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solution of the problem at hand. A particular algorithm, inspired by
the Arnoldi method for solving eigenproblems, is proposed for an e cient
greedy construction of a deterministic reduced basis approximation. This
algorithm decouples the computation of the deterministic and stochastic
components of the solution, thus allowing reuse of pre-existing determin-
istic Navier{Stokes solvers. It has the remarkable property of only re-
quiring the solution of m deterministic problems for the construction of a
m-dimensional reduced basis.

1 Introduction

In recent years, functional approaches have been deeply investigated for the
numerical solution of models driven by stochastic partial di erential equations
[15, 19]. These approaches consist in searching for a functional expansion of the
random solution u on a basis of functions of a discrete set of random parameters
modeling the input uncertainties. The solution u is thus a function de ned on a
parameter space equipped with a probability measure P, and with values in
a certain function spaceV. Classical approxq;paﬂon methods consist in search-
ing for an approximate M -terms expansion k 1 Uk k() of u( ), where the

x are some suitable basis functions, typically polynomials or piecewise poly-
nomials, and where theuy 2 V are the coe cients that need to be computed.
Approximate expansions can be computed using sampling-type approaches or
Galerkin-type projection methods, these latter methods requiring the solution
of a coupled system of M partial di erential equations. For large-scale applica-
tions, the computation of these approximations becomes simply intractable.

In order to address this complexity, various model reduction methods have
been proposed (see [28] for a short review). Model reduction methods based on
nonlinear approximation aim at corEtructlng an approximation of the parame-
terized solution u( ) under the form {2, u; i( ), where theu; and ; constitute
reduced bases of functions that are not xed a priori but simultaneously deter-
mined using some suitable optimality criteria. These optimality criteria must
be such that the m-term approximation is computable without any a priori in-
formation on the solution u.

A rst class of model reduction methods, the so called \Reduced Basis"
methods, de ne optimal approximations using a uniform norm on the parameter
space [32, 22, 34]. For computational purposes, suboptimal approximations are
introduced, using a greedy construction of deterministic approximation spaces.
Reduced basis functionsy; are progressively determined by the solution of succes-
sive deterministic problems associated with parameters values, i.e. u; = u( ;),
where a suitable error indicator is detected to be maximum. These methods have
been applied to a large class of partial di erential equations (see e.g. [35, 33]
for the application to Burgers and Navier{Stokes equations). Some convergence
results have been recently obtained for a class of linear elliptic problems, under
some regularity assumptions on the solution [4, 5]. These approaches, initially



introduced for parametric analyses, do not take into account the probability
measure on the parameter space.

A second class of model reduction methods, known as Proper Generalized
Decomposition methods (PGD), is based on the approximation of the weak solu-
tion of parametric/stochastic equations which is an element of a tensor product
spaceV S , whereS is a space of functions de ned on the weighted parameter
space , typically S =L?( ;P). It has been introduced in [26] for the solution a
class of linear stochastic PDEs, and then extended to other classes of stochastic
PDEs (see e.g. [27, 31, 8]). Dierent de nitions of approximations have been
proposed, which can be seen as generalized spectral decompositions (generalized
Singular Value Decompositions). Based on the interpretation of the approxi-
mation problem as a nonlinear eigenproblem, several algorithms have been pro-
posed, which are inspired from methods for the solution of eigenproblems, see
[27]. Greedy-type algorithms that construct the functions u; one after the other
are of particular interest. Indeed, these algorithms only require the solution of
successive deterministic problems. Note however that, unlike the aforementioned
methods, these problems are not associated to a particular parameter value.

The PGD methods have also been successively applied to the solution of
other high dimensional problems formulated in tensor spaces (see review [9]). In
particular, they have been used for the solution of high dimensional stochastic
problems by further exploiting the tensor structure of stochastic function space
[12, 30]. General convergence results have been recently obtained for particu-
lar classes of elliptic problems [13, 6, 14]. Let us note that alternative solution
strategies based on tensor approximation methods have also been proposed for
the solution of high dimensional stochastic problems [2, 16, 24]. These ap-
proaches are based on the use of classical tensor approximation methods within
iterative solvers.

In this paper, we address the solution of the stochastic steady incompress-
ible Navier{Stokes equations. Application of stochastic spectral methods to the
Navier-Stokes equations, using Galerkin projection schemes, was rst consid-
ered in [20, 21, 18, 37], see also references in reviews [17, 25] and book [19].
Although successful, Galerkin methods for the stochastic Navier-Stokes equa-
tions are challenged by the dimension of the resulting non-linear problem and
the need for adapted solvers [23]. Therefore, we propose in this work to apply
the Proper Generalized Decomposition method to the stochastic Navier-Stokes
equations. For this purpose, we extend to this nonlinear framework an algo-
rithm that has been proposed in [27] for the construction of the reduced basis
of functions u;. This construction can be interpreted as an Arnoldi procedure
for the solution of the associated nonlinear eigenproblem. Arnoldi iterations can
be seen as a greedy procedure for the construction of a reduced approximation
space. This algorithm has the remarkable property that for the construction of
a m-dimensional reduced basis it only requires the solution ofn deterministic
PDEs that possess a classical structure, close to a deterministic incompress-
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ible Navier{Stokes problem. These deterministic problems can be handled by
classical deterministic solvers, thus making the proposed algorithm a partially
non intrusive method. The algorithm is applied to a divergence free formula-
tion of the Navier{Stokes equations, yielding an approximation of the random
velocity eld on a reduced basis of divergence free deterministic velocity elds.
A methodology is then proposed for the reconstruction of an approximation of
the pressure eld, the random velocity eld being given. This approximation is
de ned through a minimal residual formulation of the Navier{Stokes equations.
Two alternative methods are introduced for the construction of an approximation
of the pressure. The rst method is a direct application of a PGD algorithm to
the minimal residual formulation of the Navier{Stokes equations, thus yielding
to the construction of a convergent decomposition of the pressure. The second
method, which is more computationally e cient, reuses as a reduced basis the
deterministic pressure elds associated to the deterministic problems that were
solved during the construction of the decomposition of the velocity eld (i.e. the
Lagrange multipliers associated with the divergence-free constraint).

The outline of the paper is as follows. In Section 2, the PGD method is
presented in a general framework for the solution of parametric stochastic PDEs.
In Section 3, we introduce the formulation of the steady incompressible Navier{
Stokes equations and we detail the computational aspects of the application
of the PGD. In Section 4, numerical examples illustrate the e ciency of the
proposed method. Finally, the methodologies for pressure reconstruction are
introduced in Section 5.

2 Proper Generalized Decomposition (PGD)

In this Section we introduce the weak-formulation of a generic problem with

stochastic coe cients. We then shortly discussed the stochastic discretization

using polynomial chaos expansion and the related Galerkin method. The Proper
Generalized Decomposition method is then introduced and algorithms for its
calculation are detailed.

2.1 Stochastic variational problem
Consider the following abstract deterministic variational problem:
Find u 2V such that
a(uyv; )= blv; ); 8v2V, (1)

with V an appropriate vector space, the problem parameters,b( ; ):V! R
alinearformanda(; ; ):V V! R asemi-linear form which is linear with
respect to the second argument. The deterministic spac& can be here either
in nite or nite dimensional and is equipped with an inner product ( ; )v with
associated normk ky. Note that if V has in nite dimension, it will have to be
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discretized at some point. However, to remain as general as possible, we delay
the discussion on discretized space¥ to the next sections. In any case, we
assume that problem (1) has a unique solution (depending on).

In this paper, we are interested in situations where the parameters of
the problem are uncertain and therefore treated as random inputs. LetP :=
( ; ; ) bean abstract probability space, where is the set of random elemen-
tary events, the -algebra of the events and a probability measure. For
dened on P, we denote by (), 2 , arealization of the random parameters.
The expectation of a generic random quantityh de ned on P is denoted

z
Efh]:=  h()d ():

Let L?( ; ) be the space of second-order real-valued random variables, equipped
with the inner product ( ; ) and associated normk ki z( .,

z
8(h;g) 2 L3 ; )i (hig) = h()g()d (); khkez ;) =(h;h)*?

so that
h2 L2 ;) , k hkez . y<+1:

Since the parameters in equation (1) are random, the solution of (1), so denoted
U, is also random and de ned onP. It satis es equation (1) almost surely, that
is

Find U: !V such that a.s.

a(U( )sv; ()= blv; ()); 8v2V: (2

It will be further assumed that U 2V L?( ; ), so that one can derive the fully
weak variational form of the stochastic problem given by the following problem.

Stochastic problem.
Find U2V L?( ; ) such that

A(U;V; )= B(V; ); 8V2Vv L% ;) ®3)
with the forms A and B given by
z
A(U;V; )= E[a(U;V; )= aU()xVv() ()Nd ()

z
B(V; ):=E(V; )= bV() ()d ():



2.2 Stochastic discretization

For computational purposes, numerical discretizations need to be introduced.
These will concern both the deterministic spaceV, to be discussed in the follow-
ing sections, and the stochastic spaced( ; ), for which we rely on Polynomial
Chaos (PC) expansions.

For the sake of simplicity, we restrict ourself to the case of PC approximations
for a set of N independent identically distributed (i.i.d.) random variables, =

function dP( ). Any functional h: 2 7! R is then a real-valued random

variable and we have
Z Z

Efh]= h( ()d ()= h(y)dP(y):

In this context, we assume the knowledge of the random model parameters as
a functional of (see examples in the results sections), speci cally

() (()as

Since the model parameters are the only source of stochasticity in the problem,
we haveU( ) U( ()) for the solution of (2) with (). In other words, the
solution is computed in the probability space P( ) := ( ; ; dP), called the
image space, instead of in the abstract spac®. Further, we denote L?( ;P)
the space of second-order random variables, equipped with the inner product
dened for (; )2 L% ;P)* by

Z

h;, i:= (y) (y)dP(y)= E[ I;

and the associated norm
k kie( py=h; i™?=E 2:

Next, we introduce an Hilbertian basis (complete orthonormal set)f 1; 2;:::g
of L2( ;P), and denote by SM the subspace of B( ;P) spanned by the rst M
elements of the stochastic basis, that is

Any element 2 L?( ;P) can be approximated by M 2 SM de ned by the
expansion

M
M()= i i) Jim K M ke py =0
i=1 !

Classically, the basis functions ; are N-variate polynomials in . Each standard
measure P() over leads to a di erent classical polynomial family [36], the case
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of ; standard Gaussian random variables corresponding to (normalized) Hermite
polynomials [15]. All developments below immediately extend to other types of
stochastic basis, including piecewise polynomial approximations and hierarchical
stochastic multi-wavelets. For spectral polynomial bases, a common truncature
strategy is based on the maximal total degree of the basis functions retained in
the construction of SM. Denoting No the maximal total degree, the dimension
of SM is
(N +No)!

N!No! '’
highlighting its combinatoric increase with both the number of random variables
in and the expansion degree No. Other possible construction strategies f@&"
have been investigated e.g. in [1].

dim(sM)=M =

2.3 Stochastic Galerkin formulation

The stochastic problem (3) can be recast inSM by means of Galerkin method,
resulting in the following problem.

Discrete Stochastic Problem.
Find UM 2V S M gych that

A uM.yM. = pBgwM; ); gyM2v s M.

Inserting the PC expansion of the solution, UM = P i'vz'l Ui i, in the previous
equations results in a set of M coupled problems for the deterministic modes
uj 2 V of the solution [15, 19], namely

M !
A Uy ivi 1, =B(vI o) 8vy2Vandl=1;:::;M:  (4)
i=1

It is seen that dimension of the Galerkin problem is M times larger than the
size of the original deterministic problem. Consequently, its resolution can be
very costly, or even prohibitive, whenever N or No needs be large to obtain an
accurate approximate UM of the exact stochastic solution. An additional di -
culty appears when the forma is nonlinear in its rst argument, making di cult
the practical computation of the stochastic form A. These two di culties call
for improvement. First, regarding the dimensionality of the Galerkin problem,
one can reduce complexity by relying on more appropriate expansion basig.g.
by means of adaptive strategies and enrichment of polynomial basis (see e.g.
[3, 10, 11]). However, adaptive approaches are complex to implement and of-
ten remains computationally intensive, while they do not address the di culties
related to nonlinearities. On the contrary, the PGD approaches discussed in
the following aim at tackling the issues of dimensionality and, to some extent,
are better suited to the reuse of deterministic code without special treatments
of nonlinearities as a result. This latter point will be further discussed in the
following.



2.4 PGD: principles

Let us go back to Formulation 3. The PGD method seeks for a separated repre-
sentation of the solutonU 2V  L?( ;P) as

X
Uc)=  ui(),

where the u; 2 V are the deterministic components and the ; 2 L%( ;P) the
stochastic components of the PGD. Them-terms PGD approximation of U,
denoted U(™) | corresponds the truncated series

(m) X
] = u ;U (5)
i=1

The objective is then to construct the expansion (5) to minimize the approxima-
tion error in some sense, withouta priori selection of deterministic and stochas-
tic components. PGD thus has to be contrasted with the classical Galerkin
approach where the stochastic components, the i, are selecteda priori, before
the computation of the deterministic coe cients.

The simplest PGD algorithms determine the couples (i; i) 2V L?( :P)
one after the others. Speci cally, assuming thatU(™) has been already deter-
mined, let (u; ) be the next couple of components. We here look for a cor-
rection u which lives in the manifold of rank-one elements inV  L?( ;P).
We here imposeu to satisfy a Galerkin orthogonality with respect to the
tangent manifold at u to the set of rank-one elements, which is de ned by
fu +v ; 2 L% ;P);v2Vg. We therefore obtain the following necessary
conditions for the de nition of u : Find (u; )2V L?( ;P) such that

A UM+u;u +v; =B +v; ), 8v; )2V L% ;:P): (6)

For some classes of semilinear form&, we can prove the existence of solutions
satisfying (6), see [14]. Moreover, for some particular symmetric elliptic linear
problems, the couples (; ) can be interpreted as left and right generalized
singular vectors of U U™, see [13]. Among the solutions of (6), the best
ones are selected by the algorithms described below that can be interpreted
as algorithms for capturing approximations of the dominant singular vectors of
U U™. Note that for the present steady Navier{Stokes equations, the analysis
of existence of solutions is still an open problem. Two coupled problems fay;
can be derived from equation (6):

Deterministic Problem.
Find u 2 V such that

A UM+uiv 3 =B ;) 8v2V: (7)



Algorithm 1 Power method

.U O [element O ofV]
2: for I'in1;2;:::;m do

3. Initialize [e.g. at random]
4:  repeat

5: Solve deterministic problem: u D ( ;U)

6: Normalize u: u  u=kuky

7: Solve stochastic problem: S (u;U)

8: until (u; ) converged

9: U U+u
10: end for

For given, we denote hereafteu = D( ;U(™) the solution of deterministic
problem (7).

Stochastic Problem.
Find 2 L2( ;P) such that

A UM+yu ; =B ;) 8 2 L% ;P): (8)
Similarly, for u given, we denote = S(u;U(™) the solution of stochastic
problem (8).

2.5 PGD: algorithms

The above interpretation of an optimal couple (u; ) as a couple of dominant

singular vectors of U  U(™ suggested to translate to the present situation

techniques for the resolution of eigenvalues problems, like power-iteration or
Arnoldi methods (see [27]). Their application to scalar non linear problems has
been thoroughly investigated in [31]. Note that these algorithms have also been
investigated for other problems formulated in tensor product spaces, such as
time-dependent partial di erential equations [29].

2.5.1 Power-lterations

The power method for the computation of (u; ) is stated in Algorithm 1. Note
that the convergence criteria is not stated on the couple (¢; ) yielded by the
power-type iterations is understood in a broad sense since and may not
converge individually (see [27, 26] for discussion on the convergence of the it-
erations). In practice, only a limited number of iterations is performed. We
also remark that and u have equivalent roles in the Algorithm, so that the
normalization step at line 6 could be performed on rather then u.

The convergence of the resulting PGD obtained by the Power-Iteration algo-
rithm can be improved by introducing an update of the stochastic components



Algorithm 2 Power method with update
.U O
22 W fg [initialization of the reduced basis in V]
3: fg [initialization of the reduced basis in L?( ;P)]
4: for 1'in1;2;:::;m do
5 Initialize [e.g. at random]|
6: repeat
7
8
9

Solve deterministic problem:u D ( ;U)
Normalize u: u  u=kuky
Solve stochastic problem: S (u;U)
10: until (u; ) converged
11:  Add u to its reduced basis: W W [f ug

12:  Add to its reduced basis: [f g

13: Solvepupdate problem: U (W)

14:. U Lzl Uk k

15: end for

f 1;:::; mgafter the determination of the m-th rst couples. More speci cally,
given the deterministic componentsus; u,;:::;um, the update problem consists

in the solution of the following set of m coupled equations:
Update problem.

Find 1;:::; m 2 L%( ;P) such that
|
- !
A Ui ;U = B(u ;) 8 2L%( ;P); I=1;:::;m: (9)
i=1

Denoting (™ =f ;::: g, the update problem is compactly written formally
as

(m) — U(W (m));

whereW (M = fuy:::umgis called the reduced deterministic basis (o). The
power-type algorithm with update is stated in Algorithm 2. Note that it is not
necessary to solve the update problem (line 13 of Algorithm 2) at every step.
Moreover, it would be possible to updateW instead of . This would results in
solving a Galerkin problem similar to the classical one, but with the stochastic
basisf ;g instead of thef ;g

2.5.2 Arnoldi iterations

One disadvantage of Power-iterations-like methods is that they discard all the
intermediate solutions within the repeat-until loops. The so-called Arnoldi algo-
rithm is a possible solution to overcome such a \waste": the temporary solutions
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Algorithm 3  Arnoldi method

1 0 [initialize counter for modes]

22 W fg [void container for deterministic modes|
3: fg [void container for stochastic mode$
4: U 0

5: Initialize [e.g. at random]

6: while 1<m do

71 1+1

8:  Solve deterministic problem D (;U)

9. Orthogonalizeu : u u L (uu )y

10: if kuky < then

11: I 11 [stagnation of Arnoldi detected|
12: Solv%update problem: U (W)

13: U I(:l Uk «k

14: else

15: Normalize u: u  u=kuky

16: Solve stochastic problem: S (u;U)

17: Add u to its container: W W [f ug

18: Add to its container: [f g

19: if 1 = m then

20: SoIvePupdate problem: U (W)

21: U L:]_ Uk k

22: end if

23:  end if

24: end while

are used to build a deterministic orthogonal basisw (™, and then an update
problem is solved to compute (™. The main advantage of this algorithm is
therefore that it requires a lower number of resolutions for the determinstic and
stochastic problems. The Arnoldi algorithm is stated in Algorithm 3.

Whenever the generation of deterministic modes stagnates into invariant sub-
spaces (detected using the small positive parameter at line 10), an update step
is performed. This update step can be interpreted as a de ation in the Arnoldi
method. Note also that the update problems at lines 12 and 20 concern the
whole stochastic components generated so far, but one could as well perform
a partial update considering only the Arnoldi subspace generated after the last
detected stagnation.

2.6 Practical considerations

Obviously, also the algorithms above need a stochastic discretization. Again,
we shall rely on PC expansions for the stochastic compogents and approximate
M

the stochastic modes ; in the nite dimensional SM by = M, k . Further,
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with this stochastic discretization, the stochastic problem (8) and the update
problem (9) translate into the Galerkin problems
!

M
A UM 4y U =Buog ) [=1:::::M; (10)
k=1
and
| |
X o ' '
A Ui ik suw oy =B oy )y I=1iymandj =150 M
i=1 k=1
(11)

For a given stochastic approximation spaceS™, one can expect the PGD solution
U™ to converge quickly to the Galerkin solution UM 2V S M with m M
modes. This expectation comes from the fact that the PGD constructs the most
relevant stochastic components ; for the expansion, contrary to the Galerkin
case where one chooses priori the stochastic components (as the elements of
the PC basis) and then seek for the solution inSM.

Another point to be underlined in view of the above algorithms is that in each
of them the computationally intensive steps are the resolution of the determin-
istic and, to a lower extent, the stochastic problems plus the update problems
(optional in the Power-Iteration algorithm). As seen in (7) and (10) the size
of the deterministic and stochastic problems are constant and equal to the di-
mension of the discretized space¥ and SM respectively; this is in general much
lower than the size of the Galerkin problem which is the product of the two,
with a signi cant complexity reduction as a result (provided that the number
of systems to be solved is small enough). Concerning the update problem, we
observe that its dimension ism dim(SM) so that if m is less than the dimension
of the discretized spaceV the update problem is again much smaller in size than
the Galerkin problem.

In addition, it will be shown in the following sections that for the Navier-
Stokes equations the actual deterministic problems to be solved have structures
very similar to the original Navier-Stokes equations, facilitating the re-use of
existing deterministic codes, while implementing a Galerkin solver would require
a greater implementation e ort.

We also remark that instead of updating the stochastic components of the
PGD solution, one could instead derive an update problem for the determin-
istic componentsfu;;i = 1;:::;mg, which would in fact have the structure of
the Galerkin problem in (4) but for the approximation in the stochastic space
spanned by thef ;g instead of thef ;g. This alternative should be considered
for problems where the dimension M of the stochastic space exceeds that of the
discretized spaceV.
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3 Navier-Stokes equations with uncertain parame-
ters

We consider the bidimensional, steady, incompressible (constant density) Navier-
Stokes equations on a bounded, simply connected domain  R? with boundary
@. The dimensionless Navier-Stokes equations are

uru= rp+r “(u)+f; (12a)
r u=0; (12b)

whereu :x 2 7! R? s the velocity eld, p:x 2 7! R is the pressure eld,
f :x 2 7! R?is the external force eld and — the viscous stress tensor. For a
Newtonian uid, — in (12a) has for expression

“(u)= =z ru+ru’ ;
(u)2 u u

where > 0 is the viscosity parameter (inverse of a Reynolds number), mea-
suring relative in uence of the inertial (nonlinear) and viscous (linear) contribu-
tions. Accounting for the mass conservation equation (12b), the Navier-Stokes
equations reduce to

Uuru= rp+ r2u+f; (13a)
(13b)

o

ru-=

These equations have to be complemented with boundary conditions; for sim-
plicity, we shall restrict ourselves to the case of homogeneous Dirichlet velocity
boundary conditions on @,

u(x)=0; x2@: (14)

The case of non-homogeneous Dirichlet boundary conditions can be tackled by
introducing a suitable a ne space for the velocity, as shown in [31].

3.1 Functional framework

Next, we classically denote by I2() the space of functions that are square
integrable over . Itis equipped with the following inner product and associated

norm:
z

(P9 = pad ; kak 2y =(q;9%2

We de ne the constrained space
Z
L§()= g2L%): qd=0
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Then, let HY() be the Sobolev space of vector valued functions with all com-
ponents and their rst partial derivatives being square integrable over , and
H3() the constrained space of such vector functions vanishing on@,

n 0
H3()= Vv2HY();v=00n@ :

With the above notations, the Navier-Stokes system (13) with boundary condi-
tions (14) then admits the following weak formulation.
Navier{Stokes equations.

Find (u;p) 2 H§()  L3() such that

o(ususv)+ v (u;v)+ d(piv) = b(v); 8v2Hy()  (15)
d(q;u) = 0; 892 Lg() ;
with the forms de ned by
Z Z
clu;w;v): = (urw) vd ; v(u;v) = ru:rvd ;
VA Z
d(p;v) = pr vd ; biv) = f vd :

Pressure can also be formally suppressed in this weak formulation, by introducing
the subspace of weakly divergence-free functions dfl §(), denoted hereafter
Hé;div()!
n o)
Hoav() = V2HgG() : d(pv)=0; 8p2L3()

Seekingu 2 H é;div(), the weak form simpli es to the following problem.
Divergence-free Navier{Stokes equations.
Find u 2 Hiy, () such that

c(u;u;v)+ v (u;v)= bv); 8v 2 Hgy() : (16)

Finally, we introduce the uncertain parameters. In this paper, we are concerned
by situations where the external forcingf and viscous parameter are uncertain
and, consistently with the previous sections, are seen as functions of a set of N
random variables (e.g. normalized centered Gaussian random variables), =
()and F = F(x; ). As a consequence, the divergence-free Navier{Stokes
equation (16) has now a stochastic solutionU ( ). We can therefore state the
following formulation:

Find U=U(): ! Hjg() such that

cU( U ) V)+ (VU ) V)=V iF());
8V 2 Hggy() ; forae. 2 ;
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whose fully weak counterpart can be written immediately as
Stochastic Navier{Stokes problem.
Find U 2 Hiq, () L2( ;P) such that

C(U;U;V)+ V (U;V)=B(V); 8V 2Hgg() L3 :P):  (17)
The forms C, V and B are given by

C(U;W;V) = E[c(U;W;V)]; V(U;V)=E[Vv(U;V)]

B(V) = E[bV;F):
The previous formulation is ready to be discretized with the Stochastic Galerkin
method, introducing the discretized stochastic spaceSM as in section 2.3. In
practice, the divergence-free constraint is treated by adding a stochastic pressure
eld P( ), see e.g. [19]. Moreover, the size of the Galerkin problem is large, as all
stochastic modes are coupled through the random viscosity and the non-linearity,
so that e cient strategies for its resolution are needed, see for instance [23].
We will however base the following discussion on PGD on the formulation in

Hiav ()  L2( ;P) since we are looking for a PGD decomposition otJ. We
will return back to the issue of pressure later on.

3.2 PGD formulation

We now detail the deterministic, stochastic and update problems associated to
the iterations of the PGD algorithms.

Deterministic problem

We here detz?:;l problem (7). We assume that am-term reduced approxima-
tion UM = ~ M u; ; has been computed. For a given stochastic mode 2
L?( ;P), the assouated deterministic modeu = D( ;U (™) is de ned by the
following problem.

Find u 2 Hy, () such that

C(u; u;, V*C( wi;uM: v+ cU™: u; v)+V(u; v)
=B(v) VUM vy cu™um; v), 8v2Hu():

For convenience and to stress the deterministic character of this problem we
rewrite it as

Find u 2 Hy, () such that

c(u;u;v)+ c(u;vEm( ) v)+ c(vi™(); u;v)

+ev(u;v; )=Bv;UM; ) 8v2HEg () (18)
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In the previous equation we have denoted

XN E 2 E 2

(m) — T = -

veOs L E "7 E
. m). _ E b(V;F) X' E i . X' E i A .
%(V,U( )’ )= [E[ g ] ~ E[[ 3]]V(Ui,V) . I[E[?,]J]C(Ui,Uj,V).

It is therefore seen that the structure of the deterministic PGD problem is es-
sentially the same as the weak formulation of the deterministic incompressible
Navier-Stokes equations, with a few remarkable di erences. In particular: i) we
have two new linear convective terms, associated with convective velocityﬁm);
ii) the viscosity parameter is di erent, since its valueisnowe=E 2 =E 3
i) the forcing term contains all the information about the previous modes which
have been already computed. We further observe that we can always male> 0,
by changing to , owing to the homogeneity of the sought couple ¢ u).

As a result, the resolution of this problem can re-use existing deterministic
ow solvers with minimal adaptations for the computation of the right-hand-side
and the additional convection term. In addition, the enforcement of divergence
free character ofu can be achieved by introducing a deterministic Lagrange

multiplier 2 L3().

Stochastic problem

We now detail perIem (8). Let us assume again that am-term reduced approx-
imation U (M = %, u;j i has been computed. For a given deterministic mode
u 2 Higy, (), the associated stochastic mode = S(u; U (™) is solution of the
following problem.

Find 2 SM such that

C(u; u; wW+CWM: u; W+ c(u;u™m: u)+V (u; u)
=B(u) cUM:ym: yy v@wm™: yy 8 2sM
This is a quadratic equation for in weak form. We can highlight this by
recasting the previous formulation as
Find 2 SM such that
h i Xn
E 2 cu;u;u)+  E[  I(c(uiu;u)+ c(ujusu))+ E[ Iv(usu)

i=1

xn X0

= E[b(u;F)] E[ij lc(uisuj;u) E[ i ]v(ui;u) 8 2sM:
i =1 i=1
| (19)
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. . P
To actually compute the PC expansion of in SM, = Q’Lo bk k., one has next

to choose = in (19) and solve the following set of M quadratic equations in
the coe cients P,: 81=1::::M;

M
c(u;u;u) BPWE[ « ko 1]+
k:k0=1

(c(uj;u;u)+ c(uj;u;u)) B BBl k ko 1]+
i=1 k;k0=1

pd
v(u;u) by boE[ « ko 1] =
k;k0=1
xn w
b(Proiu) E[ ko 1] o(ui; uj; u) B CeE L K ke 1]
ko=1 ij =1 k:k0=1

pd
v(ui;u) b BBl ko 1] 8l=1;:::M;
i=1 k;k0=1

P
where we have supposed thaF admits a PC expansion,F (x; )= M. f o(x) kol ).

Update Problem

Finally, we detail the update problem (9). Given a m-term decomposition
um = ™. u; i, the update problem consists in recomputing all them modes
i by solving the following problem.

Find {2SM:i=1:::::m, such that
xXn xXn ' xn

C uji i; Ui, u +V uji i; u =B( uj)
i=1 i=1 i=1

In the present case, it consists in a system o quadratic equations for ;, all
mutually couplgd, but whose structure is close to the stochastic problem (19).
Denoting ; = |'¥|=1 Ai;k kandtaking = ,k=1;:::;M,in (20), we end up
with a system of quadratic equations for the coe cients "\, whose dimension
is thereforem M.

4 Numerical results

In this Section we consider two test cases of increasing complexity and com-
putational cost: in the rst one the viscous parameter is the only uncertain
parameter, while in the second one we consider both the viscous parameter and
the forcing term as uncertainty sources. The aim of the tests is to compare the

17



PGD approximation against the Galerkin solution, to assess the e ectiveness
of the method. All PGD approximations will be computed with the Arnoldi
method described in Section 2.5.2.

As for the spatial discretization, we will consider a classical Spectral Element
Method discretization, see e.g. [7]. In particular, we will use a grid ofNu Nu
Gauss{Lobatto points for the approximation of the components of the velocity,
while the pressure is approximated over &Nu 2 Nu 2 grid. The non linearity
in the Navier{Stokes equation is solved with a preconditioned Quasi-Newton
method, and at each step the linear system is solved with a GMRES solver.
Once more we remark that the e ciency of the PGD method in determining the
reduced approximation of U does not depend on the discretization method or
Navier{Stokes solver considered, and any technique may be used.

4.1 Test 1. Random viscosity parameter

In the rst test we consider a random viscosity given by

()= -+ Q)
where » > 0and q ) has a Log-normal distribution with median value —°> 0
and coe cient of variation C o 1. For these settings, the random viscosity can
be expressed as

_ —0 . ._logCo,
()= -+7exp( (): = S
where N (0;1), ensuring that 92 [7%C o;~%C o] with a probability ~ 0:995.

Regarding the deterministic force eld, it is well-known that force elds de-
riving from the gradient of a potential induce no ow for homogeneous boundary
conditions. Therefore we consider the deterministic function (x) and de ne f
as

(21)

f=r A0 ); (22)
sothatr ~f =(0;0; r 2 )T. For simplicity, we restrict ourselves here to
forcing terms having constant rotational ,

rAf=0:0)T; (23)
and a zero normal component on@. This leads to the de nition of by

r2 = in

=0 on @ :

It is useful to further de ne the operator L : H () ! H}() that maps the
forcing term in (24) to the corresponding solution, that is

L[]1= : (25)
The magnitude of the forcing term is xed by , which is hereafter set to

= 100 ~°to ensure that kUk 1. The spatial structure of f is shown
in Figure 1(a).

(24)
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Figure 1: Reference Galerkin approximation for Test 1.

Galerkin solution

We start by setting ~°= 1=200,C o = 1:5, Nu= 51 and - = 0:01° and we
consider the classical Galerkin Stochastic Projection method for the approxima-
tion of U. Guided by the expression of the viscosity in (21), we rely on a PC
expansion of the solution using a single normalized Gaussian random variable
and corresponding Hermite PC basis. The Galerkin approximation is therefore
sought as

Ne+1
Ue()= " ug «(); (26)
k=1
with No denoting the expansion order and | denoting the k-th degree Hermite
polynomial in . For this random viscosity distribution, a well converged solution
is obtained for No = 10, as shown in the following discussion.

The Galerkin solution for No = 10 is depicted in Figure 1(b)-1(d), showing
the expected velocity eld (that is the rst mode of the Galerkin solution u§, see
Figure 1(b)), and the expectation and the standard deviation of the rotational
of UC, see Figures 1(c) and 1(d). Plots in Figure 1 highlight the e ect of nonlin-
earities. Indeed, since in the present situation the forcing term is deterministic
and the viscosity parameter does not depend oxx, if the nonlinear convective
terms were neglected the solution of the resulting linear Stokes problem would
be expressed as a product of a deterministic function times a stochastic factor,
U()= ()u. As a consequence mean and standard deviation a§ would
be equal toE( )u and to ( )u respectively, and they would thus exhibit
the same spatial structure. This is not the case here. Indeed, we observe in
Figure 1(c)- 1(d) that expectation and standard deviation eld of the rotational
of the velocity clearly exhibit di erent spatial patterns. In fact, the random
viscosity has the strongest impact on the vorticity eld along the boundary of
the domain, where the shear stress is maximal and the uncertainty level reaches
roughly 25%. Another stringent feature of the standard deviation of the vor-
ticity eld is the presence of detached structures along the boundary, that are
created by the convective e ects.

To better appreciate the complexity of the random ow eld, as well as the
converged character of the Galerkin solution for No = 10, the Karhunen-Loeve
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Figure 2: KL expansion of the reference Galerkin approximation of Test 1.

(SVD) decomposition of UC( ) is computed. Since the Galerkin solution is
computed in a subspaceSM, whose dimension is No+ 1 = 11, its KL expansion
is nite and writes as

%o Netl 0
U()=" ug «()=  uf By Nor1 O
k=0 1=1
(27)
wherefuIG;K" g is an orthonormal set andE[ | |9 = jo. Figure 2 shows the
rotational of few KL modes ule;KL . the plots show the increasing complexity

with the mode index of the spatial structure of the rotational of the KL spatial
modes. They also highlight the impact of the nonlinear convective term which
induces a bending of these structures, due to the advection e ects, which however
possess the symmetries of the present problem.

No+1

q
Figure 2(b) shows the normalized spectrum, that isS; = e=" 1o 8 for

| =1;:::;No+1. It exhibits a fast decay, the 6-th normalized mode being 10 °
times the rst one, with essentially a uniform asymptotic decay rate except for
the very last KL modes which are a ected by the truncation of the stochastic
basis.

PGD approximation

We next compute the PGD approximation of U, using the Arnoldi algorithm
with = 0:01 and xing the maximum rank of PGD to m = 15, and the KL
decomposition of such PGD solution. We still use the same stochastic subspace
SM as before. Figure 3 shows the expected velocity eld E[U (™)), and the
expectation and standard deviation elds of the rotational of U (™. The plots
should be compared with those of the Galerkin solution shown in Figure 1, and
the agreement is excellent.

The same conclusion arises when looking at the rotational of the KL spatial
modes of the rank-15 PGD approximation, which are shown in Figure 4, and
have to be compared with Figure 2.

Figure 4(b) shows the matching between the spectra of the two KL decom-
positions, again showing good agreement between the solutions. Figure 5 shows
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