
HAL Id: hal-00734057
https://hal.science/hal-00734057

Submitted on 20 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural Reconfiguration of Systems under Behavioral
Adaptation

Carlos Canal, Javier Cámara, Gwen Salaün

To cite this version:
Carlos Canal, Javier Cámara, Gwen Salaün. Structural Reconfiguration of Systems under Behavioral
Adaptation. Science of Computer Programming, 2012, 78 (1), pp.46-64. �hal-00734057�

https://hal.science/hal-00734057
https://hal.archives-ouvertes.fr

Structural Reconfiguration of Systems under Behavioral

Adaptation

Carlos Canala, Javier Cámarab, Gwen Salaünc

aDepartment of Computer Science, University of Málaga, Spain
bDepartment of Informatics Engineering, University of Coimbra, Portugal

cGrenoble INP, INRIA, France

Abstract

A major asset of modern systems is to dynamically reconfigure themselves
to cope with failures or component updates. Nevertheless, designing such sys-
tems with off-the-shelf components is hardly feasible: components are black-
boxes that can only interact with others on compatible interfaces. Part of the
problem is solved through Software Adaptation techniques, which compensate
mismatches between interfaces. Our approach aims at using results of Software
Adaptation in order to also provide reconfiguration capabilities to black-box
components.

This paper first formalizes a framework that unifies behavioral adaptation
and structural reconfiguration of components. This formalization is used for
statically detecting whether it is possible to reconfigure a system. In a second
part, we present five notions of reconfiguration: history-aware reconfiguration,
future-aware reconfiguration, property-compliant reconfiguration, one-way re-
configurability, and full reconfigurability. For each of these notions, its relevant
properties are presented, and they are illustrated on simple yet realistic exam-
ples.

Keywords: Components, dynamic reconfiguration, behavioral adaptation

1. Introduction

The success of Component-Based Software Development comes from creat-
ing complex systems by assembling smaller, simpler components. Nevertheless,
building systems based on off-the-shelf components is a difficult task because
these must communicate on compatible interfaces. The task becomes even more
difficult when the system needs to reconfigure because in that case components
must provide reconfiguration capabilities. Here, we understand by reconfigura-
tion the capacity of changing the component behavior and/or implementation

Email addresses: canal@lcc.uma.es (Carlos Canal), jcmoreno@dei.uc.pt (Javier
Cámara), gwen.salaun@inria.fr (Gwen Salaün)

Preprint submitted to Elsevier September 18, 2011

at runtime [17]. For example, we are interested in upgrading or substituting a
component by another one, adding new components to a running system, and
so on.

Components are black-box modules of software that come with specifications
of their interfaces. Therefore, we have no access to their source code, although
it is possible to use tool-assisted techniques to analyze the behavior of a com-
ponent assembly [5, 9]. Some applications of this analysis are used in Software
Adaptation [26] to work out behavioral mismatch among component interfaces.
In [20], an adaptation contract defines rules on how mismatch can be worked
out and a tool generates an adaptor that orchestrates the system’s execution
while compensating incompatibilities existing among interfaces.

On the contrary, there is little support to analyze whether a reconfiguration
preserves certain properties. Enabling system reconfiguration requires designers
to define (i) when a component can be reconfigured, (ii) which kind of reconfig-
uration is supported by the component, and (iii) which kind of properties are
hold by reconfiguration operations; for instance, ensuring that some parts of the
system can be reconfigured without system disruption. Our approach aims at
providing a formal framework that helps answering these questions.

There are several related approaches in the literature. For instance, SOFA
2.0 [9] proposes reconfiguration patterns in order to avoid uncontrolled recon-
figurations which lead to errors at runtime. This enables the addition and re-
moval of components at runtime, passing references to components, etc., under
predefined structural patterns. Several other more general approaches dealing
with distributed systems and software architectures [14, 15], graph transforma-
tion [1, 25] or metamodelling [13], also address reconfiguration issues. They will
be discussed in Section 6.

Our goal is to reconfigure components that have not been designed with
reconfiguration capabilities in mind. Moreover, we target reconfiguration of
components that may be involved in an ongoing execution without stopping the
system. This fits in a context where reconfiguration may be triggered at any
moment and a component must be substituted at runtime.

We build on the basis that components are provided with both signature and
behavioral interfaces, and their composition is described by means of an adap-
tation contract. The standard way for ensuring that a component can replace
another one is by means of a bisimulation equivalence [24]. Thus, substituting a
component requires finding a perfect match, and reconfiguration is usually lim-
ited to instances (or subtypes) of the same component. Instead, our approach
aims to exploit behavioral adaptation to further allow reconfiguration. That is,
we target reconfiguration scenarios in which both the former and the new com-
ponent need some adaptation in order to allow substitution. Thus, bisimulation
does not fit our purposes since the need for adaptation makes the components
to behave differently in the configurations being considered.

This paper is structured as follows: First, Section 2 provides some back-
ground that will be used throughout the paper. Next, Section 3 introduces a
client/server system that is used as running example through all the text. Then,

2

Section 4 provides the formal framework that unifies structural reconfiguration
and behavioral adaptation. In a second part, Section 5 contains the core of our
work. It presents five notions of reconfiguration compliance: (i) history-aware
reconfiguration, (ii) future-aware reconfiguration, (iii) property-compliant re-
configuration, (iv) one-way reconfigurability, and (v) full reconfigurability. This
section also presents proofs of properties of interest for each of the notions,
and several related algorithms. These notions of compliance induce different
reconfiguration scenarios that allow replacing a component by another one that
may present a completely different interface, while ensuring the preservation of
several interesting system properties. Each notion is illustrated on a simple yet
realistic example. Finally, Section 6 presents related work on reconfiguration
and behavioral adaptation, and Section 7 concludes this paper.

This article is a revised and extended version of our previous work presented
in [12]:

We propose a reconfiguration notion which preserves actions occurring in
the future (wrt. the moment when we apply the reconfiguration). We also
define a reconfiguration which is both history and future-compliant.

We propose a less restrictive notion of reconfigurability based on the ver-
ification of temporal properties

We give a formal characterization of all the reconfiguration notions, includ-
ing theorems proving properties of interest, and (when suitable) algorithms
for checking whether a reconfiguration satisfies a particular notion.

2. Background

This paper builds on our previous works on Software Adaptation, mainly [11,
10]. We recall in this section some of the concepts and definitions that are used
in this paper.

2.1. Component interfaces

We assume that component interfaces are described by a signature and a
protocol. The signature declares both the operations that the component pro-
vides, and those it requires from other components. A signature is represented
by a set of actions L, relative to the emission and reception of messages cor-
responding to operation calls. An action is a tuple (M ,D) where M is the
operation name, and D stands for the communication direction (! for emission,
and ? for reception).

On the other hand, the protocol represents the behavior of the component
i.e., the order in which the operations in the signature are performed. We model
the behavior of a component by means of a Labelled Transition System (LTS).
The transitions in the LTS encode the actions that a component may perform
in a given state.

3

Definition 1. [LTS]. A Labelled Transition System is a tuple �S , s0,L,→�
where S is the set of states, s0 ∈ S is the initial state, L is the set of actions, →
is the transition relation: → ⊆ S × L× S. We write s

α
−→ s � for (s, α, s �) ∈→.

The set L corresponds to the actions in the component’s signature. Thus,
we represent components just by the LTS that describe their behavior. Finally,
we avoid non-determinism in LTSs. That is, we assume that for any (s, α, s �) ∈
→, �s �� s.t . s �� �= s � and (s, α, s ��) ∈→.

We will use traces for representing both the state of a component and the
history of actions that it has performed up to a given point. Given an LTS
�S , s0,L,→�, a trace (usually denoted by σ, σ�, etc.) is a sequence �α0 . . . αn� of
actions from L. � represents the empty trace (� = ��). We assume an operation
of trace concatenation (written σ�σ�) defined in the usual way. We also assume
an operation of complementary of a trace σ or a set of traces R (written σ and
R, respectively), defined by complementing all the actions in the trace or the
set (i.e., replacing α! by α? and vice versa). Finally, we will say that two traces
σ and σ� are disjoint if they have no action in common, i.e., if the sets of actions
over which σ and σ� are defined are disjoint.

Then, we can define the traces of an LTS as the sequences of actions that
can be observed according to its transition relation and starting from its initial
state:

Definition 2. [Traces]. Let p = �S , s0,L,→� be an LTS. We define its traces
Σp = {�}

�

{σ | σ = α�σ� s.t . α ∈ L, (s0, α, s
�) ∈→, and σ� ∈ Σp� , where

p� = �S , s �,L,→� }.

The definition above considers the (possibly infinite) set of traces of an LTS,
including any partial trace that can be derived from it. In some situations, we
will be just interested in maximal traces, i.e., those which are not contained in
any other trace.

Definition 3. [Maximal Traces]. Let p be an LTS. We define its maximal
traces Σ∗

p = Σp \ {σ | σ ∈ Σp s.t . ∃σ�, σ� �= �, and σ�σ� ∈ Σp} where ‘ \’
stands for set subtraction.

Synchronization between a group of components, each one represented by
an LTS, is defined by means of their synchronous product.

Definition 4. [Synchronous Product]. The synchronous product of n LTS
pi = �Si , s0i ,Li ,→i�, i ∈ {1, . . . ,n}, is the LTS p1 || . . . || pn = �S , s0,L,→�
such that:

S = S1 × . . .× Sn ,

s0 = (s01 , . . . , s0n),

L = L1 ∪ { } × . . .× Ln ∪ { },

4

→ is defined as follows:
∀(s1, . . . , sn) ∈ S, ∀ i , j ∈ {1, . . . ,n}, i < j such that ∃(si , α, s

�
i) ∈→i

, ∃(sj , α, s
�
j) ∈→j , then

(x1, . . . , xn) ∈ S and ((s1, . . . , sn), (l1, . . . , ln), (x1, . . . , xn)) ∈→,

where ∀ k ∈ {1, . . . ,n}:











lk = α, xk = s �i if k = i

lk = α, xk = s �j if k = j

lk = , xk = sk otherwise

where the × operator stands for the cartesian product.
The states in the product correspond to tuples of states of the components

(called substates). For instance, a state (s1, . . . , sn) denotes that component
p1 is in state s1, . . . , component pn is in state sn . Initially all components
are in their initial state (i.e., s0i for pi), which means that the initial state
of the product is (s01 , . . . , s0n). The computation of the transitions expresses
that, given some composite state (s1, . . . , sn) in the product, there is some tran-
sition outgoing from this state iff there are two components, pi and pj , that
may perform from states si and sj in their LTS a complementary action (i.e.,
(si , α, s

�
i) ∈→i , (sj , α, s

�
j) ∈→j), one sending a message and the other one re-

ceiving it), while the other components do not perform any actions (denoted
). The resulting target state of the transition corresponds to its same source
state, except for the substates of components pi and pj , which are now s �i and
s �j , respectively. Transitions in the product are labelled with actions from the
components’ action sets (extended with), one from each component.

2.2. Adaptation contracts and adaptors

While building a new system by reusing existing components, behavioral
interfaces do not always fit one another, and these interoperability issues have
to be faced and worked out. Mismatch may be caused by different message
names, a message without counterpart (or with several ones) in the partner,
etc. The presence of mismatch results in a deadlocking execution of several
components [3, 11].

Adaptors can be automatically generated based on an abstract description
of how mismatch situations can be solved [11]. This is given by an adaptation
contract. The adaptation contract is specified by a set of correspondence vectors
(or vectors for short).

Definition 5. [Vector]. A correspondence vector for a set of components
{�Si , s0i ,Li ,→i�}i∈{1,...,n}, is a tuple �e1, . . . , en� with ei ∈ Li ∪ { }, meaning
that a component does not participate in a synchronization.

Vectors express correspondences between messages, like bindings between
ports or connectors in architectural descriptions. Each vector establishes a cor-
respondence among actions of the different components involved in the adapta-
tion. Each action appearing in one vector is executed by one component and the
overall result corresponds to a generalized synchronization (performed in several
consecutive steps) between all the components involved. A vector may involve

5

any number of components and does not require interactions to occur on the
same names of actions. Vectors also allow representing component actions that
have no counterpart. These actions will be mimicked when required, in order to
make the components in the system progress. This way, our adaptation model
can be applied to both closed and open systems.

Definition 6. [Adaptation Contract]. An adaptation contract for a set of
components {�Si , s0i ,Li ,→i�}i∈{1,...,n}, is a set of correspondence vectors de-
fined over the action sets Li of these components.

From a set of LTS P = {p1, . . . , pn} representing a number of components
we want to adapt to each other, and an adaptation contract AC, we can build an
adaptor AP (see Algorithms 1 and 3 in [11] for details) that solves the interac-
tion mismatch among the components, taking into account the correspondences
between actions described in the adaptation contract.

The adaptor is given by an LTS which, put into a non deadlock-free sys-
tem, renders it deadlock-free [11]. The behavior of the adapted system is given
by the synchronous product of the adaptor and the LTS of the components
(AP || p1 || . . . || pn). In order to avoid any direct synchronization between
the components being adapted, we assume that the sets of actions L1, . . . ,Ln

of these components are disjoint. In order to guarantee this, for any compo-
nent pi in P we prefix its action names with the name of the component (e.g.
pi : α!, pi : β?). This way, all the messages exchanged will pass through the
adaptor, which can be seen as a coordinator or component-in-the-middle for the
components being adapted.

Example. Let us consider two components, C1 and C2. A vector
v = �C1 : on!, C2 : activate?� denotes that the action on! performed by
component C1 corresponds to action activate? performed by component C2.
✷

on!

activate!

on?

C1 Adaptor

activate?

C2

on! on? activate!

activate?

Figure 1: Components C1 and C2 connected through an adaptor.

The adaptor synchronizes with components using the same name of actions
but the reversed directions, e.g., in Fig. 1 we may observe the communication
between on! in C1 and on? in the adaptor. Furthermore, when a vector includes
more than one action, the adaptor always starts the set of interactions formalized
in the vector with the receptions (which correspond to emissions on component
interfaces), and next handles the emissions.

6

3. Running Example

This section presents the running example used in the following sections.
It consists of a client/server system in which the server may be substituted by
an alternative server component. This can be needed in case of server failure,
or simply for a change in the client’s context or network connection that made
unreachable the original server. We assume that none of the components have
been designed with reconfiguration capabilities.

The client wants to buy books and magazines as shown in its behavioral
interface in Fig. 2(a). The two servers A and B have behavioral interfaces
depicted in Figs. 2(c) and 3(b) respectively. Server A can sell only one book; on
the other hand, server B can sell any number of books and magazines, eventually
disconnecting.

Initially, the client is connected to server A; we shall call this configuration
cA. The correspondence between actions on the client and the server is given
by an adaptation contract ACC ,A (see Fig. 2(b)). Under configuration cA the
client is able to buy at most one book, but it is not allowed to buy magazines
because this is not supported by server A. The latter is implicitly defined in
the adaptation contract (Fig. 2(b)) as there is no vector allowing the client to
perform the action buyMagazine!. Finally, server A does not send the acknowl-
edgement ack? (see v4 in Fig. 2(b)) expected by the client; this must also be
worked out by the adaptor.

In an alternative configuration cB the client is connected to server B whose
protocol is depicted in Fig. 3(b). Similarly, the correspondence between actions
is given by ACC ,B (see Fig. 3(a)). Under configuration cB , the client can buy a
number of books and magazines. In Fig. 3(a), we see that vector v5 allows the
client to buy magazines. Moreover, server B sends a different acknowledgment
for each product (see v4 and v6 in Fig. 3(a)).

We shall study reconfiguration from cA to cB which substitutes A by B .
It is worth noting that A and B do not have the same behavioral interfaces.
Not only B provides additional functionality wrt. A, but also B does not have
the same names for the actions (and potentially the ordering of actions may be
different as well). For instance, v1 of ACC ,A (see Fig. 2(b)) says that the login!
action of the client relates to user? of server A. On the other hand, this login!
action must be related to connect? of server B (see v1 of ACC ,B in Fig. 3(a)).

Following the methodology for behavioral adaptation presented in [11], adap-
tors LTS can be automatically generated for configurations cA and cB (see adap-
tors AC ,A and AC ,B in Fig. 4). This is done by the Compositor tool [16]. Based
on the adaptation contracts, Compositor automatically generates an adaptor for
each configuration. Each adaptor is guaranteed by construction to orchestrate
deadlock-free interactions between the client and the corresponding server, and
also to fulfill the correspondences of actions described in the adaptation contract
of each configuration.

7

0

4

1

LOGIN !

2

PASSWD !

LOGOUT !

3

BUYBOOK ! BUYMAGAZINE ! ACK ?

(a) LTS of Client C

v1 = �C : login!,A : user?�
v2 = �C : passwd!,A : passwd?�
v3 = �C : buyBook !,A : buy?�
v4 = �C : ack?,A : ��
v5 = �C : logout!,A : disconnect?�

(b) Adaptation Contract ACC ,A

0

4

1

USER ?

2

PASSWD ?

DISCONNECT ? 3

BUY ?

DISCONNECT ?

(c) LTS of Server A

Figure 2: Configuration cA.

4. Formal Model

This section provides the formal model that enables both reconfiguration
and behavioral adaptation. We first define a configuration as a set of compo-
nents interacting by means of an adaptor, and then reconfiguration contracts are
introduced in order to determine how a system may evolve in terms of structural
changes.

4.1. Configurations

A system architecture consists of a finite number of components. The ar-
chitecture may present different configurations. Each configuration consists of
a subset of these components connected together by means of an adaptor.

Definition 7. [Configuration]. A configuration of an architecture is a tuple
�P ,AC,AP �, where P = {p1, . . . , pn} is a subset of the components of the archi-
tecture. Each component pi ∈ P is represented by an LTS �Si , s0i ,Li ,→i�. AC

8

v1 = �C : login!,B : connect?�
v2 = �C : passwd!,B : pwd?�
v3 = �C : buyBook !,B : buyBook?�
v4 = �C : ack?,B : bookOk !�
v5 = �C : buyMagazine!,B : buyMagazine?�
v6 = �C : ack?,B : magazineOk !�
v7 = �C : logout!,B : disconnect?�

(a) Adaptation Contract ACC ,B

0

5

1

CONNECT ?

2

PWD ?

DISCONNECT ?

3

BUYBOOK ?

4

BUYMAGAZINE ?BOOKOK ! MAGAZINEOK !

(b) LTS of Server B

Figure 3: Configuration cB .

is an adaptation contract for the components in P, AP = �SA, s0A ,LA,→A� is
an adaptor, generated from AC and P by means of Algorithms 1 or 3 in [11].
A configuration �P ,AC,AP � is characterized by an LTS c = �Sc , s0c ,Lc ,→c�
obtained by computing the synchronous product of all the components pi ∈ P
and the adaptor AP , i.e., c = AP || p1 || . . . || pn .

Let us now focus on the traces of such a configuration. From Definition 4,
the actions of c are of the form (αAP

, α1, . . . , αn), where αAP
is an action from

the adaptor AP , and each αi (i = 1, . . . ,n) is an action from Li ∪{ }. However,
as the adaptor orchestrates the interaction between the components in a config-
uration, and any communication passes through it (we may recall that all the
action sets Li of the components are disjoint), each action of the configuration
will consist on a synchronization between the adaptor AP and exactly one of
the components in P , i.e., ∃!αi (i = 1, . . . ,n) such that αi �= { } and αi = αAP

.
Hence, we will only pay attention to the (complemented) actions of the adaptor
for representing the traces of a configuration.

Definition 8. [Traces of a configuration]. Let �P ,AC,AP � be a configura-
tion. Let c = �Sc , s0c ,Lc ,→c� be the LTS characterizing it. We define its traces
Σc = {�}

�

{σ | σ = α�σ� s.t . ∃(s0c , (ᾱ, . . . , α, . . .), s
�) ∈→c and σ� ∈ Σc�},

where α stands for the complementary action of α (i.e., α? for α! and vice
versa), and c� = �Sc , s

�,Lc ,→c�.

Given a configuration �P ,AC,AP �, the LTS c characterizing it, and a trace

9

0

f

1

C:LOGIN ?

2

A:USER !

3

C:PASSWD ?

4

A:PASSWD !

5

C:BUYBOOK ?

8

C:LOGOUT ?6

A:BUY !

7

C:ACK !

C:LOGOUT ?

A:DISCONNECT !

(a) Adaptor AC ,A

0

12

1

C:LOGIN ?

2

B:CONNECT !

3

C:PASSWD ?

4

B:PWD !

5

C:BUYBOOK ?

6

C:BUYMAGAZINE ?

7

C:LOGOUT ?

8

B:BUYBOOK !

9

B:BUYMAGAZINE !

11

B:BOOKOK ?

C:ACK !

10

B:MAGAZINEOK ?

C:ACK !

B:DISCONNECT !

(b) Adaptor AC ,B

Figure 4: Adaptors for configurations cA and cB .

σ ∈ Σc , we can derive the actions performed in σ by each of the components
p ∈ P in the configuration. For that we have to project σ over the actions of p.

Definition 9. [Projection]. Let σ be a trace of a certain configuration. Let
p = �S , s0,L,→� be a component in that configuration. The projection of σ over
p (denoted σ ↓p) is defined as:

� ↓p= �

(α�σ�) ↓p=

�

α�σ� ↓p if α ∈ L
σ� ↓p if α �∈ L

The definition of projection can be extended to a set of traces {σi}I . We
write {σi}I ↓p for {σi ↓p}I .

We will also need an operator over traces that hides the actions performed
by a given component, leaving intact the rest of the actions in the trace.

Definition 10. [Hiding]. Let σ be a trace of a certain configuration. Let
p = �S , s0,L,→� be a component in that configuration. The hiding of p in σ

(denoted σ\p) is defined as:

10

�\p = �

(α�σ�)\p =

�

α�σ� \p if α �∈ L
σ� \p if α ∈ L

From the definitions of projection and hiding above, some properties can
be trivially inferred. In particular, we will use the following in the sequel:
(σ�σ�) ↓p= σ ↓p�σ� ↓p , (σ�σ�)\p = σ\p �σ�\p , and if p �= p� (and thus
Lp ∩ Lp� = ∅) then (σ\p) ↓p�= σ ↓p� .

Finally, we will also make use of an operator for trace interleaving:

Definition 11. [Trace Interleaving]. Let σ and σ� be two traces. Their
interleaving is defined as follows:

σ || σ� =



















{σ} if σ� = �

{σ�} if σ = �

{ σ1 | σ1 = α�(σtail || σ
�) }

�

{ σ2 | σ2 = α��(σ || σ�
tail) }

with σ = α�σtail and σ� = α��σ�
tail , otherwise

Interleaving can be generalized to a set of traces {σi}I . In that case we write
|| {σi}I .

Lemma 12. Let {pi = �Si , s0i ,Li ,→i�}P pi ∈ P be a set of LTS whose actions
are disjoint (i.e., ∀ pi , pj ∈ P (pi �= pj),Li ∩ Lj = ∅). Let {σpi

}P pi ∈ P a set
of traces such that each σpi

∈ Σpi
. Then for any trace σ ∈|| {σpi

}P pi ∈ P, we
have that ∀ pi ∈ P , σ ↓pi

= σpi
.

Proof. Since ∀ pi , pj ∈ P (pi �= pj),Li ∩ Lj = ∅, it can be easily derived from
Definitions 9 and 11. ✷

4.2. Reconfiguration contracts

Replacing a configuration by another one is what we call a reconfigura-
tion. Reconfigurations are specified in a reconfiguration contract which sepa-
rates reconfiguration concerns from the business logic. Each configuration can
be thought of as a static view of the architecture, while its dynamic view is
specified by a reconfiguration contract.

Definition 13. [Reconfiguration Contract]. Let C be the set of con-
figurations of an architecture. Let {�Si , s0i ,Li ,→i�}C , i ∈ C be the set of
LTS characterizing the configurations in C. Let S =

�

C Si . A reconfigura-
tion contract R is a tuple �C, c0,→R� where c0 ∈ C is the initial configura-
tion, and →R⊆ C × S × C × S is a set of reconfiguration operations, where
ci :si → cj :sj ∈ R implies ci , cj ∈ C, si ∈ Si , and sj ∈ Sj—the states of the LTS
characterizing ci and cj respectively. A reconfiguration operation ci :si → cj :sj
indicates that the architecture can be reconfigured from state si in ci—which is
called the source reconfiguration state—to state sj in cj —which is called the
target reconfiguration state.

11

Reconfiguration can take place in the middle of the execution of a config-
uration, and the new configuration may use a different adaptation contract.
This allows the replacement of a component by another one that implements a
different behavioral interface. The source reconfiguration state si defines when
a configuration ci can be reconfigured. On the other hand, the target recon-
figuration state sj indicates the starting state in the target configuration cj to
resume the execution. We will assume for the time being, that source and tar-
get reconfiguration states are known. In Section 5, we show how they can be
obtained.

Example. In our running example, there are two configurations, cA and cB ,
where cA = �{C ,A},ACC ,A,AC ,A� and cB = �{C ,B},ACC ,B ,AC ,B �. The
reconfiguration contract R = �{cA, cB}, cA,→R� must indicate the reconfig-
uration states in which reconfiguration can be performed. However, as the
servers A and B have different behavioral interfaces, it is not straight-forward
to determine how reconfiguration can take place after the interaction between
the client C and the server A has started. Therefore, the simplest reconfig-
uration scenario from cA to cB is defined at the initial states of the client
and the server A. This is specified as a unique reconfiguration operation
(AC ,A : s0,C : s0,A : s0) → (AC ,B : s0,C : s0,B : s0). In Section 5 we will
study how other pairs of reconfiguration states—apart from the initial state
here—can be obtained. ✷

5. Contract-Aware Reconfiguration

In the preceding section, we have shown that systems can be reconfigured at
the initial stage of their execution. Nevertheless, there are more interesting sce-
narios in which reconfiguration can take place. In this Section, we will introduce
several notions of reconfiguration compliance, and prove some of their proper-
ties of interest. We will also show how to determine the reconfiguration states,
and the actions that must be performed for achieving reconfiguration. To that
purpose, Section 5.1 defines a notion of compliance that determines whether
it is possible to reconfigure an architecture at an arbitrary stage paying atten-
tion to the interactions that took place in the system prior to reconfiguration.
Section 5.2 explores how to define a reconfiguration compliance that is aware
of future actions in the source configuration. Section 5.3 presents the less re-
strictive notion of property-compliant reconfiguration, which allows fine-grained
control over the specification of the behavior that the architecture must preserve
after reconfiguration, specified using temporal logic. Section 5.4 combines both
history and future-aware reconfiguration, resulting in a definition of the condi-
tions for one-way reconfigurability, from the source to the target configuration.
Finally, Section 5.5 studies how to design a fully reconfigurable system architec-
ture in which reconfiguration can take place back and forth between different
configurations.

12

5.1. History-Aware Reconfiguration

First, we define the conditions for performing reconfiguration being aware of
the previous history of the architecture. We call it history-aware reconfiguration.

Let c = �P ,AC,Ac� and c� = �P �,AC�,Ac�� be two configurations of a given
architecture. Suppose that c and c� differ in that a certain component pi ∈ P is
replaced by a component pj ∈ P � (and thus the adaptor Ac generated from AC
for configuration c is replaced by Ac� generated from AC� for c�). Assume that
the architecture is currently under configuration c and that the trace performed
so far is σc .

Let us consider a component p such that p ∈ P ∩ P �, i.e., p �= pi , p �= pj .
This component p is not directly affected by the reconfiguration from c to c�,
since it remains in c�. Thus, p should not be obliged to abort nor to rollback
its current execution, represented by σc ↓p , so it can keep on running unaware
of the reconfiguration.

Therefore, for history-aware reconfiguration we have to ensure that for each
component p in both the source and the target configurations, the execution
trace σc ↓p already performed by p under configuration c is also contained in
the traces of c�. Let us formalize this notion of history-aware reconfiguration
with the following definition.

Definition 14. [History Compliance]. Let σc ∈ Σc be a trace executed
under a certain configuration c = �P ,AC,Ac�. Let c� = �P �,AC�,Ac�� be a
configuration such that ∃ pi ∈ P ∃ pj ∈ P �, pi �= pj and P \{pi} = P �\{pj},
in which a component pi in c has been replaced by another component pj in
c�. Configuration c� is history-compliant to configuration c given σc (written
c� �σc

c) iff there exists σc� ∈ Σc� such that ∀ p ∈ P ∩ P � we have that σc� ↓p=
σc ↓p.

Based on Definition 14, we will define history-aware reconfiguration oper-
ations in the reconfiguration contract of the architecture as follows. For each
σc ∈ Σc such that c� �σc

c, assume that σc� ∈ Σc� is the trace whose existence
Definition 14 refers to. Let sc be the state of configuration c after performing
σc , and s �c the state of configuration c� after performing σc� . Then, we add
c :sc → c� :sc� to the reconfiguration contract of the architecture, allowing it to
reconfigure from the state sc in the configuration c to sc� in c�.

The following theorem proves that after performing a history-aware reconfig-
uration operation from c to c� all components p present in both configurations
remain in the same state. Hence, they need not to abort nor to rollback their
current traces σc ↓p , and they do not require initialization in c�. Instead, they
are able to go on working unaware of the reconfiguration, and their previous
actions are contained in the new execution trace σc� .

Theorem 15. Let c and c� be two configurations of a given architecture, and
let σc ∈ Σc such that c� �σc

c. Let σc� ∈ Σc� be a trace under the conditions of
Definition 14. Let sc = (sAc

, s1, . . . , si , . . . , sn) and sc� = (sAc�
, s �1, . . . , sj , . . . , s

�
n)

be the states of the LTS characterizing c and c� after performing σc and σc�

respectively. Then, ∀ k s .t . pk ∈ P ∩ P �, we have sk = s �k .

13

Proof. It is trivial, since Definition 14 requires that ∀ pk ∈ P ∩ P � σc� ↓pk
=

σc ↓pk
. ✷

As a result of Theorem 15, for performing the reconfiguration, we only need
to initialize the new component pj and the adaptor Ac� in c�, in order to make
them arrive to states sAc�

and sj , respectively. For initializing the adaptor Ac� ,
as the traces of a configuration are the complement of those of its adaptor (see
Definition 8), we only need to feed Ac� with σc� . On the other hand, as the
actions of the components of a configuration are disjoint, σc� ↓pj

gives us the
trace for initializing pj .

Definition 14 above establishes the conditions for a new configuration c�

being aware of the previous history of the architecture. However, it does not
give us the trace σc� that must be used for initializing the new configuration.
Finding that trace is the purpose of the following theorem:

Theorem 16. Let c and c� be two configurations of a given architecture as
described in Definition 14. Let σc ∈ Σc, and let σ be a trace such that:

∀ p ∈ P ∩ P �, σc ↓p and σ are disjoint, and

|| (∪p∈P∩P �{σc ↓p} ∪ {σ}) ∩ Σc� �= ∅

then c� �σc
c and σ ∈ Σpj

.

Proof. From the second condition of the theorem, let us consider a trace σc�

such that σc� ∈ Σc� and σc� ∈ || (∪p∈P∩P �{σc ↓p} ∪ {σ}). Since all the
components in P � have disjoint action sets, and also σ and all the σc ↓p are
disjoint (by the first condition), then for all p ∈ P ∩ P � from Lemma 12 we
have that σc� ↓p= σc ↓p . Hence, c� �σc

c. Finally, as σc� ∈ Σc� and pj is the
only component in P � which is not in P ∩ P �, again from Lemma 12 we have
that σc� ↓pj

= σ and σ ∈ Σpj
. ✷

Theorem 16 gives us a way to compute the trace σc� that fulfills the con-
ditions of Definition 14 and the trace σ required for initializing the component
pj . Algorithm 1 below builds the initialization traces pair (σ, σc�) for the com-
ponent pj and the adaptor Ac� incrementally. At each step, the algorithm
tries to make the system advance with elements from the traces in Σ (initially
{σc ↓p}p∈P∩P �). If this is not possible, it checks if an action in Lpj

can make
the system advance. If there is only a single action meeting the condition, the
algorithm extends the initialization traces with it and goes to the next itera-
tion. If more than one action meet the condition, the algorithm tries to build
recursively the potential remaining parts of the initialization traces, (σ∗, σ∗

c�),
starting from the current state of the adaptor (current), and the traces cur-
rently in Σ. If no initialization traces are found, the algorithm returns (�, �).
The Algorithm stops when all traces in Σ are empty (success), or the system
cannot further advance with elements of Σ or Lpj

. Initial call to the algorithm
is made as h traces(pj ,Ac� , {σc ↓p}p∈P∩P � , s0A

c�
). It is worth mentioning that

14

the initialization traces pair (σ, σc�) may be not unique. In that case, the stop
condition of the algorithm guarantees that one of them will be returned.

Algorithm 1 h traces

Computes initialization traces σ and σc� for pj ∈ P � and Ac� , respectively.

inputs Component pj = �Spj , s0pj ,Lpj ,→pj �, Adaptor Ac� = �SAc�
, s0A

c�
,LAc�

,→Ac�
�,

Traces Σ , current state for adaptor current

output Traces σ, σc�

1: (σ, σc�) := (�, �)
2: while ∃σk ∈ Σ : σk �= � do

3: if ∃σl = {pl : α0 pl : α1 . . . pl : αn} ∈ Σ : (current , α0, s
�) ∈→Ac�

then

4: σc� := σc� �{pl : α0}
5: current := s�

6: σl := {pl : α1 . . . pl : αn}
7: else

8: L→ = {α ∈ Lpj | (current , α, s�) ∈→Ac�
}

9: if | L→ |= 1 then

10: σc� := σc� �{pj : α}
11: σ := σ�{pj : α}
12: current := s�

13: else if (| L→ |> 1) ∧ (∃(σ∗, σ∗

c�
) = h traces(pj ,Ac� ,Σ, current) : (σ∗, σ∗

c�
) �= (�, �))

then

14: return (σ�σ∗, σc� �σ∗

c�
)

15: else

16: return (�, �)
17: end if

18: end if

19: end while

20: return (σ, σc�)

Once we have found σ�
c and σ, for performing the reconfiguration from c to

c�, we will initialize Ac� and pj with σc� and σ respectively, while the rest of
the components p ∈ P ∩ P � in the configuration remain in their current states
(i.e., each of them having performed the trace σc ↓p under configuration c).
This way we have reconfigured the architecture from c to c� being aware of its
previous history.

Example. In the running example, it is easy to find out situations for which
configuration cB is history-compliant to cA

1. For instance, let us suppose a
scenario where a client connects to server A, logs in, and before disconnecting,
A needs to be substituted by B . Unfortunately, A and B do not provide such
reconfiguration capabilities and it is not possible to directly replace one by
another without adaptation because they have different behavioral interfaces.

Let us suppose that the trace performed so far under configuration cA is:
σcA = c:login! a:user? c:passwd! a:passwd?
Hence, the trace performed by the client C is:
σcA ↓C = c:login! c:passwd!

1In fact, it can be found that cB �σ cA for any trace σ of configuration cA.

15

In order to keep the client unaware of the reconfiguration, it must not abort
its ongoing execution. Only if the trace σcA ↓C is valid in the new configuration
cB , C could continue its execution as if it has been interacting with B from the
very beginning.

Using Algorithm 1, from B , σcA ↓C and the adaptor AC ,B we can obtain a
trace σcB that makes cB �σcA

cA:
σcB = c:login! b:connect? c:passwd!
Hence, configuration cB is history-compliant to configuration cA given the

trace σcA . This allows us to define a history-aware reconfiguration operation
from the state sA = (AC ,A : s4,C : s2,A : s2) in cA to the state sB = (AC ,B :
s3,C :s2,B :s1) in cB , where state numbers refer to Figs. 2, 3, and 4.

The trace σcB indicates the initialization required for the adaptor AC ,B in
the target configuration cB . With respect to the server B , it must be initialized
using the trace σcB ↓B :

σcB ↓B = b:connect!
After these initializations all the components in the target configuration cB

are ready to resume working as if reconfiguration had never taken place. While
the client was kept logged in, the original server A has been substituted at
runtime by another component B with a different behavioral interface.

This example shows how the client may initially log to server A, and after a
reconfiguration to cB it is logged to server B , where differently from configura-
tion cA it would be able to buy several books and magazines.

On the contrary, cA is not history-compliant to cB given an arbitrary trace
σcB . Consider the case that the client has bought a magazine (it will be the
same for several books) under configuration cB , as for instance:

σcB ↓C = c:login! c:passwd! c:buyMagazine!
this trace cannot be performed under configuration cA because A only does not
allow execution traces in which magazines are sold. In this case, Algorithm 1
would provide no results. Still, cA is history-compliant to cB for traces that do
not include buying magazines nor more than one book, such as for instance:

σ�
cB

= c:login! b:connect? c:passwd! b:pwd? c:buybook!
as its projection over the client C :

σ�
cB

↓C = c:login! c:passwd! c:buybook!
is a trace that can be performed by the client under configuration cA. We
shall explore this scenario of reconfiguration back from cB to cA in Section 5.5. ✷

History compliance requires that the history of the architecture remains
unchanged. In such a way, the components not directly involved in a recon-
figuration are able to continue working on from their current states, even if
the reconfiguration was caused by a failure in the component being replaced.
However, history compliance says nothing about future actions. Therefore, it
may be possible to provide more (or less) functionality in the target configura-
tion. The next section deals with the future behavior of an architecture after
reconfiguration.

16

5.2. Future-aware reconfiguration

In the preceding section, we have studied reconfigurations which are aware
of past actions in the architecture. Now, we will explore how to define a notion
of compliance that takes into account future actions in the source configuration.
We call this future-aware reconfiguration.

Suppose that c = �P ,AP,Ac� and c� = �P �,AP �,Ac�� are two configurations
of a given architecture. Suppose that the difference between c and c� is that
component pi ∈ P is replaced by component pj ∈ P �. Assume that the trace
performed so far under configuration c is σc .

Let us consider again a component p ∈ P ∩ P � (i.e., any of the components
which are not directly affected by the reconfiguration). Differently from history-
aware configuration above, we shall focus now on the future actions of these
components that can be performed in both configurations.

In order to determine if c� is future-compliant with c we shall check if any
possible trace of c that continues σc is also possible under configuration c� (con-
veniently hiding the actions performed by the components pi and pj , which are
not in both configurations). This requirement would ensure that any component
p ∈ P ∩ P � mentioned above could go on interacting under configuration c� as
it would have done under configuration c.

Let us formalize this notion of future-aware reconfiguration by the definition
of future-compliance below.

Definition 17. [Future Compliance]. Let σc ∈ Σc be a trace executed under
a certain configuration c = �P ,AP,Ac�. Let c� = �P �,AP �,Ac�� be a configu-
ration such that ∃ pi ∈ P ∃ pj ∈ P �, pi �= pj and P \{pi} = P �\{pj}, in which
a component pi in c has been replaced by another component pj in c�. Config-
uration c� is future-compliant to configuration c given σc (written c� �σc

c) iff
there exists σc� ∈ Σc� such that ∀σ∗

c . σc �σ∗
c ∈ Σ∗

c , ∃σ∗
c� . σc� �σ∗

c� ∈ Σ∗
c� and

σ∗
c\pi

= σ∗
c�\pj

.

Based on Definition 17, we will define future-aware reconfiguration opera-
tions in the reconfiguration contract of the architecture as follows. For each
σc ∈ Σc such that c� �σc

c, assume that σc� ∈ Σc� is the trace whose existence
Definition 17 refers to. Let sc be the state of configuration c after performing
σc , and s �c the state of configuration c� after performing σc� . Then, we add
c :sc → c� :sc� to the reconfiguration contract of the architecture, allowing it to
reconfigure from the state sc in the configuration c to sc� in c�.

Future compliance ensures certain interesting properties in the architecture.
In particular, that after the point of reconfiguration, the behavior in the config-
uration c of the components p ∈ P ∩ P � not directly affected by the reconfigu-
ration can be simulated by the new configuration c�, as shown by the following
theorem:

Theorem 18. Let c and c� be two configurations of a given architecture, and
let σc ∈ Σc such that c� �σc

c. Let σc� ∈ Σc� be a trace under the conditions
of Definition 17. Then, ∀ p ∈ P ∩ P � and ∀σ∗

c s.t . σc �σ∗
c ∈ Σ∗

c we have that
(σc� �σ∗

c) ↓p∈ Σ∗
c� ↓p.

17

Proof. From Definition 17 we have that ∀σ∗
c s.t . σc�σ∗

c ∈ Σ∗
c ∃σ∗

c� s.t . σc� �

σ∗
c� ∈ Σ∗

c� . In particular, if we project the trace σc� � σ∗
c� over any

component p ∈ P ∩ P �, and attending to Definition 9, we have that
(σc� �σ∗

c�) ↓p= σc� ↓p�σ∗
c� ↓p∈ Σ∗

c� ↓p (∗). On the other hand, from Defini-
tion 17, we also have that for σ∗

c and σ∗
c� , σ∗

c\pi
= σ∗

c�\pj
. Projecting again over

all p ∈ P ∩P �, we have that (σ∗
c\pi

) ↓p= (σ∗
c�\pj

) ↓p , and as p �= pj and p �= pi ,
from Definitions 9 and 10, we have that σ∗

c ↓p= σ∗
c� ↓p . Hence, recalling (*) we

have that σc� ↓p�σ∗
c ↓p∈ Σ∗

c� ↓p , and thus (σc� �σ∗
c) ↓p∈ Σ∗

c� ↓p . ✷

From Theorem 18, all the components p ∈ P ∩P � will not require to rollback
nor to compensate the interactions performed so far under configuration c, and
in fact they can continue working on as if they still were under configuration
c, although the architecture has been reconfigured and the adaptation contract
has changed from AC to AC�. Similarly as we have done in Section 5.1, for
the new components in the target configuration c�, the adaptor AP � must be
initialized using the trace σc� , while pj must be initialized using σc� ↓pj

.
Future compliance defines the conditions for performing a reconfiguration

ensuring that the future behavior of the components remaining in the target
configuration is not affected by the reconfiguration: they can continue working
as if reconfiguration had never taken place. However, the past actions in c�

(represented by the trace σc�) may be completely different from those in c
(represented by σc), and in fact it may happen that some of the past actions
in the source configuration are not available in the target, which prevents us
from finding a straightforward algorithm for computing the required trace σ�

c

as we have done in Algorithm 1 for history-aware reconfiguration. Instead,
we should explore all the states in configuration c� in order to find out if any
of them satisfies the conditions of Definition 17. However, this limitation of
future compliance will be overcome in Section 5.4, where we introduce one-way
reconfiguration.

Example. Coming back to our running example, it is again easy to find out
situations in which reconfiguration is future-compliant. For instance, let us
suppose a scenario where a client is initially connected to server A, where it has
accomplished the login phase. We will assume that the trace executed so far
under configuration cA is:

σcA = c:login! a:user? c:passwd! a:passwd?
Hence, hiding in σcA the server A being replaced, we have:
σcA\A = σcA ↓C = c:login! c:passwd!
Suppose that at this point, we need to change from configuration cA to

configuration cB and that we would like to ensure future compliance in the
reconfiguration. In order to do that, we need to find a trace σcB of the target
configuration such that the conditions of Definition 17 concerning possible future
traces under configuration cA are fulfilled. Since the behavior of server A is
rather restrictive, these traces are basically:

σ∗1
cA

= c:buybook! a:buy? c:ack? c:logout! a:disconnect?
and

18

σ∗2
cA

= c:logout! a:disconnect?
representing the scenarios in which the client buys a book then disconnects (σ∗1

cA
),

or directly disconnects (σ∗2
cA
). In both traces we hide the server A, obtaining

the behavior of the client C , which is the only component in common in both
configurations.

σ∗1
cA
\A = σ∗1

cA
↓C = c:buybook! c:ack? c:logout!

and
σ∗2
cA
\A = σ∗2

cA
↓C = c:logout!

Now we have to find a trace σcB that makes configuration cB arrive to a
point in which both σ∗1

cA
\A and σ∗2

cA
\A are possible under this reconfiguration.

It is not difficult to find out that for instance:
σcB = c:login! b:connect? c:passwd!

may be such a trace. Hence, configuration cB is future-compliant to config-
uration cA given σcA (cB �σcA

cA). This allows us to define a future-aware
reconfiguration operation from the state sA = (AC ,A : s4,C : s2,A : s2) in cA
to sB = (AC ,B : s3,C : s2,B : s1) in cB , where state numbers refer to Figs. 2,
3, and 4. Thus, the adaptor AC ,B in the target configuration cB has to be
initialized with the trace:

σcB = c:login? b:connect! c:passwd?
and the new server B in the target is initialized with:

σcB ↓B = σcA\A = b:connect?
Notice that once both components are initialized as indicated, the fol-

lowing action in cB will be b:pwd?, representing that the password is sent
from the adaptor AC ,B to the server B . Then, the client C will go on
interacting with the server B (through the adaptor AC ,B) by any of the
traces σ∗1

cA
↓B or σ∗2

cA
↓B , as it still was under configuration cA. Hence, the

reconfiguration from cA to cB can be done keeping the client C unaware of it. ✷

Future compliance defines the basic requirements for component replacement
without affecting the future behavior of the rest of the components in a configu-
ration. The components remaining in the target configuration will not be aware
of the replacement as the new component provides at least the same behavior
that the one being replaced. However, it may be difficult to find a replacement
component that ensures future compliance. For this reason, the next section
will explore more relaxed notions of compliance, suitable for scenarios in which
it is only required that certain properties hold after reconfiguration.

5.3. Property-aware Reconfiguration

The notion of future-compliance introduced in the preceding section may be
too restrictive in some situations, especially in scenarios where a component is
substituted by another one with a more restricted functionality. In these cases,
preserving part of the source configuration behavior (represented by a certain
property φ) may suffice for the operation of the system. To deal with these
situations we present in this section the notion of property-aware reconfigura-
tion, which allows a finer-grained control over the specification of the behavior

19

that the architecture must preserve after reconfiguration. Namely, we introduce
two different notions of property-aware reconfiguration: (i) existential property
compliance, which requires the existence of traces under the target configuration
preserving a certain property; and (ii) universal property compliance, in which
a global property must be satisfied by every possible trace once reconfiguration
takes place.

Properties are expressed as next-free LTL formulas over actions in execution
traces, i.e., atomic propositions correspond to actions and therefore we assume
that the execution of an action α! is synonymous to the atomic proposition α!
in a temporal logic formula. Hence, given a finite set of atomic propositions P,
formulas are constructed inductively as: (i) Every φ ∈ P is a formula; (ii) given
the formulas φ and ψ: φ → ψ, φ ∧ ψ, φ ∨ ψ, and ¬φ are also formulas; and (iii)
given the formulas φ and ψ: φUψ is also a formula. The following abbreviations
are used: Eventually (�φ = TRUE Uφ) and Always (�φ = ¬�¬φ).

An interpretation of an LTL formula is an infinite word w = x0x1 . . . xn over
2P , where at some time point i ∈ N a proposition φ is true iff φ ∈ xi . We
express as wi the suffix of w starting at i . The semantics of next-free LTL is
defined as:

Propositions For φ ∈ P,w |= φ iff φ ∈ x0.

Boolean operators Given the formulas φ and ψ:

w |= ¬φ iff not w |= φ

w |= φ ∧ ψ iff w |= φ and w |= ψ

w |= φ ∨ ψ iff w |= φ or w |= ψ

w |= φ → ψ iff not (w |= φ and not w |= ψ)

Temporal operators w |= φUψ iff there exists i ∈ N such that wi |= ψ and
for all 0 ≤ j < i ,wj |= φ.

We now define existential property compliance as follows:

Definition 19. [Existential Property Compliance]. Let σc ∈ Σc be a trace
executed under a certain configuration c = �P ,AP,Ac�. Let c� = �P �,AP �,Ac��
be a configuration such that ∃ pi ∈ P ∃ pj ∈ P �, pi �= pj and P\{pi} = P �\{pj},
in which a component pi in c has been replaced by another component pj in c�.
Let φ be a next-free LTL formula built on actions of components from P ∩ P �.
Configuration c� is existentially-property-compliant with respect to configuration

c given σc, and φ (written c� �
∃
σc ,φ

c) iff:

1. ∃σ∗
c s.t . σc�σ∗

c ∈ Σ∗
c and σc�σ∗

c |= φ

2. ∃σc� , σ∗
c� s.t . σc� �σ∗

c� ∈ Σ∗
c� and σc�σ∗

c� |= φ

Existential property compliance requires first that φ holds at least for a
maximal trace (prefixed by σc) under the source configuration, and then that
there exists at least one maximal trace in the target configuration such that

20

φ holds for the combined trace performed before and after the reconfiguration
(σc �σ∗

c�). Note that the stated property φ refers only to actions of the com-
ponents in common. In fact, if φ depended on actions from pi or pj , in general
it may not hold either before or after reconfiguration, since pi and pj are not
present in both the source and the target configurations.

As we have mentioned, existential property compliance relaxes the conditions
of future compliance, since it only requires that a certain property is satisfied
after reconfiguration (instead or requiring that any possible continuation trace
is also possible in the target configuration). The following theorem formalizes
this intuition.

Theorem 20. Let c and c� be two configurations of a given architecture, and let

σc ∈ Σc. If ∃σ
∗
c s.t . σc�σ∗

c ∈ Σ∗
c and σc�σ∗

c |= φ, then c��σc
c =⇒ c� �

∃
σc ,φ

c.

Proof. We have that ∃σ∗
c s.t . σc � σ∗

c ∈ Σ∗
c and σc � σ∗

c |= φ. As
as φ is not built on actions from pi , we have that σc � σ∗

c\pi
|= φ.

On the other hand, from c� �σc
c we have that ∃σc� ∈ Σc� such that

∀σ∗
c s.t . σc �σ∗

c ∈ Σ∗
c ∃σ∗

c� s.t . σc� �σ∗
c� ∈ Σ∗

c� and σ∗
c\pi

= σ∗
c�\pj

. Thus,
σc �σ∗

c�\pj
|= φ. Finally, as φ is not built on actions from pj , σc �σ∗

c� |= φ.

Hence, c� �
∃
σc ,φ

c. ✷

Let us now consider a universally quantified version of property compliance.
It is defined as follows:

Definition 21. [Universal Property Compliance]. Let σc ∈ Σc be a trace
executed under a certain configuration c = �P ,AP,Ac�. Let c� = �P �,AP �,Ac��
be a configuration such that ∃ pi ∈ P ∃ pj ∈ P �, pi �= pj and P\{pi} = P �\{pj},
in which a component pi in c has been replaced by another component pj in c�.
Let φ be a next-free LTL formula built on actions of components from P ∩ P �.
Configuration c� is universally-property-compliant with respect to configuration

c given σc, and φ (written c� �
∀
σc ,φ

c) iff:

1. ∀σ∗
c s.t . σc�σ∗

c ∈ Σ∗
c, we have that σc�σ∗

c |= φ

2. ∃σc� ∈ Σc� such that ∀σ∗
c� s.t . σc� �σ∗

c� ∈ Σ∗
c� , we have that σc�σ∗

c� |= φ

Universal property compliance firstly requires that φ holds for all maximal
traces which continue from the current state of execution in the source configura-
tion c. Secondly, it also requires that there exists a trace σc� under configuration
c� such that φ holds for all traces that combine the execution trace σc already
performed under configuration c with any possible maximal continuation trace
σ∗
c� under configuration c� .
Based on Definition 19 and 21, and given a certain property φ we want a

trace or all the traces in the architecture to satisfy, we will define property-aware
reconfiguration operations in the reconfiguration contract of the architecture as

follows. For each σc ∈ Σc such that c� �
∃
σc ,φ

c, or c� �
∀
σc ,φ

c, assume that
σc� ∈ Σc� is the trace whose existence Definitions 19 or 21 refer to. Let sc be the
state of configuration c after performing σc , and s �c the state of configuration

21

c� after performing σc� . Then, we add c : sc → c� : sc� to the reconfiguration
contract of the architecture, allowing it to reconfigure from the state sc in the
configuration c to sc� in c�. Similarly to future-compliance, the components
p ∈ P ∩ P � will not require to rollback nor to compensate the interactions
performed so far under configuration c, while the considered property φ holds
(either for one or for all continuation traces in c�), even though the architecture
has been reconfigured and the adaptation contract has changed from AC to AC�.
Like in the scenarios described in previous sections, the adaptor AP � must be
initialized using the trace σc� , while pj must be initialized using σc� ↓pj

.

Example. Returning to our client-server running example, let us now consider
that the initial configuration is cB , and in the current scenario the client is
connected to server B , after having completed the login phase. Assume that
the trace executed so far is:

σcB = c:login! b:connect? c:passwd! b:pwd?
Under the current configuration, the client can buy a number of books and

magazines. However, assume that the designer specifies that under some oper-
ation conditions it may be acceptable for the system to provide a reduced func-
tionality where it is only possible to buy books. A property ψ = �c :buyBook !
can be specified to determine the kind of reconfigurations which are allowed,
according to the aforedescribed scenario. Given the requirements, we want to
determine whether cA is existentially-property compliant with respect to prop-

erty ψ from the current state of the execution (cA �
∃
σcB

,ψ cB).

At this point, reconfiguring the architecture from configuration cB to cA
restricts the behavior by allowing the client to buy only books. However, this
reduced functionality still fulfills the requirements of property-aware reconfigu-
ration, since there are potential execution traces in cA that satisfy ψ. Let us
first check that ψ holds at least for one maximal trace in cB starting with σcB .
Obviously, in cB there are continuations σ∗

cB
of σcB such that σcB �σ∗

cB
|= ψ:

all those in which there is at least an occurrence of the action c:buyBook!. If
we consider, for instance:

σ∗1
cB

= c:buyBook! b:buyBook? b:bookOk! c:ack? c:logout! b:disconnect?
we have that:

σcB �σ∗1
cB

= c:login! b:connect? c:passwd! b:pwd? c:buyBook! b:buyBook?
b:bookOk! c:ack? c:logout! b:disconnect? |= ψ

Now, given σcB , let us identify traces σcA and σ∗1
cA

in cA under the conditions
of Definition 19. We respectively have:

σcA = c:login! a:user? c:passwd! a:passwd? , and
σ∗1
cA

= c:buyBook! a:buy? c:ack? c:logout! a:disconnect?
such that σcA �σ∗1

cA
∈ Σ∗

cA
and also

σcB �σ∗1
cA

= c:login! b:connect? c:passwd! b:pwd? c:buyBook! a:buy? c:ack?
c:logout! a:disconnect? |= ψ

Within the same scenario, let us assume now that the designer wants to
make sure that the client always disconnects at the end of the session. In
order to guarantee this property across configurations, we define the formula

22

χ = �(c:login! → � c:logout!). In this case, we want to preserve the property
in all maximal traces in the new configuration, so we need to check if cA is
universally-property compliant to cB with respect to property χ from the current

state of the execution (cA �
∀
σcB

,χ cB). Observing the example, we can determine
that all maximal traces prefixed by trace σcB satisfy the property, since the client
can always disconnect the session in configuration cB . In particular, we may
identify the trace fragments:

σ∗l1
cB

= c:buyBook! b:buyBook? b:bookOk! c:ack?
σ∗l2
cB

= c:buyMagazine! b:buyMagazine? b:magazineOk! c::ack?
σ∗pf
cB

= c:logout! b:disconnect?

So that the set of maximal traces in cB can be given by the expression
σcB � {σ∗l1

cB
| σ∗l2

cB
} � σ∗pf

cB
, where {. . . } indicates repetition and | indicates

choice. Hence, all traces in Σ∗
cB

correspond to σcB followed by a number of
combined repetitions of the traces that correspond to the two different loops
in the adaptor for configuration cB (zero or more times), and ending with the
postfix trace σ∗pf

cB
, that always contains c : logout !. Therefore, we can guarantee

the satisfaction of the first condition for universal property compliance, stating
that ∀σ ∈ Σ∗

cB
, σ |= χ.

If we now consider the target configuration cA, we can identify the traces:

σ∗1
cA

= c:buyBook! a:buy? c:ack? c:logout! a:disconnect?
σ∗2
cA

= c:logout! a:disconnect?

In this case, Σ∗
cA

= {σcA �σ∗1
cA

, σcA �σ∗2
cA
}. All traces after reconfiguration

in cA contain c:logout!. Hence, ∀σcA � σ∗
cA

∈ Σ∗
cA
, σcB � σ∗

cA
|= φ. This

satisfies the second condition for universal property compliance, therefore we

can state that cA �
∀
σcB

,φ cB . ✷

Both universal and existential property compliance can be combined with
different properties by the designer in order to have a fine-grained control of
the reconfigurations which are allowed in the architecture. However, it is worth
mentioning that the part of the behavior to be preserved has to be carefully
considered when specifying properties for reconfiguration, since subtle changes
in the formulas or missing terms may lead to the specification of unsatisfiable
reconfigurations. The notions of property compliance defined in this section
enable the designer to specify precisely which are the properties related—to the
behavior of the system before and after reconfiguration—that must hold in case
reconfiguration takes place.

5.4. One-way Reconfiguration

In Sections 5.1 and 5.2 we have introduced two notions of reconfigurabil-
ity that are aware of either the past or the future actions under the source
configuration. In this section, we will combine both notions, resulting in a defi-
nition of the conditions for one-way reconfigurability, from a source to a target
configuration.

23

Definition 22. [Compliance]. Let σc ∈ Σc be a trace executed under a certain
configuration c = �P ,AP,Ac�. Let c� = �P �,AP �,Ac�� be a configuration such
that ∃ pi ∈ P ∃ pj ∈ P �, pi �= pj and P\{pi} = P �\{pj}, in which a component
pi ∈ P has been replaced by another component pj ∈ P �. Configuration c� is
compliant to configuration c given σc (written c���σc

c) iff there exists σc� ∈ Σc�

such that ∀ p ∈ P ∩ P � we have that:

σc� ↓p = σc ↓p, and

∀σ∗
c s.t . σc�σ∗

c ∈ Σ∗
c ∃σ∗

c� s.t . σc� �σ∗
c� ∈ Σ∗

c� , and σ∗
c\pi

= σ∗
c�\pj

.

Theorem 23. Let c and c� be two configurations of a given architecture. Let
σc ∈ Σc. If c� � �σc

c then c� �σc
c, and c� �σc

c.

Proof. The proof is immediate from Definitions 14,17 and 22. ✷

As a result of the theorem above, compliance ensures that given a trace
σc ∈ Σc , it is possible to move from the source configuration c and to the target
configuration c�, taking into account all actions (past and future) under the
source configuration. In order to check compliance, Algorithm 1 can be used for
finding whether there is a trace σc� ∈ Σc� that makes c� �σc

c. In that case, we
will then check if that trace satisfies also the second condition of Definition 22.

Example. It is trivial to find that the trace:
σcA = c:login! a:user? c:passwd! a:passwd?
used in the examples in Sections 5.1 and 5.2 satisfies also Definition 22, with:
σcB = c:login! b:connect? c:passwd!

Hence, cB � �σcA
cA. Then, from Theorems 15 and 18 reconfiguration from

cA to cB will take place keeping the client C unaware of it. ✷

The notion of compliance defined in this section makes reconfiguration con-
sistent with both the history and the future of the system when moving from
the source to the target configuration. This notion will be useful for instance
when we are obliged to reconfigure due to a failure in one of the components
in a configuration. In the next section we will explore a notion of full compli-
ance that deals with scenarios in which we move back and forth between two
alternate configurations.

5.5. Full reconfigurability

In the previous sections we have shown several scenarios of how to reconfigure
the architecture in our running example from configuration cA to cB , although
reconfiguration from cB to cA is only possible on some very specific traces
performed by the client, and when we allow future actions to be different under
the two configurations, as in history-aware reconfiguration. We investigate here
how to design a fully reconfigurable system, in which reconfiguration can take
place in both directions at any moment. In our running example, consider
for instance that both servers A and B were repeatedly failing, and thus we

24

should often switch between two (or more) configurations. In order to allow
these alternating reconfiguration operations, we will constrain the behavior of
the adaptors in both configurations. Let us first formalize full compliance by
the definition below.

Definition 24. [Full Compliance]. Let c = �P ,AP,Ac� and c� =
�P �,AP �,Ac�� be two different configurations of a given architecture such that
∃ pi ∈ P ∃ pj ∈ P �, pi �= pj and P \{pi} = P � \{pj}, which differ in that
component pi in configuration c has been replaced by component pj in c�. Con-
figurations c� and c are fully compliant (written c� � c) iff:

∀σc ∈ Σ∗
c ∃σc� ∈ Σ∗

c� s.t. ∀ p ∈ P ∩ P � σc ↓p= σc� ↓p, and

∀σc� ∈ Σ∗
c� ∃σc ∈ Σ∗

c s.t. ∀ p ∈ P ∩ P � σc� ↓p= σc ↓p.

The definition above requires that for the components in common, their
traces are the same under both configurations. In that case, for any given state
in the source configuration (let us say, sc), to which we arrive after performing a
trace σc , we can find a counterpart reconfiguration state the target configuration
(let us call it sc�), to which we arrive after performing a trace σc� (and vice versa).
Therefore, we will define fully-compliant reconfiguration operations c : sc → c� :
sc� , and c� : sc� → c : sc . As we will show, these reconfiguration operations back
and forth c and c� allow reconfiguration of the architecture at any execution
state.

Full compliance is the most restrictive definition of reconfiguration we have
given so far, since it implies one-way compliance from c to c� and vice versa for
any trace of the architecture, as shown in the following Theorem:

Theorem 25. Let c and c� be two configurations of a given architecture. If
c� � c, then ∀σc , σc� s.t . σc ∈ Σc , σc� ∈ Σc� we have c� � �σc

c, and c� � �σc�
c.

Proof. Since Definition 24 is symmetric we will just prove one of the implica-
tions, namely c� � c =⇒ ∀σc ∈ Σc c� � �σc

c.
Let us consider a trace σc ∈ Σc . Since c� � c, we have (in particular

for this trace σc) that ∃σc� ∈ Σc� such that ∀ p ∈ P ∩ P � σc ↓p= σc� ↓p ,
which is the first condition of the Definition 22. Let us now consider any
continuation σ∗

c of σc such that σc � σ∗
c ∈ Σ∗

c , Again, since the trace is
among those of configuration c, we will find a continuation σ∗

c� of σc� such that
σc� �σ∗

c� ∈ Σ∗
c� and ∀ p ∈ P ∩ P �, σ∗

c ↓p= σ∗
c� ↓p . If we make he interleaving of

all these projections, we have that ||P∩P � (σ∗
c ↓p) = ||P∩P � (σ∗

c� ↓p). Since both
pi �∈ P ∩ P � and pj �∈ P ∩ P � those interleavings will not be affected by hiding:
||P∩P � (σ∗

c ↓p) = (||P∩P � (σ∗
c ↓p))\pi

and ||P∩P � (σ∗
c� ↓p) = (||P∩P � (σ∗

c� ↓p))\pj
.

Finally, consider any trace contained in one of those interleavings; it is
contained in the second one, too. Hence, σ∗

c\pi
= σ∗

c�\pj
, which is the second

condition of the Definition 22, and c� � �σc
c. ✷

Definition 24 above imposes tight conditions for two configurations being
fully compliant. However, it is still possible to feature an architecture with

25

full reconfigurability. For that, we need to create restricted versions of the
adaptors that are equivalent from the point of view of the components shared
in both configurations. These restricted adaptors constrain the behavior of the
components in the architecture so that it is possible to perform reconfiguration
at any moment.

Definition 26. [Restricted adaptor]. Consider a configuration c =
�P ,AC,Ac� of a given architecture. Let p ∈ P be a component in c, and R
be a set of traces in Σc\p. Assume that Ac = �S , s0,LAc

,→Ac
�. The restricted

adaptor AR,p
c is defined as: AR,p

c = �S , s0,LAc
,→

A
R,p
c

�, such that →
A

R,p
c

⊆→Ac

and Σ
A

R,p
c

\p = R.

Definition 26 indicates how to restrict the behavior of an adaptor given a
set of traces R and a component p of the configuration: some of the transitions
(s, α, s �) in the transition relation of the original adaptor Ac are removed when
they allow an action α that would lead to a trace that is not contained in R 2

and α is not among the actions of the component p (i.e., transitions labelled
with actions of p are not removed). The behavior allowed by the restricted
adaptor is a subset of that of the original one. The use of restricted adaptors is
shown in the following Theorem:

Theorem 27. Let c = �P ,AP,Ac� and c� = �P �,AP �,Ac�� be two differ-
ent configurations of a given architecture such that ∃ pi ∈ P ∃ pj ∈ P �, pi �=
pj and P\{pi} = P �\{pj}. Let R = Σ∗

c \pi

�

Σ∗
c�\pj

. Let cR,pi = �P ,AP,AR,pi
c �

and cR,pj = �P �,AP �,A
R,pj

c� � be the result of replacing in c and c� the adaptors

Ac and Ac� by AR,pi
c and A

R,pj

c� , respectively. Then, we have that cR,pi � cR,pj .

Proof. First, let us consider the traces in R = Σ∗
c \pi

�

Σ∗
c�\pj

. We have that
R ⊆ Σ∗

c\pi
and R ⊆ Σ∗

c�\pj
(i.e., R contains the traces that are present in both

c and c� from the point of view of the components p ∈ P ∩ P �, for which we
hide the actions of the components pi nd pj which are not in P ∩ P �). If we

then compute the restricted versions of the adaptors AR,pi
c and A

R,pj

c� , attending
to Definition 26, we have that Σ

A
R,pi
c

\pi
= Σ

A
R,pj

c�

\pj
. Then, as an adaptor

mediates all the interactions among the components in its configuration, if we
consider the configurations cR,pi and cR,pj in which Ac and Ac� are replaced

by AR,pi
c and A

R,pj

c� , respectively, we have that ΣcR,pi \pi
= Σ

c
R,pj \pj

. Since
pi , pj �∈ P ∩ P �, from that we have ∀ p ∈ P ∩ P � ΣcR,pi ↓p= Σ

c
R,pj ↓p which

(considering in particular the maximal traces) ensures the conditions of the
Definition 24. Hence, cR,pi � cR,pj ✷

R represents the behavior that can be performed by the components in
common in both configurations. It is obtained by hiding in the maximal traces

2Note that the traces in R are negated since the actions of the adaptor are always comple-
mentary to those of the components in P .

26

of c (resp. c�) the actions performed by the component pi (resp. pj) and
computing the intersection of these two sets. This yields the set of maximal
traces that are shared in both configurations for the components in common. If
R is empty, it is not possible to build a fully reconfigurable architecture (there
is no shared behavior in the configurations considered). Otherwise, using R
we restrict each adaptor to this shared behavior which yields, by construction,

that configurations c and c�—using the restricted adaptors AR,pi
c and A

R,pj

c� ,
respectively—are now fully compliant.

Algorithm 2 computes the restricted adaptor for a particular configuration
c with respect to a set of shared maximal traces R and a given component p�

(either pi or pj , the components not in P ∩ P �) in c. In particular, the algo-
rithm begins by aggregating all traces in R into an LTS PR that contains the
behavior shared in configurations c and c�. The transition relation →R in this
LTS is defined with respect to states of the configuration c. In order to ensure
termination, the algorithm assumes that the set of shared traces R is finite. If
R is infinite (that would be the case, for instance, if the LTS describing the
components in both configurations contained loops, yielding infinite sets of ar-
bitrarily long traces) there are several approaches to deal with this problem (see
for instance Biermann’s algorithm [6] or Angluin’s L� [2], which aim at synthe-
sizing finite state machines from finite subsets of their input-output behavior).
These works can be applied to our case in the first part of Algorithm 2 in order
to obtain the LTS PR from a finite subset of an infinite set of shared traces R.

Finally, the algorithm uses the information obtained in the previous step to
compute the transition relation for the new adaptor →

A
R,p�

c
, by only including

transitions allowed in the shared behavior in PR, or involving actions of the com-
ponent p� (either pi or pj) which is not shared between configurations (line 15).
The information in the LTS characterizing configuration c is used to relate the
behavior in the adaptor with the shared behavior among configurations built
into PR.

Let us now formalize the functions that we use in Algorithm 2. Function
statesG returns the tuple of states in all components in a configuration (except
for the adaptor) associated to a given state of the adaptor Ac :

statesG(sAc
, c = �Sc , s0c ,Lc ,→c�) = (s1, . . . , sn), such that sc = (sAc

, s1, , . . . , sn) ∈ Sc

Function succG returns the successor of a state of the configuration c after
the execution of an action α in a component p, p �= p�:

succG((s1, . . . , sp , . . . , sn), α) = (s1, . . . , s�p , . . . , sn), such that (sp , α, s�p) ∈→p

Example. Coming back to our running example, we can compute Σ∗
cA
\A and

Σ∗
cB
\B by hiding in both configurations the actions corresponding to the servers

A and B , respectively. These will be the traces performed by the client in each
of the configurations. Their intersection R gives us the client traces that are in
common in both configurations:

R =

�

c : login! c : passwd ! c : logout ! ,
c : login! c : passwd ! c : buybook ! c : ack? c : logout !

�

27

Algorithm 2 restrict adaptor
Computes the restricted adaptor for a configuration c with respect to a finite set R of shared

traces for more than one configuration.

inputs Component p� = �Sp� , s0p� ,Lp� ,→p� �, components pk = �Sk , s0k ,Lk ,→k �, s.t . pk ∈
P ∩ P �, Adaptor Ac = �SAc

, s0Ac
,LAc

,→Ac
�, Shared maximal trace set R

output Restricted adaptor A
R,p�

c

1: →R:= ∅
2: for all σ = {α1 . . . αm} ∈ R do

3: current := (s01 , . . . , s0n)
4: for all αl , l ∈ {1, . . . ,m} do

5: t := (current , ᾱl , succG(current , αl))
6: if t �∈→R then

7: →R:=→R ∪{t}
8: current := succG(current , αl)
9: end if

10: end for

11: end for

12: PR = �(s01 , . . . , s0n),S1 × · · · × Sn ,L1 ∪ · · · ∪ Ln ,→R�

13: →
A

R,p�

c

:= ∅

14: for all (q, α, q �) ∈→Ac
do

15: if (statesG(q), α, statesG(q �)) ∈→R ∨ α ∈ Lp� then

16: →
A

R,p�

c

:=→
A

R,p�

c

∪{(q, α, q �)}

17: end if

18: end for

19: S
A

R,p�

c

:= {sA ∈ SAc
| ∃(q, α, q �) ∈→

A
R,p�

c

: sA = q ∨ sA = q �}

20: L
A

R,p�

c

:= {αA ∈ LAc
| ∃(q, α, q �) ∈→

A
R,p�

c

: αA = α}

21: return �S
A

R,p�

c

, s0A,L
A

R,p�

c

,→
A

R,p�

c

�

28

0

f

1

C:LOGIN ?

2

B:CONNECT !

7

8

C:ACK !

9

C:LOGOUT ?

6

B:BOOKOK ?

B:DISCONNECT !

3

C:PASSWD ?

4

B:PWD !

C:LOGOUT ?

5

C:BUYBOOK ?

B:BUYBOOK !

Figure 5: Restricted reconfiguration adaptor A
R,B
C ,B

.

which describes a system in which clients are allowed to buy at most one book
(but no magazines). These traces are used to restrict the adaptors AC ,A and

AC ,B to allow only the behavior considered. In fact, we find that AR,A
C ,A ≡ AC ,A,

since all the client’s behavior admitted by the server A is also contained in R,
while AR,B

C ,B (shown in Fig. 5) constrains the original adaptor AC ,B allowing
only the traces in which the client buys a book or nothing at all. In this
scenario, any client trace that can be performed in one of the configurations is
also feasible in the other one. This way we guarantee that server A can always
be substituted by B (and B by A likewise) while keeping the client unaware of
the substitution, building a system that can switch from one configuration to
the other back and forth. ✷

Full compliance is the most restrictive of the notions of compliance defined in
this work. In fact, it implies restricting the functionality of the system in both

29

configurations in order to ensure Compliance in both directions. This notion
would be useful for instance in scenarios in which repeated network failures
oblige us to move back and forth between two alternate configurations, while
we want to maintain the rest of the components in the system unaware of the
repeated reconfiguration operations.

In this section we have introduced different notions of reconfiguration com-
pliance. Each compliance states the requirements for defining reconfiguration
operations that satisfy it. When all the operations in the reconfiguration con-
tract of an architecture satisfy a given notion of compliance, we say that the
architecture satisfies that particular compliance. In that case, successive recon-
figurations of the architecture as defined in the reconfiguration contract ensure
that the properties of the notion of compliance considered are preserved. This
allows us to build reconfigurable architectures that exhibit history-awareness,
future-awareness, property-awareness, or full reconfigurability.

6. Related Work

Dynamic reconfiguration [17] is not a new topic and many solutions have
already been proposed in the context of distributed systems and software ar-
chitectures [14, 15], graph transformation [1, 25], software adaptation [21, 20],
metamodelling [13], or reconfiguration patterns [9]. On the other hand, Software
Adaptation is a recent solution to build component-based systems accessed and
reused through their public interfaces. Adaptation is known as the only way
to compose black-box components with mismatching interfaces. However, only
few works have focused so far on the reconfiguration of systems whose correct
execution is ensured using adaptor components. In the rest of this section, we
focus on approaches that tackled reconfiguration aspects for systems developed
using adaptation techniques.

First of all, in [21], the authors present some issues raised while dynamically
reconfiguring behavioral adaptors. In particular, they present an example in
which a pair of reconfigurations is successively applied to an adaptor due to
the upgrade of a component in which some actions have been first removed and
next added. No solution is proposed in this work to automate or support the
adaptor reconfiguration when some changes occur in the system.

Most of the current adaptation proposals may be considered as global, since
they proceed by computing global adaptors for closed systems made up of a
predefined and fixed set of components. However, this is not satisfactory when
the system may evolve, with components entering or leaving it at any time,
e.g., for pervasive computing. To enable adaptation on such systems, an incre-
mental approach should be considered, by which the adaptation is dynamically
reconfigured depending on the components present in the system. One of the
first attempts in this direction is [4], whose proposal for incremental software
construction by means of refinement allows for simple signature adaptation.
However, to our knowledge the only proposal addressing incremental adapta-
tion at the behavioral level is [22, 20]. In these papers, the authors present a

30

solution to build step by step a system consisting of several components which
need some adaptations. To do so, they propose some techniques to (i) generate
an adaptor for each new component added to the system, and (ii) reconfigure
the system (components and adaptors) when a component is removed.

Compared to [21, 22, 20], our goal is slightly different since we do not want
to directly reconfigure adaptor behaviors, but we want to substitute both a com-
ponent and its adaptor by another couple component-adaptor while preserving
some properties of the system such as trace compliance.

Some recent approaches found in the literature [7, 19, 18] focus on existing
programming languages and platforms, such as BPEL or SCA components, and
suggest manual or at most semi-automated techniques for solving behavioral
mismatch. In particular, the work presented in [18] deals with the monitoring
and adaptation of BPEL services at run-time according to Quality of Services
attributes. Their approach also proposes the replacement of partner services
based on various strategies either syntactic or semantic. Although replaceability
ideas presented in this paper are close to our reconfiguration problem, they
mainly deal with QoS characteristics whereas our focus is on behavioral issues.

7. Conclusions and Future Work

This paper has presented a framework that supports the design of reconfig-
urable systems. The formal model defines reconfiguration as a transition from
a (static) configuration to another one. Each configuration specifies a set of
components interacting by means of an adaptor, and a reconfiguration contract
defines when the configuration can be changed to a new one and which is the
starting state in the new configuration in order to resume the execution.

We have integrated Software Adaptation in the framework in order to further
enable reconfiguration. We have shown the conditions for a reconfiguration of
the system consisting in the substitution of a component by another one that
implements a different behavioral interface; this potentially includes mismatch
in actions as well as in their ordering and functionality. This way, substitution
ensures several interesting properties of the system, related to the components
not being replaced. We build on the basis that for some cases it is possible to
find sets of execution traces for different configurations which are similar from
the point of view of system parts non-substituted across configurations. Thus,
it is possible to simulate the execution of a system in another one where one
or more components may be substituted by others with a different behavioral
interface.

From a merely practical perspective, we cannot justify the re-enactment of
all previous interactions of the system in order to initialize the replacement
component during a reconfiguration. To tackle this issue, we believe that a no-
tion of transaction should be defined over the LTS representing a configuration.
When a configuration completes a transaction, it does not need to be re-enacted
if for instance, component failure forces a reconfiguration of the system. Only
transactions which have not been fully completed would need to be re-enacted
within the target configuration. Transactions have not been addressed yet in our

31

proposal, although we consider them an interesting line of research for future
work.

The reconfiguration model presented in this paper assumes a centralized
adaptor. Although we believe that this is a reasonable abstraction for design,
the adaptor may become a bottleneck if we consider a distributed deployment
of the system. Some of our previous works (see for instance [23]) address the
distribution of adaptors across different locations in a distributed setting. This
approach can also be applied to the scenarios described in this paper, although
we have preferred to focus on the definitions strictly related to reconfigurability,
just assuming that the adaptor is centralized.

The framework that we have presented is expressive and suitable for our
needs. Although in this paper we have focused on formalizing different notions of
reconfiguration and their properties, as a future perspective we plan to integrate
this framework within the Fractal component model [8]. We believe that the
reconfiguration model built on Nets presented in [12] can be implemented in the
runtime platform of Fractal in order to provide components with reconfiguration
capabilities that satisfy the notions of compliance defined in this work.

Acknowledgements. This work has been partially supported by projects
TIN2008-05932 funded by the Spanish Ministry of Science and Innovation
(MICINN), and P07-TIC-3184 funded by the Andalusian Regional Government
and the European Regional Development Fund (ERDF). We would also like to
thank Antonio Cansado and Javier Cubo for their collaboration in the early
stages of this work.

[1] N. Aguirre and T. Maibaum. A Logical Basis for the Specification of Re-
configurable Component-Based Systems. In Proc. of FASE’03, volume 2621
of LNCS, pages 37–51. Springer, 2003.

[2] D. Angluin. Learning regular sets from queries and counterexamples. In-
formation and Computation, 75(2):87–106, 1987.

[3] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli. SYNTHESIS: A Tool
for Automatically Assembling Correct and Distributed Component-based
Systems. In Proc. of ICSE’07, pages 784–787. IEEE Computer Society,
2007.

[4] R. J. Back. Incremental Software Construction with Refinement Diagrams.
Technical Report 660, Turku Center for Computer Science, 2005.

[5] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio, and E. Madelaine.
Behavioural models for distributed Fractal components. Annals of Telecom-
munications, 64(1):25–43, 2009.

[6] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state ma-
chines from samples of their behavior. IEEE Transactions on Computers,
C-21(6):592–587, 1972.

32

[7] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In
Proc. of ICSOC’06, volume 4294 of LNCS, pages 27–39. Springer, 2006.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The
FRACTAL component model and its support in Java: Experiences with
auto-adaptive and reconfigurable systems. Softw. Pract. Exper., 36(11-
12):1257–1284, 2006.

[9] T. Bureš, P. Hnetynka, and F. Plášil. SOFA 2.0: Balancing advanced
features in a hierarchical component model. In SERA ’06: Proceedings
of the Fourth International Conference on Software Engineering Research,
Management and Applications, pages 40–48, Washington, DC, USA, 2006.
IEEE Computer Society.

[10] J. Cámara, J. A. Martin, G. Salaün, J. Cubo, M. Ouederni, C. Canal, and
E. Pimentel. Itaca: An integrated toolbox for the automatic composition
and adaptation of web services. In Proc. of ICSE’09, pages 627–630. IEEE
Computer Society, 2009.

[11] C. Canal, P. Poizat, and G. Salaün. Model-Based Adaptation of Be-
havioural Mismatching Components. IEEE Transactions on Software En-
gineering, 34(4):546–563, 2008.

[12] A. Cansado, G. Salaün, C. Canal, and J. Cubo. A formal framework
for structural reconfiguration of components under behavioural adapta-
tion. Electronic Notes in Theoretical Computer Science (ENTCS) series,
263:95–110, 2010.

[13] A. Ketfi and N. Belkhatir. A Metamodel-Based Approach for the Dynamic
Reconfiguration of Component-Based Software. In Proc. of ICSR’04, vol-
ume 3107 of LNCS, pages 264–273. Springer, 2004.

[14] J. Kramer and J. Magee. The Evolving Philosophers Problem: Dy-
namic Change Management. IEEE Transactions on Software Engineering,
16(11):1293–1306, 1990.

[15] J. Kramer and J. Magee. Analysing Dynamic Change in Distributed Soft-
ware Architectures. IEE Proceedings - Software, 145(5):146–154, 1998.

[16] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of service protocols
using process algebra and on-the-fly reduction techniques. In Proc. of IC-
SOC’08, volume 5364 of LNCS, pages 84–99. Springer, 2008.

[17] N. Medvidovic. ADLs and Dynamic Architecture Changes. In SIGSOFT
96 Workshop, pages 24–27. ACM, 1996.

[18] O. Moser, F. Rosenberg, and S. Dustdar. Non-Intrusive Monitoring and
Adaptation for WS-BPEL. In Proc. of WWW’08, pages 815–824, 2008.

33

[19] H. R. Motahari-Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati. Semi-Automated Adaptation of Service Interactions. In Proc.
of WWW’07, pages 993–1002, 2007.

[20] P. Poizat and G. Salaün. Adaptation of Open Component-Based Systems.
In Proc. of FMOODS’07, volume 4468 of LNCS, pages 141–156. Springer,
2007.

[21] P. Poizat, G. Salaün, and M. Tivoli. On Dynamic Reconfiguration of Be-
havioural Adaptation. In Proc. of WCAT’06, pages 61–69, 2006.

[22] P. Poizat, G. Salaün, and M. Tivoli. An Adaptation-based Approach to
Incrementally Build Component Systems. Electronic Notes in Theoretical
Computer Science (ENTCS) series, 182:39–55, 2007.

[23] G. Salaün. Generation of service wrapper protocols from choreography
specifications. In A. Cerone and S. Gruner, editors, SEFM, pages 313–322.
IEEE Computer Society, 2008.

[24] I. Černá, P. Vařeková, and B. Zimmerova. Component substitutability
via equivalencies of component-interaction automata. Electronic Notes in
Theoretical Computer Science (ENTCS) series, 182:39–55, 2007.

[25] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A Graph Based Archi-
tectural (Re)configuration Language. In Proc. of ESEC / SIGSOFT FSE
2001, pages 21–32. ACM, 2001.

[26] D. M. Yellin and R. E. Strom. Protocol Specifications and Components
Adaptors. ACM Transactions on Programming Languages and Systems,
19(2):292–333, 1997.

34

	Introduction
	Background
	Component interfaces
	Adaptation contracts and adaptors

	Running Example
	Formal Model
	Configurations
	Reconfiguration contracts

	Contract-Aware Reconfiguration
	History-Aware Reconfiguration
	Future-aware reconfiguration
	Property-aware Reconfiguration
	One-way Reconfiguration
	Full reconfigurability

	Related Work
	Conclusions and Future Work

