On a (β,q)-generalized Fisher information and inequalities involving q-Gaussian distributions

Abstract : In the present paper, we would like to draw attention to a possible generalized Fisher information that fits well in the formalism of nonextensive thermostatistics. This generalized Fisher information is defined for densities on $\mathbb{R}^{n}.$ Just as the maximum Rényi or Tsallis entropy subject to an elliptic moment constraint is a generalized q-Gaussian, we show that the minimization of the generalized Fisher information also leads a generalized q-Gaussian. This yields a generalized Cramér-Rao inequality. In addition, we show that the generalized Fisher information naturally pops up in a simple inequality that links the generalized entropies, the generalized Fisher information and an elliptic moment. Finally, we give an extended Stam inequality. In this series of results, the extremal functions are the generalized q-Gaussians. Thus, these results complement the classical characterization of the generalized q-Gaussian and introduce a generalized Fisher information as a new information measure in nonextensive thermostatistics.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [37 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00733758
Contributor : Jean-François Bercher <>
Submitted on : Wednesday, September 19, 2012 - 2:27:06 PM
Last modification on : Wednesday, April 11, 2018 - 12:12:02 PM
Document(s) archivé(s) le : Friday, December 16, 2016 - 3:17:46 PM

File

OnqGenFisher_arxiv2.pdf
Files produced by the author(s)

Identifiers

Citation

Jean-François Bercher. On a (β,q)-generalized Fisher information and inequalities involving q-Gaussian distributions. Journal of Mathematical Physics, American Institute of Physics (AIP), 2012, 53, pp.063303. ⟨10.1063/1.4726197⟩. ⟨hal-00733758⟩

Share

Metrics

Record views

296

Files downloads

197