Presence of Frambocythere Colin, 1980, (limnic ostracode) in the Maastrichtian of the Zagros Mountains, Iran: a newly recognized link between southern Europe and the Far East

Jean-Paul Colin, Hossein Vaziri-Moghaddam, Amrollah Safari, Samira Grai Shariari

To cite this version:

HAL Id: hal-00734233

https://hal.archives-ouvertes.fr/hal-00734233

Submitted on 21 Sep 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Presence of *Frambocythere* COLIN, 1980, (limnic ostracode) in the Maastrichtian of the Zagros Mountains, Iran: a newly recognized link between southern Europe and the Far East

Jean-Paul COLIN 1, 2

Hossein VAZIRI-MOGHADDAM 3

Amrollah SAFARI 3

Samira SHARJARI GRAI 3

Abstract: The limnic ostracode *Frambocythere tumiensis zagrosensis* subsp. nov. (Limnocytheridae, Timiriaseviinae), has been found for the first time in Iran. The strata containing this species are in the lower part of the Tarbur Formation in the interior Fars of the Zagros Mountains. The Late Maastrichtian age is indicated by rudists, larger foraminifers (*Omphalocyclus macroporus*, *Loftusia* spp.) and planktonic foraminifers (*Contusotruncana contusa-Racemiguembelina fructicosa* Zone) present in the upper part of the Tarbur Formation. The Maastrichtian age is confirmed by the occurrence in the same strata of the charophytes *Platychara shanii*, *Peckichara cristellata* and *Stephanochara cf. producta*. The genus *Frambocythere* COLIN, 1980, was until now known mostly from the Upper Maastrichtian to Middle Eocene of southern Europe, India and China, as well as the Albain of the Democratic Republic of Congo. The presence of *Frambocythere* gr. *tumiensis* in Iran is therefore a newly recognized link between southern Europe and the Far East (China).

Key Words: Limnic ostracodes; Upper Maastrichtian; Iran; Zagros; taxonomy; palaeobiogeography.

Mots-Clefs : Ostracodes limniques ; Maastrichtien supérieur ; Iran ; Zagros ; taxonomie ; paléobiogéographie.
1. Geological introduction

The Borujen area is located in the eastern Zagros Mountains, in the interior Fars, which were formed as a result of the closure of the Neotethyan Ocean during the Late Mesozoic and the Cenozoic (Fig. 1).

During the Maastrichtian, an active carbonate platform with numerous rudist build-ups appeared contemporaneous with sea-level change in the eastern part of the Neotethyan realm (Zagros region). This succession, called the Tarbur Formation, extends across the internal Fars and Lurestan and is formed mainly of siliciclastic rocks comprising shales, sandstones and polygenetic conglomerates, and some carbonate units with rudist lithosomes sometimes incorporating corals, other bivalves, gastropods and algae.

The name Tarbur Formation was proposed by James & Wynd (1965) for a series of limestones, rudist build-ups and shales overlying the Gurpi and Sachun formations. Although the Tarbur Formation was deemed to be a single formation by James & Wynd (1965) and was re-described as such by other authors (Kalantari, 1976; Vaziri Moghaddam et al., 2005) from SW Iran, it is represented by varied and complex rock associations. In its type locality in Tarbur village, southern Iran, this formation consists of limestones with larger foraminifers and rudist lithosomes.

In the study area, the Upper Cretaceous sedimentary succession is rather monotonous and consists exclusively of shallow-water carbonates and shales. The oldest sediments of the area crop out at Tang-e-khoshk, which consists of silty shales and thin-bedded limestones of the Lower Cretaceous Gadvan Formation. The studied section, with a thickness of about 1,100 m, is situated NW of the Semirum plain and S of Borujen. It consists of Upper Cretaceous sedimentary rocks, the Gurpi, Amiran and Tarbur formations.

The Gurpi Formation is composed of shales, calcareous shales and sandstones. It contains abundant planktonic microfossils of Santonian-Campanian age. Its lower contact with the Ilam Formation and its upper contact with the Amiran Formation are both gradational.

![Figure 1: Location map of the studied section, 48 km S of Borujen, Iran.](image)
The main lithology of the Amiran Formation is ophiolite-derived siliciclastic turbidite intercalated with siltstones, carbonate sandstones and shales. The grains include chert, quartz, volcanic and limestone rock fragments and radiolarians. The Amiran Formation is a thickening-upward sequence which contains fining-upward BOUMA cycles indicating deposition by turbidity currents. The formation is of Late Cretaceous age and its upper contact with the Tarbur Formation is gradual. The Amiran Formation is the result of tectonic sedimentary processes related to the Laramian geodynamic event (ALAVI, 2004).

The Tarbur Formation consists of limestones, shales and sandstones with a total thickness of about 920 m. These units generally show lateral changes in thickness, composition, density and facies. The limestones contain a rudist reef facies. The limestones are interbedded with siltstones, carbonate sandstones and shales. The grains include chert, quartz, volcanic and limestone rock fragments and radiolarians, which are important for dating. This layer proved rich in charophytes (RACINE et al., 1976, and OUMA, 2004).

The Tarbur Formation is overlain by the Shahbazan section, the Tarbur Formation is overlain this section, the Tarbur Formation is overlain with an erosional contact by the Shahbazan (Gerdbi sheh village (beside the Borujen-Lordegan road) about 48 km S of Borujen. In Spain. The genus is characterized by its small size (less than 0.600 mm), the presence of two antero-dorsal vertical sulci, ornamentation of small pustules ("raspberry-like"), and posterior conical spines. The right valve is generally larger than the left (inverse overlap) and sexual dimorphism is pronounced, with a strong posterior widening of the posterior half in females, forming a brood cavity. Some morphotypes (or subspecies?) can be completely smooth, as in Frambocythere cf. tumiensis ferreri (in BAPI- NOT, 1980) and Frambocythere tumiensis apleri (HELMDACH, 1978), or partly so, as in Frambocythere tumiensis ferreri COLIN, 1980 (COLIN, 1991).

In the studied level (Unit 2) the absence of stratigraphically important benthic foraminifer taxa (especially Orbitoides) precludes better stratigraphic resolution. Unit 2 is certainly Maastrichtian based on the presence of the charophytes Peckichara cristatella GRAMBST & GUTIÉRREZ, 1977, and Platychara (Chara) shanii (RAO & RAO, 1939) BATHIA & MANNIKERI, 1976, cf. Stephanochara producta LI, 1995 (identification E. MUSACCHIO and in VAFIZIR MOGHADDAM et al., 2010). For the first time in Iran, this level has yielded the non-marine ostracode Frambocythere tumiensis zagrosensis subsp. nov.

3. Taxonomy, biostratigraphy and palaeobiogeography of the genus Frambocythere

a. Taxonomy

Class Ostracoda LATREILLE, 1802
Subclass Podocopa SAS, 1866
Order Podocopida SAS, 1866
Suborder Cytherocopina BAIRD, 1850
Superfamily Cytheroidea BAIRD, 1850
Family Limnocytheridae KLE, 1938
Subfamily Timiriaseviinae MANDELSTAM, emend COLIN & DANIELOPOL, 1980

Genus Frambocythere COLIN, 1980

The genus Frambocythere was erected by COLIN (in COLIN & DANIELOPOL, 1980), with the type species Frambocythere tumiensis (HELM- DACHT, 1978), from the Upper Maastrichtian of Spain. The genus is characterized by its small size (less than 0.600 mm), the presence of two antero-dorsal vertical sulci, ornamentation of small pustules ("raspberry-like"), and posterior conical spines. The right valve is generally larger than the left (inverse overlap) and sexual dimorphism is pronounced, with a strong posterior widening of the posterior half in females, forming a brood cavity. Some morphotypes (or subspecies?) can be completely smooth, as in Frambocythere cf. tumiensis ferreri (in BAPI- NOT, 1980) and Frambocythere tumiensis apleri (HELMDACH, 1978), or partly so, as in Frambocythere tumiensis ferreri COLIN, 1980 (COLIN, 1991). Up to now, nine species and subspecies have been described and two tentatively assigned to known species (Appendix).
Plate 1: *Frambocythere tumiensis zagrosensis* nov. subsp.
1. Carapace, female, holotype, right lateral view (L = 0.47 mm);
2. Carapace, male, paratype, left lateral view (L = 0.45 mm);
3. Carapace, female, dorsal view (L = 0.47 mm);
4. Carapace, female, ventral view (L = 0.46 mm).
Frambocythere tumiensis zagrosensis subsp. nov.

(Pl. 1, figs. 1-4)

Derivatio nominis: From the Zagros Mountains, type area.

Holotype: Female carapace *(Pl. 1, fig. 1)* deposited in the collections of the Geology Department, Faculty of Science, University of Isfahan, Isfahan, Iran. **Paratypes:** four female carapaces deposited in the collections of the Geology Department, Faculty of Science, University of Isfahan, Isfahan, Iran.

ZooBank reference: urn:lsid:zoobank.org:act:70180DC1-2624-4505-943C-48D1B036A0FF

Type locality: 7 km SW of Gerdbisheh village (besides Borujen-Lordegan road) about 48 km S of Borujen. Lower part of the Tarbur Formation, Upper Maastrichtian.

Diagnosis: Rather elongate subspecies of *Frambocythere* with the characteristic "raspberry-type" pustulose ornamentation. Postero-ventral conical spines only on juveniles and males. Left valve smaller than right valve (inverse overlap).

Dimensions:

Holotype: L = 0.470 mm; h = 0.270 mm.

Paratypes: L = 0.430-0.470 mm; h = 0.240-0.270 mm.

Description: Female carapace sub-rectangular with dorsal and ventral margins more or less parallel. Ventral margin slightly convex. Dorsal margin straight in anterior half, slightly convex in posterior half. Anterior margin equally rounded and compressed. Postero-dorsal margin angular with marked posterior cardinal angle in males. Postero-ventral margin rounded. Two sub-parallel vertical sulci running from dorsal margin downwards, one at mid-length, one shorter in anterior quarter. Surface of valves ornamented with 'raspberry-type' micropustules. Females have no or only one conical postero-ventral spine, whereas males and juveniles have at least two spines *(Pl. 1, fig. 2)*. Right valve overlaps left. Males slightly smaller and with much less inflated posterior region.

Remarks: This subspecies differs from other subspecies of *Frambocythere tumiensis* by its more elongate carapace *(females L/h = 1.7-1.80)*, for example, compared with *Frambocythere tumiensis tumiensis* *(females L/h = 1.62-1.70)* and *Frambocythere tumiensis ferreri* *(females L/h = 1.64-1.77)*. It also differs from this last subspecies in that the surface of the valves is entirely pustulose and the postero-dorsal spine is absent. Two other subspecies described from the Upper Maastrichtian intertrappean beds of India, *Frambocythere tumiensis anjarensis* BHANDARI & COLIN, 1999, and *Frambocythere tumiensis lakshmiae* WHATLEY & BAIPAI, 2000, have more prominent papillae, as does the Early Paleocene subspecies from Belgium, *Frambocythere tumiensis ludi* TAMBARZEU, 1984.

Figure 2: View of the studied section, 48 km S of Borujen, Iran.
b. Biostratigraphy and palaeobiogeography

The earliest known species of *Frambocythere* is of Gondwanian origin. It has been reported in the Albian (Loia Formation) of the Democratic Republic of Congo as *Frambocythere pustulosa* (GREKOFF, 1957) and also from the Albo-Aptian of Chad (COLIN, 1993; COLIN & DÉPÊCHE, 1997).

Most other taxa of *Frambocythere* are subspecies of *Frambocythere tumiensis* (HELMDAC, 1978) from northern Spain and are of Late Maastrichtian age, but some subspecies extend into the Danian. Other species are known from the Upper Paleocene and the Lower Eocene as stated by COLIN (2011). From a palaeobiogeographic point of view, the distribution of the various subspecies of *Frambocythere tumiensis* during the Maastrichtian and earliest Danian is remarkable, as already stated by HELMDACH (1979). *Frambocythere tumiensis tumiensis* (HELMDAC, 1978), *Frambocythere tumiensis aepleri* (HELMDAC, 1978), and *Frambocythere tumiensis ferreri* COLIN, 1980, are present in southern Europe, i.e., north-eastern Spain and southern France (BABINOT, 1980; COLIN, 1991; BABINOT et al., 1996), and one subspecies, *Frambocythere tumiensis ludi* TAMBAEAE, 1984, is known from the lowermost Paleocene (Danian) of southern Belgium.

In northwestern India, two species have been described from the Upper Maastrichtian and Lower Paleocene: *Frambocythere tumiensis anjarensi* BHANDHARI & COLIN, 1999, and *Frambocythere tumiensis laskshamiae* WHATLEY & BAIPAJ, 2000 (BHANDHARI & COLIN, 1999; WHATLEY & BAIPAJ, 2000, 2005, 2006; WHATLEY et al., 2002; KELLER et al., 2009). The same year as HELMDACH (1978) described the Spanish species as *Bisulcocypris tumiensis*, in north-west China, YE (in HOU et al., 1978), named a species *Bisulcocypris fangiaensis* from the Upper Maastrichtian. Better SEM illustrations in HOU & GOU (2002) clearly show (COLIN, 2011) that the Chinese species is a subspecies of *Frambocythere tumiensis*, herein named *Frambocythere tumiensis fangiaehensis* (YE in HOU et al., 1978).

The presence of a new subspecies of *Frambocythere tumiensis* in the Maastrichtian of Iran is therefore a newly recognised link between southern Europe and the Far East (China). The extremely wide geographical distribution of this species is quite rare amongst fossil Cytherocopina since they very seldom have dessication-resistant eggs (KARANOVIC, 2012). However, MARTENS (1989) raised individuals belonging to the family Limnocytheridae from dried mud and SMITH & HORNE (2004) found a species of *Para-limnocythere* in a temporary pond confirming that limnocytherids have drought-resistant stages. There are also several living Cytherocopina that have very widespread distributions, e.g. *Cytherissa lacustris* (SARS, 1863), *Limnocythere*...
inopinata (BAIRD, 1843), Limnocythere stationis VÁRA, 1891, Leucocythere mirabilis (KAUFMAN, 1892), and Cyprideis torosa (JONES, 1850). Therefore there may be a strong relationship between desiccation-resistant eggs and wide distributions (R.J. SMITH personal communication; MARTENS et al. (2008) reported that 90% of freshwater ostracode species are restricted to one zoogeographical region. Half of these are Cypridoidea which have desiccation-resistant eggs. On the other hand, Darwinula stvensoni (BRADY & ROBERTSON, 1870), which does not have desiccation-resistant eggs, has a very wide geographical distribution. Birds are thought to be one of the most common means of passive dispersal (PROCTOR, 1964; SYWULA, 1990), especially for ostracodes that do not lay desiccation-resistant eggs such as most Cytherocopina. Other passive dispersal vectors are amphibians (SEIDEL, 1989), fishes (KORNICKER & SOHN, 1971), floating vegetation and stratospheric air currents (SOHN & KORNICKER, 1979). Some Cytherocopina which do not lay desiccation-resistant eggs may disperse in a torpid (dehydrated) state (HORNE, 1993).

The presence of Frambocythere in the Maastrichtian of India is more difficult to explain since the collision of India with Asia is dated 10 Ma years later, at about 55 Ma (ITCHISON et al., 2007). The most likely scenario is that Laurasian terrestrial taxa, including ostracodes, amphibians and vertebrates, entered India following a presumed terrestrial route as suggested by PRASAD & RAGE (1991), PRASAD & SAINI (2009) and RAGE (2003) (Fig. 4). This postulate is not accepted by WHATLEY & BAJPAI (2006) who, on the basis of freshwater ostra
code faunas, support the isolation of the Indian subcontinent during the Late Cretaceous and the "Out of India" hypothesis with respect to India’s zoogeographical relations with Africa and Laurasia.

Acknowledgements

We are indebted to the late Dr. E. MUSACCHIO (Comodoro Rivadavia, Argentina) for the identification of the charophytes, and the reviewers, M.C. CABRAL (Lisboa, Portugal) and R.J. SMITH (Shiga, Japan), and the editors, M. MOULADE (Nice, France) and S. CAREY (Ballarat, Australia), for their careful review and improvement of the text.

This paper was presented by the senior author in Tunis, on May 6th 2010, during the 23rd ROLF (RÉunion des Ostracodologistes de Langue Française), and later in Paris, on August 30th, during the 4th "French" Congress on Stratigraphy (STRATI2010), respectively organized by Dr. R. SAIID-BENZARTI and Prof. B. GRANIER, who are warmly acknowledged.

Bibliographic references

COLIN J.-P. (2011).- From light to darkness:
from Frambocythere COLIN, 1980 to Kova-
leskiella KLEIN, 1963 (Limnocytheridae, Timiriaseviinae).- Joannea Geologie und Paläontologie, Graz, Band 11, p. 44-47.
COLIN J.-P. & DANIELPOL D.L. (1980).- Sur la morphologie, la systématicque, la biogé-
ographie et l’évolution des ostracodes Timi-
riaseviinae (Limnocytheridae).- Paléobiologie continentale, Montpellier, vol. 11, n° 1, p. 1-52.
COLIN J.-P. & DÉPÈCHE F. (1997).- Faunes d’ostracodes lacustres des bassins intra-
cratoniques d’âge albo-aptien en Afrique de
coda (Limnocytheridae, Timiriaseviinae) in the Upper Maastrichtian of the Zagros Moun-
tains, Iran, a new relay between southern
Online at: http://www.univ-
brest.fr/geosciences/conference/ocs/index.p hp/CFSTRATI210/paper/view/133
GHEERBRANT E., CODREA V., HOSU A., SEN S., GUERNET C., DE LA PARENT DE BROIIN F. & RIVE-
HELMDACHT F.F. (1979).- Möglichkeiten der Verbreitung nichitmariner Ostrakodenpopula-
tionen und dern Auswirkung auf die Phyloge-
nie und die Stratigraphie.- Neues Jahrbuch für Geologie und Paläontologie Monatschrf, Stuttgart, Heft 6, p. 378-383.
HOU YOUTANG, HO Junde & YE Chunhui (1978).- The Cretaceous-Tertiary ostracods from the
marginal region of the Yangtze-Han River
Plain in Central Hubei.- Memoir of the Nan-
jing Institute of Geology and Paleontology, n° 9, p. 129-206 [in Chinese].
JAMES G.A. & WYND J.G. (1965).- Stratigraphic nomenclature of Iranian oil consortium
KALANTARI A. (1976).- Microbiobistratigraphy of the Sarvestan area, Southwestern Iran.- Na-
tional Iranian Oil Company, Tehran, n° 5, 130 p.
KARANOVIC I. (2012).- Recent freshwater ostraco-
MARTENS K. (1989).- Ovambocythere milani gen. n., spec. n. (Crustacea, Ostracoda), an Afri-
PRASAD G.V.R. & RAGE J.C. (1991).- A discoglos-
sid frog in the latest Cretaceous (Maastrich-
tian) of India. Further evidence for a ter-
PRASAD G.V.R. & SHANI A. (2009).- Late Creta-
PROCTOR V.W. (1964).- Viability of crustacean eggs recovered from ducks.- Ecology, Ithaca,
RAGE J.-C. (2003).- Relationships of the Malag-
sa fauna during the Late Cretaceous: northern or southern routes.- Acta Palaeon-
SEIDEL B. (1989).- Phoresis of Cyclocypris ovum

Appendix: Check-list of Frambocythere species

- Frambocythere pustulosa (Greoff., 1957): Albian, Loia Formation, Democratic Republic of Congo;
- Frambocythere tumiensis aepleri (Helm-Dach, 1978): Upper Maastrichtian of N Spain;
- Frambocythere tumiensis anjarenensis Bhandari & Colin, 1999: Upper Maastrichtian and Lower Danian of NW India;
- Frambocythere tumiensis fanghiensis (Ye, 1978), in Hou et al. (1978) and Hou & Gou (2002): Upper Maastrichtian of W China;
- Frambocythere tumiensis lakshmae Whatley & Bajpai, 2000: Upper Maastrichtian of NW India;
- Frambocythere tumiensis ludi Tambareau, 1984: Danian of Belgium;
- Frambocythere gr. ludi Tambareau, 1984, in Gheerbrant et al. (1999): Upper Palaeocene (Thanetian) or Lower Eocene (Ypresian) of Romania;
- Frambocythere tumiensis tumiensis (Helm-Dach, 1978): Upper Maastrichtian of N Spain and S France;
- Frambocythere tumiensis zagrosensis nov. sp. (this paper): Upper Maastrichtian of Zagros Mountains, Iran;
- Frambocythere gr. tumiensis (Helm-Dach, 1978), in Ducasse et al., 1985: Paleocene-Middle Eocene (Lutetian) of the Paris Basin, France;