subgroups that are isomorphic
to Qg X L.

In order to prove Proposition 46, we will first require two lemmas. Asbefore, let Q denote
the normal subgroup (a3, Ay ) of B4(S?), and let H; = (Ay), H, = {a3) and H3 = {(a}A4) be
the three subgroups of Q isomorphic to Zs. Then B4(S?) acts transitively on the set H =
{H1, Hy, H3} by conjugation, and this action gives rise to the permutation representation
: By4(S?) — S; that satisfies the following relation:

forall 1 <i,j < 3,and forall B € B4(S?), (BH;f " = H;) <= (y(B)(i) = j).
Note that the homomorphism ¢ is surjective, that ¢(c1) = (1,2) by equation (3.13), and that
¥(02) = (2,3) by equation (3.14). Since 0705 ' € Q by equation (3.8), and the action of the
elements of Q on H is trivial, it follows that {(03) = ¢(01). If B is of infinite order then
(QuU{B}) = Qg x Z, and the order of the action of Z on Qg is that of the element (f). The

first step is to describe Ker () whose elements of infinite order will give rise to subgroups
of B4(S?) isomorphic to Qg x Z.

Lemma 47. Ker () is isomorphic to the direct product of Q with a free group F»(x, y) of rank 2, for
which a basis (x,y) is given by:

x = a3Ag07 and y = Ayo3. (3.23)
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Proof. By Remarks 36(b) and Proposition 37, B4(S?) is isomorphic to the group T* g, Q16,
where the T*-factor G; of B4(S?) is generated by Q and a2, and the Qy¢-factor G, of B4(S?) is
generated by Q and «g, so G; n G, = Q. Consider the canonical projection:

p: By(S?) — Ba(S?)/Q.
As in the proof of Proposition 37, we identify the quotient B4(S?)/Q with the free product
Z3 * Ly, the Z3- (resp. Zy-) factor being generated by a = p(a) (resp. b = p(ap)). Consider
the surjective homomorphism ¢: Zs3 % Z; — Sz defined by ¢(a) = (1,3,2) and §(b) =
(1,3). Since p(ag) = (010203) = (1,2)(2,3)(1,2) = (1,3), $(a1) = p(010203) = (1,2)(2,3) =
(1,3,2) and B4(S?) = {ag, a1) by [41, Theorem 3], it follows that 1) o p = 1, so p induces a ho-

momorphism p: Ker (¢) — Ker(t/)) of the respective kernels. We thus obtain the following
commutative diagram of short exact sequences:

1 1

A~

Ker (p) ——Q

1—Ker () — > By(S?) ¥~ 55— =1 (3.24)

; .

1—>Ker(1ﬁ) —>Z3*Zz¢—>53—>1,

1 1

as well as the equality Ker (p) = Q. Taking {1,4, a%,b,ab, azb} to be the Schreier transversal
for ¢ and applying the Reidemeister-Schreier rewriting process [53], we see that Ker(lp) is
a free group of rank 2 with basis ((ab)?, (ba)?), which implies that Ker () =~ Qg x I, by
the commutative diagram (3.24). To determine the action of Ker(tﬁ) on Q, note by (3.13)
and (3.14) that 07 and 07 belong to Ker (), and that:

P(‘le) = .0(‘73 ( plag 'ay) )2
p(03) = p(agoiay ) = (ab)?,

so p(0?) = (ba)? and p(c3) = (ab)?. The same equations imply that the actions by conjug-
ation of ¢? and 03 on Q yield elements of Inn (Q), namely conjugation by A, and by Ay
respectively. Let s: Ker(¢) — Ker (¢) be the section for p defined on the basis of Ker ()
by s ((ba)?) = x and s ((ab)?) = y. The action of these two elements on Q is thus trivial,
which shows that Ker (¢) =~ Qg x [, as required. O

Using the definition of 1, a transversal of Ker () in B4(S?) is seen to be:
T = {e, 01,00, 010201, 0102, 0201 } . (3.25)

We now determine the action by conjugation of these coset representatives on x and y.
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Lemma 48. Let T € T\ {e}. Then

(x ift =0 (y1x ! ifr=0
Apx 7yl dift =0 y ift =0
Xl = Aﬁy if T = oqopoy and Ty'fl = 4 Aﬁx if T = 010207
Azy if T =00, y a7l ift=00;m
Ax 7yt it = ooy | Afx if T = oo071.

Proof. The action by conjugation of 0 and 0> on 07 and 07 is given by:

2 ~1_ 2 2 ~1_ 2
o1o707 - = 07 and 02050, = 05
(71(72201_ - oy lo?oy = [ 2 0ty = oy 2(73_ 2 by equation (3.1)

=0, 20(%(71 Xy o2 by equation (3.5)

=0, 201 2, 01204(2)01 2oc0 A4(72 (71 2 by equations (3.7) and (3.13)

1 -2

02(71202 = (7201202’ L= mo?on. (72 A4c71 0, ©in a similar manner.
Using also equations (3.13) and (3.14) as well as the fact that x and y commute with the
elements of Q, we see that:

V= w3Ag0? = x

-2

oxoy b = 0'10é%A40’120'1_

-1 _ 2 _ _ “IpA 124 -1 1
myo; = 01A4(72c71 ocOA4(72 (71 = 3Ny A adA, =y ix
02X0, 1 — oadAuo? 02 = szA401 02 — 03N YAy I, = A2y

2_—2
Yo, =(72A4(72(72 —erA402 (71 = Ao, “ =1y,

from which we deduce that:

(0’10'20'1)3(((710'20'1)_1 = Aiy, (0’10'2)360'2_10'1_1 = Aﬁy,
(Ulazal)y(alcfzal)’l = Aﬁx (Ulaz)yaz’lo'l =y Iyl
(o0)x0 oyt = AZx Ty, (oa01)yoy oyt = Afx

We thus obtain the relations given in the statement. O

Proof of Proposition 46. To prove the proposition, we must show that there exists a maximal
virtually cyclic subgroup of By(S?) that is isomorphic to Qg x Z. Let z € B4(S?) be an element
of infinite order, and suppose that I' = (Q U {z}) =~ Qg x; Z, where j € {2,3}. Our aim is to
obtain necessary conditions on the generators of the infinite cyclic factor of those subgroups
of T that are isomorphic to Qg x Z. Thus will enable us to construct subgroups of By(S?)
that are isomorphic to Qg x Z but are not contained in any subgroup isomorphic to Qg x; Z,
where j € {2,3}. With this in mind, let A be a subgroup of I that is isomorphic to Qg x Z.
Since the finite-order elements of I" are precisely the elements of Q, the subgroup of A that
is isomorphic to Qg is Q. The remaining elements of I, of the form 4. z* where g € Qand
k € Z\ {0}, are of infinite order. In order that such an element belong to the centraliser of
Q (and thus form a subgroup isomorphic to Qg x Z), the fact that the action of z on Q is of
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order j implies that k must be a multiple of j, and thus A = (Q u {gq.2Y}) = (Qu {zY})
{Qu {zl}) for some A € Z\ {0}. In particular, (Q U {z/} ) is the maximal subgroup of T that
is isomorphic to Qg x Z.

Since the action by conjugation of z on Q is of order j, it follows from the definition of
i that z belongs to one of the cosets T.Ker () of B4(S?) where T € T\ {e}, T being the
transversal of equation (3.25). More precisely, z € T.Ker (), where T € {01, 02, 010207} if
j =2,and T € {0102, 0901} if j = 3. Further, by Lemma 47 there exist v € Ker (¢), u € Fa(x, )
and g1 € Q such that z = Tv and v = qyu. Let us write u = u(x,y) as a freely reduced word
in Fp(x,y):

14,01 .

= xSy’ xty”,

where ¢;,0; € Z foralli = 1,...,r, and 61, ¢€,...,0,_1,¢€, are non-zero. If v € Ker (¢), let v
denote the image of v under projection onto the F5(x, y)-factor, followed by Abelianisation
of F5(x,y). We now compute z/. We have that:

2 = (tqu)

1t turgyt tur (Tu)? ifj=2
. /. ~~ -/

_ ) < eQ
it Y rurgrt it rururg t i ey e Y (rw)® ifj =3
" ~~ d v d

eQ eQ €Q
— ¢'(tu)l, whereq € Q.
Now
i Jruth o ifj =2
(tu)) = AN (22 23, g
(tut™")(t7ut%).v0.u ifj = 3.

Applying Lemma 48, and using equation (3.23) as well as the fact that x and y commute

with the elements of Q, it follows that there exists ¢” € Q such that (tu)/ = 4'~1¢"w, where

w € [Fh(x,y) is given by:

P .
xgl (yilel)él .. xgy (y*lel)fsrxxglyél Ce xgry(sr lf T= (71
(x—ly—1)81y51 . (x—ly—l)gryéryxelyél e xgryfsr ift= (%]

< yslx‘sl .. .ygrxfsrxslyfsl - xgry‘sr if T = 0102071

yel (y_lx_1>‘51 e ygr (y_lx_l)ér (y_lx_l)elesl . (y_lx_l)srx‘srxglyél e xgryfsr lf T = 0—10—2
L (x71y71>81x51 e (xilyfl)srxérysl (xflyfl)(sl e ysr (xilyfl)(srxslyél e xgrylsr lf T = 0-20-1.

We have also used the fact that:
(010201)* = (0102)° = (0201)° = (105 1)* = A]

by equations (3.1), (3.7) and (3.8). Since z/ = ¢"w, and g" commutes with w, relative to the
basis (x, ) of the Abelianisation Z? of F»(x, y), we obtain:

A2+ +e)— (014 +6)+1,0) ift=0
N A(0,2(01+ - +6)—(e1+--+&)+1) fT=0
AMep 4+ +&+0+--+6).(1,1) if T=0q000q
(0,0) if T =0100 or T = 007,
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for all A € Z\{0}. We conclude that if A is a subgroup of I' = {(Qu {z}) = Qg x; Z that
is isomorphic to Qg x Z then A = {Qu {q.z"}), where zV € {(a,b) € Z* | ab(a — b) = 0}
relative to the basis (X, ) of the Abelianisation Z? of F»(x, ).

To complete the proof of the proposition, we shall exhibit an element w € By(S?) for
which:

(a) w is a non-trivial element of F»(x, y) such that w = (¢, d), where cd(c —d) # 0.

(b) m(w) ¢ (3).

Since Fy(x,y) < Ker(¢), the first condition implies that such an element w is a suitable
generator of the Z-factor of a subgroup of B4(S?) that is isomorphic to Qg x Z, but which
from the above discussion, is not contained in any subgroup that is isomorphic to Qg x; Z
for j € {2,3}. By Lemma 44(b), the second condition implies that (Q u {w}) is not contained
in any subgroup of B,(S?) that is isomorphic to Q14 % o, Q16, Qs *7, Qs, Zs *7, Zg or Qg 7,
Zg.

Take w = xy3, and let A = (Q U {w}). Then A = Qg x Z since w € Ker (1) is an element
of infinite order, and by Proposition 42, there exists a maximal infinite virtually cyclic sub-
group M of By(S?) that contains A. Clearly condition (a) above holds, and equation (3.23)
implies that condition (b) is also satisfied. It follows from the previous paragraph and The-
orem 39(b) that M =~ Qg x Z, which completes the proof of Proposition 46. In conjunction
with Proposition 45, this also proves parts (c) and (d) of Theorem 41. O

This proves part (c) of Theorem 41 in the the exceptional case, and bringing together
Propositions 43, 45 and 46, completes the proof of Theorem 41.

3.3 Conjugacy classes of maximal infinite virtually cyclic
subgroups in By(S?)

In order to determine the number of conjugacy classes of maximal infinite virtually cyclic
subgroups, we follow the procedure given in [54, Section 2.5] based on the action of B4(S?)
on a suitable tree. As in the proof of Proposition 37, we identify B4(S?) with Q1 5 0, T, and
the quotient B4(S?)/Q with the modular group PSL(2,Z) = Z % Zz = {a,b |a*> = b =1).
Thus we have the following short exact sequence:

1— Q—> By(S?) 5 Zy s 7y — 1, (3.26)

p being the quotient map as in the proof of Proposition 37. There is a well-known action
of PSL(2,Z) on the tree T of Figure 3.1, where the edge stabilisers are trivial and the vertex
stabilisers are Z, and Z3. The quotient of T by this action is the graph:

7y o 7s.

It follows from the short exact sequence (3.26) that By(S?) acts on T via p, and since Ker (p) =
Qg, the quotient graph of this action is:

Qi @ oTH.
16 Os
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Figure 3.1: The tree T, showing the edge and vertex stabilisers under the action of PSL(2,Z).

We now apply the Reidemeister-Schreier rewriting process to the Abelianisation homo-
morphism 7T: Zj % Zz —> Ze. A computation similar to that given in the proof of Lemma 47
shows that the commutator subgroup I'2(Z; * Z3) of Z; % Z3 is a free group, which we de-
note by Fy, of rank two with basis ([a, b], [a, b?]).

Proposition 49. Let F = p~1(F,). Then there exists a (free) subgroup ¥y of F of rank k > 2 that is
normal and of finite index in By(S?).

Remark 50. The above construction gives rise to the following commutative diagram of short
exact sequences:

We see that I'»(B4(S?)) = F >~ Qg x F,, which yields an alternative proof of the decomposi-
tion given in [44, Theorem 1.3(3)].
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Proof of Proposition 49. By Remark 50, F is isomorphic to a semi-direct product of the form
Qg x Fy. Lets: F, — Fbe a section for p }f:. Since s(F,) is of finite index in B4(S?), it suffices
to take Fy to be the intersection of the conjugates of s(Fy) in B4(S?). O

The group F, acts freely on T, the resulting quotient space being a graph I'; that is homo-
topy equivalent to a wedge of two circles. The group Fy also acts freely on T in the same way
as its image p(l~3k) in Zjy * Z3, the quotient graph I' = T/ Fy being a finite-sheeted covering
space of I'y.

By [54, Section 2.3], there is a bijective correspondence between:

(a) the maximal infinite virtually subgroups of B4(S?), and

(b) the stabilisers of geodesics in T with infinite stabiliser.

In order to determine the number of conjugacy classes of the maximal infinite virtually cyclic
subgroups of B4(S?), we observe that since the action of Qg on the quotient T/Fy is trivial, it

follows that 771 ((T/F;) ) is free of rank k > 2. Therefore, there are infinitely many conjugacy
classes of maximal infinite virtually cyclic subgroups of the form Qg x; Z for j € {1,2,3} and
of the form Q4 * g, D16, see [54, Section 2.5] for more details.



Chapter 4

Lower algebraic K-theory groups of the
group ring Z[B,(S?)]

As we mentioned in Section 2.1, B,(S?) is finite for all n < 3. For these values of #, the
corresponding K-groups were given in Table 2.1. This chapter is devoted to the computation
of the lower K-groups of Z[B4(S?)]. The aim is to prove Theorem 1, whose statement we
recall here.

Theorem 1. The group B4(S?) has the following lower algebraic K-groups:
Wh(B4(S?)) =~ Z@® Nil;,
Ko(Z[B4(S?)]) =~ Zr ®Nily, and
K_1(Z[B4(S*)]) = Zr ®Z,
K_i(Z[B4(S?)]) = O forall i > 2,

where for i = 0,1, the groups Nil; are isomorphic to a countably-infinite direct sum of Zy, Z4 or
Ly @ Ly.

The main fact that allows this computation is that B4(S?) is hyperbolic in the sense of
Gromov (see Remark 38) because it is an amalgam of finite groups by Proposition 37. Hence
the Farrell-Jones fibred isomorphism conjecture holds for this group, and so we may per-
form the K-theoretical calculations using Section 4.1 and [54, 55]. All of these calculations
are based on the knowledge of the lower K-theory groups of the virtually cyclic subgroups
of B4(S?). In Section 4.1, we recall some general facts about the lower K-groups of infinite
virtually cyclic groups. In Section 4.2, we discuss the lower K-groups of the finite subgroups
of B4(S?) and how they fit together with the infinite virtually cyclic subgroups of By(S?)
to give the lower K-groups of Z[B4(S?)], up to computing the Nil; groups. Finally, in Sec-
tion 4.3, we determine these groups, and we put together all of these ingredients to complete
our calculations to prove Theorem 1.

4.1 The lower K-theory of infinite virtually cyclic groups

In this section, we provide the ingredients needed to compute the lower algebraic K-groups
of infinite virtually cyclic groups. For a virtually cyclic group I' of Type I, the algebraic K-

53
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groups of Z|I'] are described by the Bass-Heller-Swan formula with « = 1, which asserts that
for a finite group 7, there is a natural decomposition [6]:

Ki(Z[r x Z]) = Ki(Z[7])) ® Ki_1(Z[]) ®2NK;(Z[]) forallie Z, (4.1)

where the i Bass Nil group of 7r, denoted by NK;(Z[r]), is defined to be the kernel of the
homomorphism in K-groups induced by the evaluation e: Z[r][t] — Z[rr] att = 0. In the
reduced version, equation (4.1) takes the form:

Wh(7 x Z) = Wh(r) ® Ko(Z[7]) ®2NK; (Z[r]), and
Ko(Z[7 x Z]) = Ko(Z[n]) ® K_1(Z[r]) ® 2 NKo(Z[7t]).

If « # 1, the group ring Z[T] is equal to Z[F x, Z] = Z[F]4[t,t~'], the latter being the
twisted Laurent polynomial ring of Z[F|, and the twisting is given by the action of a. In
this case, the Bass Nil groups are replaced by the Farrell-Hsiang Nil groups NK;(Z[F],«) ®
NK;(Z[F],«~1) [32].

For virtually cyclic groups I' of Type II, the fundamental work of Waldhausen gives rise
to the following exact sequence [77]:

-+ —> Ku(Z[F]) — Ku(Z[G1]) ® Kn(Z[G2]) — Ku(Z[T'])/Nil}) —
Ky—1(Z[F]) — Ku_1(Z[G1]) ® Ku_1(Z[G2]) —> Ku—1(Z[G])/Nil)' y —> -+,

where Nil}) denotes the Waldhausen Nil groups, denoted in [77] by:
Nil}Y = Nl (Z[F]; Z[G1\F], Z[G,\F]).

If T is an infinite virtually cyclic group of Type II, there is a surjection f: I' —» Dih,, whose
kernel F is finite. Let T be the unique infinite cyclic subgroup of Dih, of index 2. Then the
subgroup I' = f~1(T) c I'is an infinite virtually cyclic group of Type I, and I is of the form
F x4 T. In this situation, it was recently established that the Waldhausen Nil groups may be
identified with the Farrell-Hsiang Nil groups as follows [24, 62]:

Nil!V = Nil!(Z[F); Z[G1\F], Z[G,\F]) = NK,(Z[F), &) = NK,,(Z[F],a™ ).
In negative degrees, the Nil groups are described as follows.

Theorem 51 ([34, Theorem 2.1]). Let I' be an infinite virtually cyclic group. Then:

(a) K_1(Z[I']) is a finitely-generated Abelian group.

(b) K_1(Z|I']) is generated by the images of K_1(Z[F]) under the maps induced by the inclusions
F < T', where F runs over the representatives of the conjugacy classes of finite subgroups of ..

(c) K_;(Z[T']) =0 foralli= 2.

In summary, in order to compute the K-groups of an infinite virtually cyclic group, we
need to understand the K-groups of the corresponding finite kernel F and of the associated
Bass or Farrell-Hsiang Nil groups.
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4.2 Preliminary K-theoretical calculations for Z[B4(S?)]

Using the hyperbolicity of B4(S?) and the results of [55] and [54, Example 3.2], we may
compute K, (Z[B4(S?)]), obtaining:

Ka(Z[B4(S?)]) = Ay @ By @ (@ Cokery, (V)) '
Vey

where:

Ay = Coker(K,(Z[Qs]) — Ku(Z[Q16]) ® Kn(Z[T*])) and

B, = Ker (Ky—1(Z[Qs]) — Ku-1(Z[Q16]) ® Ky—1(Z[T*])).
The group Coker, (V) corresponds to the various Nil groups described in Section 4.1 (and
will be determined in what follows), and the sum is over the family V of conjugacy classes

of maximal infinite virtually cyclic subgroups of B4(S?). Using the pseudo-isotopy functor
instead of K, we obtain similar formulee for the Whitehead and Ky-groups:

(Coker(Wh(Qg) — Wh(Qy4) ® Wh(T*))

@

Wh(B4(S?)) = { Ker (Ro(Z[Qs]) — Ko(Z[Que)) ® Ko(Z[T*]) )

®

[ Nily

( Coker (KO(Z[Qs]) — Ko(Z[Q16)) @IZO(Z[T*]))
@

Ko(Z{Bs(8%)]) = { Ker (R-1(Z[Qs)) — R1(Z[Qu]) @R (Z[T°)))
®

| Nilp,

and the K_;-group is given by:

K_1(Z[B4(S?)]) = Coker(K_1(Z[Qs]) — K_1(Z[Q16]) ® K_1(Z[T*])),

where for i = 0,1, Nil; splits as a direct sum of Bass or Farrell-Hsiang Nil groups over rep-
resentatives of V (see Section 4.1). From Theorem 31, we have the following isomorphisms:

~

Wh(Qg) =0 Ko(Z[Qs]) = Z, K 1(Z[Qs]) =0
Wh(Q16) = Z Ko(Z[Q16)) = Zo K_1(Z[Q16]) = Z»
Wh(T*) =0 Ko(Z[T*]) = Zy K_1(Z[T*]) ~ Z.

Moreover, by [73, Lemma 14.6], the induction Ko(Z[Qg]) — Ko(Z[Q1]) is zero and the ho-
momorphism Ky(Z[Qg]) — Ko(Z[T*]) is an isomorphism by hyper-elementary induction
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(cf. [73, Theorem 14.1(1)]). Furthermore, by Remark 32 and Theorem 51(c), we obtain the
following isomorphisms:

Wh(B4(S?)) =~ Z @ Nil;
Ko(Z[B4(S?)]) = Z, ®Nilg
(4.2)
K 1(Z[B4(S))]) = Zr @ Z
K_;(Z[B4(S*)])~ 0 forall i > 2,

which proves Theorem 1 up to the computation of the Nil; terms in the first two isomorph-
isms. To complete the proof, we must compute the Nil groups that appear in the contribution
of the conjugacy classes of maximal infinite virtually cyclic subgroups of B4(S?).

4.3 Nil group computations

In this section, we compute the Bass Nil groups NK;(Z[Qg]) fori = 0, 1, as well as the twisted
versions. In the non-twisted case, we obtain the following result.

Proposition 52. For i = 0,1, the groups NK;(Z| Qg]) are isomorphic to a countable, infinite direct
sum of copies of Z, Zy or Ly ® Zy.

In order to prove Proposition 52, we first consider the ring R of Lipschitz quaternions of
the form a + bi + cj + dk, where a,b,c,d € Z and i, j, k are the quaternionic roots of —1, and
compute its NKg and NKj groups. Recall that the ring S of Hurwitz quaternions consists of
the quaternions of the form (a + bi + ¢j + dk)/2 where a, b, c and d are integers that are either
all even or all odd. Hence:
1+i+j+ k]

R = Z[i, j, k] andS=Z[i,j,k]+Z[ .

By [17, Example 5.1], S is a non-commutative principal ideal domain, and so is a regular
ring. Let M = (1 +1i)S. Observe that M — R c S, and that R/M and S/M are the fields
of two and four elements respectively. From this, it follows that S/R is the group with 2
elements. These computations involve the double relative term K; (R, S, M) for the injection
R — S and ideal M = (1 +1)S that is described as follows [37, Theorem 0.2]:

Ki(R,S,M)=(S/R)®(M/M?)/{b®cz+c®@zb—bc®z|b,c€ S, z € M}. (4.3)
A straightforward computation yields:

M={a+bi+cj+dk|a+bandc+deven}+Zli+ k|
M? = {—2b + 2ai + 2dj + 2ck | a + band ¢ + d even} + 27Z[i + f].

Define the elements b € S/R and u, w,z € M/M? to be the following cosets:

_l+i+j+k

b > ,u=1+i,w=j+kandz=1+i+j+k.
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Notice that the group generated by u and w is isomorphic to Zy @ Z,. On the other hand, b
is the only non-trivial element of S/R, b? = b and the relations in (4.3) become:

b®z =0.
These identities imply that K; (R, S, M) = 0, and so by [81, Lemma 2.1], we obtain:
0 = NKy(R,S, M) = K¢(R, S, M) ® xZ|x]. (4.4)
Theorem 53. The groups NKo(R) and NK;(R) are trivial.

Proof. As mentioned above, R/M and S/M are the fields of two and four elements respect-
ively. Consider the following commutative square, where the right-hand vertical morphism
is surjective:

R — S

| l

R/M —— S/M.

Now R/M, S/M and S are all regular rings, so their corresponding Nil groups vanish, and
it follows from the associated Mayer-Vietoris sequence that NKy(R) = 0. On the other hand,
using the fact that 0 = NK;(R/M) = NK;(S/M) = NK;(S) and the description of the double
relative group K;(R, S, M) given in [37, Theorem 1.1], we obtain the isomorphism:

NKi(R, S, M) =~ NK;(R).

It follows from this that NK;j(R) is trivial by (4.4). This completes the proof of the theorem.
[l

To prove Proposition 52, we will require some general properties of Nil groups.

Remark 54. We recall the following facts about the Nil groups NK; and Nil!¥ for all i e Z:

(a) if NK; (resp. Nil!") is non trivial, it is an infinitely-generated group [64, Theorem Al].
(b) if A — NK; (resp. A c NiliW ) is a finite subgroup then NK; (resp. NillW ) contains an
infinite direct sum of copies of A [64, Theorem B].

In what follows, if m € N, C;;, will denote the cyclic group of order m.

Proof of Proposition 52. We first consider the case i = 0. Let Qg be equipped with the follow-
ing presentation:

Qs = (x| X =y yxy ! = x*1>.
By [23, Theorem 50.31, p. 266], the group ring Z[ Qg| fits into the following Cartesian square:

Z[Qs] LZ[Cz x Co]
LEI lp (4.5)
R Fz [Cz X Cz],
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where g is defined on the generators of Qg by g(x) = i and g(y) = j, and f is induced by
the homomorphism Qg — C; x C; given by taking the quotient of Qg by its centre. The
Cartesian square (4.5) gives rise to the following Mayer-Vietoris sequence:

NK>(Z[Qs]) — NKz(R) ® NKy(Z[C x C]) —
NKz(Fz[CZ X C2])—>NK1(Z[Q8])—> M

(4.6)
By [61, Lemmas 5.3 and 5.4], [81, Theorem 1.3] and [82, Lemma 2.2], we have:
NK1 (Z[CZ X Cz]) = QFz[x] = Fz [x] dx, NKO(Z[C2 X Cz]) >V= XIFz [x]
NK; (FZ [Cz]) =~ (1 + xelfp [x]) = V, NKj (FZ [Cz]) =0
NKO (Fz [Cz X Cz]) =0. (47)

Since F5[Cy x Cp] = Fale, v]/(€%,v?), the ideal I = (g, v,ev) is nilpotent in F,[e, v], and it
follows that NKy(F2[Cy x C2]) = NKo(F2) = 0, which yields equation (4.7). In a similar
fashion, we have NKy(IF»[C>]) = 0. As Abelian groups, Q, and V are both countable infinite
direct sums of copies of Z;. As we saw in Theorem 53, the ring R has trivial Nil groups in
degrees 0 and 1. On the other hand, observe that [F;[C, x Cy]| = Fa[e, v]/ (¢2,v2), hence by [6,
Proposition 7.8] and [66, Theorem 3.3], we have:

NK;(F2[Cy x C]) = (1 4 xeFo[x])* x (1 + xvFa[x])* x (1 + xevFa[x])* = V3.
The Mayer-Vietoris sequence (4.6) thus reduces to:
NK2(Z[Qs]) — NK2(R) ® NKo(Z[Cz x C2]) — NKa(IF2[C x Ca]) ~
NKy(Z[Qs]) LY NK4 (Z[C; x Cal) 225 NE; (Fa[Ca x C]) — (4.8)
NKo(Z[Qs]) 2 NKo(Z[Cs x Co]) — 0
(the labelled homomorphisms are discussed below). The homomorphism
p«: NKi(Z[Cy x Co]) — NK; (F2[Cy x C3])

is trivial since Z[C, x C;] is reduced and NK;(FF2[Cy x Cp]) is Artinian [66, Theorem 3.3].
Thus the part of (4.8) involving NKy(Z[Qg]) is:

0 — NK; (F5[Cy % Cy]) — NKo(Z[Qs]) 225 NKo(Z[C, x Ca]) — 0.
Since both NK;j (F,[Cy x C3]) and NKy(Z[Cy x Cp]) are non-trivial infinite sums of copies of
Zy, it follows by exactness that NKy(Z[Qg]) is an infinite direct sum of copies of Z,, Z4 or
Zp®Zy.
We now turn to the case i = 1. Consider the following homomorphism:

fe1: NK1(Z[Qs]) — NK{(Z[Ca x Ca]).

Exactness of the sequence (4.8) and the fact that p, is the trivial homomorphism imply
that f,; is a surjection. On the other hand, since once more both NK;(F[Cy x Cp]) and
NK;1(Z|Cy x C3]) are infinite direct sum of copies of Z,, the latter by [2, Theorem 1.2], the
result follows as before. O]
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In order to complete the proof of Theorem 1, it remains to determine the twisted Nil
groups of Qg. Recall from Section 3.2 that up to isomorphism, there are two non-trivial
semi-direct products of the form Qg x Z, namely Qg x; Z, where j € {2,3}. In what follows,
we shall use the notation NK} (Z[Qs]) = NK;(Z[Qs], «).

Proposition 55. Let i € {0,1}.
(a) For the action « of Z on Qg of order 3,

NK4(Z[Qs]) = NK¥ ' (Z[Qs]) = NKi(Z[Qs)). 4.9)

(b) For the action « of Z on Qg of order 2, the twisted Nil groups are isomorphic to infinitely many
copies of Zp, Ly or Lo @ Zy.

Proof.

(a) Since the action of Z on Qg is of order three, there is a surjective homomorphism ¢: Qg x3
Z —» Qg x Zz =~ T* defined by taking the Z-factor modulo 3. We use the technique of in-
duction on hyper-elementary subgroups [32, proof of Theorem 3.2] that asserts that:

NKI(Z[Qs %3 Z)) = Jim NKi(Zlg™'(H))),

where Hyp denotes the set of hyper-elementary subgroups of Qg x Z3, and the limit is with
respect to the morphisms induced by conjugation and inclusion in the category Hyp. Fol-
lowing the proof of Proposition 18, we see that the hyper-elementary subgroups of Qg x Z3
are isomorphic to one of Z¢, Z3, Zy, Z4 or Qg, and their inverse images by ¢ are isomorphic to
Ly x 1,7, 2y x 1,724 x Z and Qg x Z respectively. With the exception of the last two, the cor-
responding group rings of these groups have trivial Nil groups. Further, the subgroups of
Qg x3 Z that are isomorphic to Z4 x Z are pairwise conjugate, and there is only one maximal
element of the form Qg x Z in the limit. We thus obtain equation (4.9) using Proposition 52.
(b) Consider the action « of Z on Qg of order 2 given by exchanging the generators x and
y of Qg. Comparing with the Cartesian square (4.5), we observe that this action may be
transposed in all the rings of (4.5), thus giving rise to the following Cartesian square of
twisted polynomial rings:

Z[Qslalt] —L— Z[Cy x Colalf]

N |

Ru[t]  —— Fa[Co x Cala[t],
where the induced action of « exchanges the generators in all group rings, and exchanges i
and jin R. By [31, Theorem 1.6], the Farrell-Hsiang group NK; of R also vanishes fors = 0, 1.
Moreover, let I = (¢, v) be the nilpotent ideal generated by & and v in F,[Cy x CpJa[t] =
Fole, v]a[t] since Fale, v]x[t]/I = F,. By an argument similar to that given in the proof of
Proposition 52, it follows that NKj(F2[C, x Cz]) = 0. Hence we obtain the following long
exact sequence:

NK3(Z[Qs]) — NK§(R) @ NK3(Z[Cy x C3]) — NK3(F5[Ca x C]) -

NK$(Z[Qs]) — NK3(Z[Cy x C,]) 25 NK§(Fo[Ca x Ca]) —> (4.10)
NK{(Z[Qs]) — NKG(Z[C2 x Co]) — 0.
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We first study the groups K§(S[Cz x C3]). Let G be the amalgamated product defined
as follows. Consider the non-trivial semi-direct products G; = C4 x C; and Gy = C4 x Cy,
where the cyclic groups of order four are generated by 2 € G; and b € Gy, and the cyclic
groups of order 2 are generated by x € G; and y € G,. Let D; be the group C; x C; generated
by u and v, let Dy — Gy be the inclusion given by u — a%, v —> x,and let Dy —> G, be
the inclusion given by u — y and v — b%. Then the amalgamated product G; sp, G is a
virtually cyclic group. By [24], the Farrell-Hsiang Nil groups K7 (S[C; x C;]) are isomorphic
to the corresponding Waldhausen Nil groups:

Nil}¥ (S[Da] : S[G1\D2], S[G2\D2])

for all s € Z and all rings S.

Now, for the rings S = Z or [F,, these Waldhausen Nil groups are isomorphic to infinite
direct sums of copies of Z,. For S = Z and ¢ = 0, 1, see [61, Theorem 5.2] and [5, Section 7.2].
Hence K7 (S[Cy x C2]) is isomorphic to an infinite direct sum of copies of Z, for £ = 0,1,2
and for S = Z or [F;. From the exact sequence (4.10), for ¢ = 0,1, NKj(Z[Qg]) fits into an
exact sequence of the form:

0 — Agy1 — NKj(Z[Qs]) — By — 0,

where both Ay, 1 and By are isomorphic to infinite direct sums of copies of Z,. The result
follows using Remark 54. O

Summing up, Propositions 52 and 55 give rise to the Nil; summands of equation (4.2),
and the decompositions of the statement of Theorem 1 then follow.



Appendix A

The fibred isomorphism conjecture

The setup

Let S: TOP — Q-SPECTRA be a covariant homotopy functor. Let F be the category of con-
tinuous surjective maps: objects in F are continuous surjective maps p: E — B, where E, B
are objects in TOP, and morphisms between pairs of maps p1: E; — By and p2: E; — B>
consist of continuous maps f: E; — E; and g: B; — B, that make the following diagram
commute:

ElL’Ez

pq pzl (A1)

B, —% B,.

Within this framework, Quinn constructed a functor between F and ()-SPECTRA [71]. The
value of this ()-spectrum at the object (p: E — B) is denoted by H(B; S(p)), and the value
at the object (E — #) is S(E). The map of spectra A: H(By; S(p1)) — H(By; S(p2)) associ-
ated to the commutative diagram (A1) is known as the Quinn assembly map. Other ingredi-
ents for the fibred isomorphism conjecture may be found in [33].

The conjecture

Given a discrete group I, let EycI’ be a universal I'-space for the family of virtually cyclic
subgroups of I', let ByI" denote the orbit space EycI'/T, and let X be a space on which I acts
freely and properly discontinuously. If (f, g) is the following morphism in F:

Eyel xr X —L— X/T
| |
Byel  ——
then the Fibred Isomorphism Conjecture for the functor S and the group I is the assertion that

Az H(Bycl; S(p1)) — S(X/T)

61
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is a homotopy equivalence, and hence the induced map
Ay 70 (H(Byel; S(p1)) — 7ma(S(X/T))

is an isomorphism for all n € Z. This conjecture was stated in [33] for the functors S = P, (),
K(-) and L%, the pseudoisotopy, algebraic K-theory and £~ *-theory functors respectively.
In this paper, we use the functor S = K.(-). The validity of this conjecture for K-theory and
braid groups of S? is proved in [57]. Other cases in which the conjecture holds may be found
in [80].



Appendix B
Braid groups

In this appendix, we recall briefly some basic facts and results about braid groups for the
convenience of the reader. More information about braid groups may be found in [12, 13,
49, 52]. We refer the reader to [51] for a recent survey on surface braid groups.

If n > 1, the n-string Artin braid group, denoted B,, may be defined by the following
presentation [4]:

generators: oy,...,0,_1 (known as the Artin generators).
relations: (known as the Artin relations)

Lj<n-—1 (B.1)

;0 = ojo; if [i — j| = 2and 1
1<i<n—2. (B.2)

<
0i0i110; = 031100341 forall 1 <

The generator ¢; may be regarded geometrically as the braid with a single positive crossing
of the it string with the (i + 1)*¢ string, while all other strings remain vertical (see Figure B.1).
It is convenient to view a geometric braid as being a collection of pairwise-disjoint arcs (or
strings) in the Cartesian product D? x [0,1], where D? is the 2-disc, and each string joins
two points of the form (x,0) to (y,1), where x and y belong to a set X of n distinguished
basepoints lying in the interior of D?. The group operation in B, corresponds to concatena-
tion of these geometric braids. The group B is trivial, B; is infinite cyclic generated by o7,
and for all n > 2, By, is infinite. For all n € N, B, is torsion free [26]. The map ¢: B, — Sy

i—1ii+1i+2 n i—1ii+1i+2 n

\\ \/

Figure B.1: The braid ¢; and its inverse.

defined on the generators by o(c;) = (i,i+1) forall 1 < i < n —1 may be seen to be a
surjective homomorphism. Its kernel, denoted by P, is known as the n-string pure Artin
braid group. Thus a braid B € B, is pure if for all x € X, there is a string of B that joins (x, 0)

63
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to (x,1). The ‘half twist’ braid A, is defined by:

Using the braid relations, one may check that the square A2 of A,, known as the “full twist’
braid is given by:
A% = (01 04-1)" € By. (B.3)

The braids A, and A? are illustrated in Figure B.2(a) and (b) in the case n = 6. One may
check that A? is a pure braid. If n > 3, Z(B,,) = Z(P,) = (A3), where Z(G) denotes the centre

of the group G [18]. The Artin pure braid group is generated by the set {Ai/j}l <i<j<n [52,
1)) 1))
LS JJ LS S
<£44 Y,
[/ oY,
J (LS
( S JJ
0T
(a) The half twist braid Ag of Bg. (b) The full twist braid A2 of Bg.
Figure B.2: The braids Ag and A% of Bg.
Lemma 1.4.2], where:
Ai’]' =0j_1" '0'i+10'i20'l-111 - -0']:11. (B.4)

Geometrically, A; ; may be represented by a braid all of whose strings are vertical, with the
exception of the j string that wraps around the it string as in Figure B.3. In particular, for

1 i—1 i j j+1 n

7

Figure B.3: The element A; ; of B;,.

alli = 1,...,n—-1, Ai,i+1 = 0'12.
The Artin braid groups admit many different generalisations, one being that of surface
braid groups. If M is a surface, orientable or not, with or without boundary, and with a
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finite number (possibly zero) of punctures, the n-string braid group B, (M) may be defined
geometrically simply by replacing D? by M. The subgroup P,,(M) of n-string pure braids is
defined in a manner similar to that for P,. A number of presentations of B, (M) and P,(M)
may be found in the literature, see [8, 39, 48] for example.

Braid groups may also defined topologically in terms of configuration spaces as follows.
Let F,(M) denote the n'" configuration space of M defined by:

Fu(M) = {(p1,.-.,pn) e M" | p; # pjforalli,je{1,...,n},i+#j}.

We equip F, (M) with the topology induced by the product topology on M". A transversality
argument shows that F,(M) is a connected 2n-dimensional open manifold. There is a nat-
ural free action of the symmetric group S, on F,(M) given by permutation of coordinates.
The resulting orbit space F,(M)/S,, shall be denoted by D,,(M), the n*" permuted configuration
space of M, and may be thought of as the configuration space of n unordered points. The asso-
ciated canonical projection p: F,(M) — D, (M) is thus a regular n!-fold covering map [52,
p- 14]. Fox and Neuwirth showed that P,(M) = 7r1(F,(M)) and B,(M) = r1(D,(M)) [36]. If
n = 1then F;(M) = M, and thus B;(M) = P;(M) = m1(M), so braid groups generalise the
notion of fundamental group. The map p gives rise to the following short exact sequence:

1 —> Py(M) —> B,(M) 25 5, — 1. (B.5)

In the case where M is the disc, p. is the surjective homomorphism ¢ described on page 63.

This topological definition is very useful in practice, and may be used as follows to
obtain fibrations involving the configurations spaces, and (short) exact sequences bring-
ing into play the homotopy groups of these spaces. Suppose that M is a surface with
empty boundary, and let m > n > 1. Then the map pmn: Fn(M) — F,(M) given by
Pmn(X1,. ., Xm) = (x1,...,%,) that forgets the last m — n coordinates is a locally-trivial
fibration, known as the Fadell-Neuwirth fibration, with fibre F,,_,(M\{z1,...,2z,}), where
(z1,...,2n) is a basepoint of F,(M) [29]. The fibre is known to be an Eilenberg—-Mac Lane
space of type K(7,1). Taking the long exact sequence in homotopy of the fibration, and
using Fox and Neuwirth’s isomorphisms mentioned above, we obtain the Fadell-Neuwirth
short exact sequence of surface pure braid groups:

1 — 1 (Fyn(M\ {21, . ., z0})) —> Pu(M) 22225, p (M) — 1. (B.6)

The homomorphism (py,» )« induced by the map ps, » may be visualised geometrically as the
map that ‘forgets’ the last m — n strings of a braid in P,,(M). Due to the fact that the higher
homotopy groups of the braid groups of S? and RP? are non trivial, in order to obtain the
short exact sequence (B.6) for these two surfaces, we need to suppose additionally thatn > 3
(resp. n < 2). In particular, if m = n + 1, then (B.6) becomes:

1 — 70 (M\ {21, ., Zn}) — Pya (M) L% by 1. (B.7)

The braid groups of S? and RP? are of particular interest, partly because they are the
only surface braid groups to possess torsion, and as we explained in the introduction, the
methods of [3, 35] cannot be applied to study their lower algebraic K-theory. The isomorph-
ism classes of the maximal finite subgroups of B,,(S?) are given in Theorem 2. An analogous
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result for the braid groups of RP? may be found in [46]. The braid groups of the sphere were
initially studied by Fadell, Van Buskirk and Gillette [30, 38, 76]. A presentation of B, (S?)
due to the first two of these authors is given in Theorem 34. From a geometric point of view,
the space S? x [0, 1] in which geometric braids of the sphere are defined may be visualised as
that between two concentric spheres (see [52, pp. 41, 42 and 45] or [69, Figure 2.1(c), p. 193]
for example), and the geometric representation of the generators of that presentation is as
in Figure B.1. Using such figures, the reader may convince himself or herself of the validity
of the relations given in Theorem 34, in particular the ‘surface relation’ (3.1). Other prop-
erties of B4(S?) that we use in this manuscript are given in Section 3.1. The full twist braid
A? also plays an important role in B,(S?). If n > 3, it is the unique element of B,(S?) of
order 2, it is the unique non-trivial torsion element of Py (Sz), and it generates the centre of
B, (S?) [38, 40]. The pure braid group P4(S?) is generated by the set {Airf}1 cicjet’ where in
terms of the generators ¢y, 0> and o3 of B4(S?), A is given by (B.4), and its geometric rep-
resentation within S? x [0, 1] is as in Figure B.3. If m > 1, a presentation of P,,(S?) may be
obtained using techniques similar to those of [41, Proposition 7]. Note that if one takes n = 0

in that proposition, one does indeed obtain a presentation of Py, (S?) whose generating set is
{Ai/]'}l <i<j<m’ and whose relations are given by those of [52, Lemma 1.4.2] for P, and by the

‘surface relations’ that are of the form:

j—1 m
(H Ai,]-) < ] A],k> =1 (B.8)
i=1

k=j+1

foralll <j < m.
Taking M = S? and n = 3 in (B.7) yields:

1 —> m(S2\ {z1,22,275)) — Pa(S?) 2% py(s?) — 1. (B9)

The kernel is a free group of rank 2 that may be identified with the subgroup of Py(S?)
generated by (A4, A4), and the quotient P5(S?) is equal to (A3), and is isomorphic to Z,.
The map s: P5(S?) — Py(S?) defined by s(A%) = A% is a homomorphism, and is a section
for (pa3). since removal of the last string of A2 in P4(S?) yields the braid A3 in P5(S?), i.e.
(pas)« (A7) = AZ. So the short exact sequence (B.9) splits, and since A% € Z(Py(S?)), it follows
that:

Py(S?) = Fy x Zo. (B.10)

From this, it follows also that Z(P4(S?)) = (A?).
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