N

HAL

open science

DEM-based simulation of concrete structures on GPU

Marie Durand, Philippe Maurice Marin, Francois Faure, Bruno Raffin

» To cite this version:

Marie Durand, Philippe Maurice Marin, Francois Faure, Bruno Raffin. DEM-based simulation of
concrete structures on GPU. European Journal of Environmental and Civil Engineering, 2012, 16 (9),
pp.1102-1114. 10.1080/19648189.2012.716590 . hal-00733674

HAL Id: hal-00733674
https://hal.science/hal-00733674

Submitted on 19 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00733674
https://hal.archives-ouvertes.fr

DEM based simulation of concrete
structures on GPU

Marie Durand* — Philippe Marin ™ — Francois Faure™ — Bruno
Raffin *

* INRIA Rhéne-Alpe§" 3S-R (UJF/INPG/CNRSY* LIK (UJF/INPG/UPMF/C-
NRS/INRIA)

ABSTRACTThe benefit of using the Discrete Element Method (DEM) for simulationsctife

in heterogeneous media has been widely highlighted. However modelgegdaucture leads
to prohibitive computations times. We propose to take advantage of Grapiucessor Units
(GPUs) to reduce the computation time, taking advantage of the highly dasdlgdanature

of DEM computations. GPUs are massively parallel coprocessorsasgrgly popular to ac-
celerate numerical simulations. We detail our algorithm and implementatigheofliscrete
element method (DEM) on GPU and present performance results for siondaf rock im-

pact on a concrete slab, before to discuss the pro and cons of movihgeoputation to the
GPU.

RESUME. Pour simuler des structures soumises a de la fracturation, la méthode dasrékd
discrets (DEM) constitue un outil tres efficace. Cependant la modélisdeagrandes struc-
tures est trés colteuse en opération. Suite a I'observation que cedscadait fortement data-
paralleéles, nous proposons de tirer partie des processeurs graphi@gieUs) pour réduire le
temps de calcul. Les GPUs sont des coprocesseurs massivenst@esaide plus en plus utili-
sés pour accélérer des simulations numériques. L'algorithme et I'inggiam sur le GPU sont
détaillés puis nous présentons les résultats obtenus pour une simulatiqradtisur dalle en
béton.

KEYWORDSGPU, DEM, reinforced concrete structures
MoTSs-CLES GPU, DEM, structures en béton armé

1r¢ soumission &JECE le June 21, 2012

2 1 soumission £JECE

1. Introduction

The design of some particular civil engineering structunesst take into account
the risk of severe dynamic loadings due to natural or anthgepic hazards such as
rock falls, aircraft or missile impacts. Often, these seveadings lead to localized
fractures and fragmentation in the concrete structure. Oikerete Element Method
(DEM) (Cundallet al,, 1979) is an appropriated method for modeling such disnanti
ities. The model uses disordered assembly of sphericaligicidetements of different
sizes and masses to reproduce an isotropic and homogenelasidr at a macro-
scopic scale. This method is very well adapted to dynamiasdlpms, and does not
rely upon any assumption about where and how a crack or $eraxks occur and
propagate as the medium is naturally discontinuous.

These DEMs were used first to model the behavior of granuléeniass, but they
also provide very accurate results for cohesive materiidsdoncrete (D’addetat
al., 2002). The studies of Camborde in 2D (Camboeti@l, 2000) or Rousseau in
3D (Rousseawt al., 2008) demonstrated the efficiency of such a discrete approa
to deal with impact problems on reinforced concrete stmastu They also pointed
out the heavy computational load of DEM, limiting its use toadl structures. To
reduce the computational cost, we can use a coupling bettheeDiscrete Element
Method and the Finite Element (FE) Method (Xiabal,, 2004), (Dhiaet al,, 2005),
(Franginet al, 2006), (Rousseaet al, 2009). In the vicinity of the impact, where
important non-linear phenomena occur, the medium will belefled by means of
Discrete Elements (DEs). The use of the FE method far fronintipacted area is a
way to reduce this limitation since in most cases severeadadion phenomena are
localized in the vicinity of the impact.

But for shell structure (Rousseat al., 2010) impacted by large projectile like
an aircraft, the size of the area that is represented by DEerisimportant lead-
ing to an important computation time. Code parallelizati®m classical approach
to decrease simulation time or enable larger simulatiortse doal of this paper is
to evaluate the benefits of the parallelization of DEM basautrete structure sim-
ulation on Graphics Processing Unit (GPU). GPUs are cogsmrs, usually having
their own memory, communicating with the CPU through the Bfjress bus. GPUs
were first dedicated to 3D graphics rendering, but as GPUlexydowards more
programmable architectures capable of executing userapea codes, it became
possible to use them for performing generic computationsday, using GPUs as
general coprocessors is a major trend in high performanaguating, usually called
General Purpose GPU (GPGPU). Their high peak performarsmeiased with their
moderate cost make them good candidates to dramaticalt Hmcomputing power
of a PC or the node of a super computer. Some GPUs are dedica®RIGPU like
the NVIDIA Tesla family (660 GigaFlops peak double preaisitoating point per-
formance for the NVIDIA Tesla M2090), and software enviramnts like OpenCL or
CUDA are targeted at GPGPU programming. GPUs are highlyllphaachitectures,
significantly diverging from CPUsc{. section 3). An implementation on GPU can

DEM simulations on GPU 3

lead to a significant performance improvement over a CPUémgphtation (Leet
al., 2010).

However, such performance gains often require a signifipesgramming effort
and may be limited if the parallelism the application canieitfdoes not match the
GPU architecture. DEMs are good candidates for an efficiétit @nplementation.
A significant part of DEM related computations are data pelré@ne instruction can
be executed in parallel on many different data) and memoegsief today’'s DEM
simulations usually fit the GPUs capabilities.

We first give a brief discription of the DEM we use in SectionV¥e then sketch
in Section 3 the principles of GPU architecture and programgmand their conse-
quences on DE simulation. Our implementation is presemeSeiction 4, and we
present experimental results in Section 5, showing sppsdtian order of magni-
tude compared to an execution on a single core CPU. We finatiglade and discuss
future work in Section 6.

2. Discrete Element Model

The DEM is based on the modeling of the continuum by meangyaf garticles
with 6 degrees of fredoom, 3 translations and 3 rotationter&ation laws between
DEs determine the macroscopic constitutive behavior. éreirly developments par-
ticle interactions relied on friction laws for non-cohesinaterials like sands (Cundall
et al, 1979). Interaction laws for cohesive materials were ddfiager on (Hentzt
al., 2004). To guarantee reasonable calculation duration@deihbased on the Dis-
tinct Elements Model (Cundadit al., 1979) with rigid spheres was chosen. Two types
of interaction are defined. The initial interaction betwé&®a elements is generally a
link interaction (the two elements are not necessarily intact). Initially, two DEs
interact if the distance between their centroids is less #hgiven radius of interaction.
During the simulation additional interactions of contagig can be added. For con-
crete material, we used a modified Mohr-Coulomb model wiftesing (Rousseaet
al., 2008). More sophisticated laws taking into account cortipagohenomena can
be elaborated (Tragt al, 2011) but they are not necessary to model a thin slab mainly
subject to flexion and tension effects.

We can find in (Rousseaet al, 2008) a procedure to identify all the material
parameters based on the simulation of quasi-static cosipreand tension tests. The
point is to identify local parameters to model macroscopia®s such as compressive
strengtho., tensile strengtty, and fracture energyss. Special links are used to
represent steel reinforcements and steel-concreteante(Potapoet al, 2012). In
this paper, we rely on the interaction laws proposed by (Reaget al., 2008) and
(Potapowet al,, 2012). Refer to these publications for more details.

4 1re soumission &EJECE

3. GPU Architecture and DE Parallelization Issues

Since our target parallel architecture is the GPU, we brietlpduce its architec-
ture and its consequences on DE simulation programming.Graphics Processing
Units (GPUs) are high-performance many-core coprocessibily designed to ac-
celerate graphics rendering. They are increasingly usaddelerate general purpose
scientific and engineering computing (GPGPU). The GPUlewice is controlled by
a CPU, also calletiost The GPU architecture being significantly different forna th
CPU, we first introduce its most important characteristesassary to understand the
design and implementation of the GPU specific DEM algorithenpropose. We then
present CUDA, theéle factostandard GPGPU programming environment. This allows
us to finally discuss the parallelization of the DE simulatio

3.1. GPU Architecture Overview

The GPU is built from multiple computing cores called multipessors. Each
multiprocessor is an array of synchronous scalar procassits enabling concur-
rent SIMD computations. SIMD stands for Single InstructhMultiple Data streams,
meaning that all scalar processors in a multiprocessor nhnexecute the same in-
struction, on different data, at a given time. It is well aaifor data-parallel applica-
tions, where a large amount of data undergoes similar caatipos. Its limitation is
that when executing a conditional block, all scalar prooessvaluating the condition
to true proceed synchronously with the block execution evtiie other scalar proces-
sors are kept idle. Obviously, full efficiency is achievedentall scalar processors
follow the same execution path.

Multiprocessors have less double precision floating paiitstthan single preci-
sion ones. Thus, performance can significantly drop whenmdloating operations
from single to double precision. For example, recent GPomfthe NVIDIA Tesla
family feature up to 665 GigaFlops of double precision pexdoce and 1 TeraFlops
of single precision performance (the ratio single/doubdes about 8 in previous gen-
erations).

The GPU manages its own memory, separate from the CPU. Catsférs be-
tween the CPU and GPU are explicitly controlled by the appii. The GPU mem-
ory is divided between a global memory all multiprocessans access, and a shared
memory local to each multiprocessor. Data transfers betysbal and shared mem-
ory are also explicit. GPUs also have a read-only global nmgrfamnstant memory),
one part having special access functions (texture memiouyyyve will not detail these
memories which we do not use in this work.

When the data accessed by different threads of a multiprocéssontiguous,
these accesses are coalesced, i.e. the data is gatheretldndfered in a single pass.
Otherwise they are performed sequentially, incurring angirperformance penalty.

DEM simulations on GPU 5

Concurrent writings to the same address can lead to indensiss. It is up to the
programmer to avoid this, or to usgomicoperations. An operation is saedomic
when it can not be interrupted by any concurrent procesdeseié ends up. Atomic
operations are transparently sequentialized by the GPttegtrice of a loss of effi-
ciency.

Each multiprocessor has a limited number of registers sharescalar processors.
Only scalar processors that can have their register neézisilll be able to perform
computations, the other will be idle. Register use musettoee be carefully managed
to optimize the performance.

3.2. GPU Programming Overview

NVIDIA is currently the leader in GPGPU, and we thereforeu®mn their
architecture and associated programming environnemdtDAC(NVIDIA Corpo-
ration, 2011). The implementation presented in this paperidc be ported to
the OpenCL emerging standard for GPGPU programming withoajpr difficulty
(OpenCL encompasses the CUDA programming model), withgislydower perfor-
mance, as OpenCL compilers still need to gain in maturity.

The CUDA programming model closely matchs the GPU architectThe base
parallelization unit is ahread which is a sequence of instructions executed on a
scalar processor. The CUDA programmer writes programs txbeuted on a scalar
processor, also calldeérnels The kernels are transfered to the GPU and their parallel
execution is parameterized bjock sizes. A block is a group of threads executed by
the same multiprocessor. Inside a block, each thread igifigehby a unique index.
The address of the thread data in the memory is easily commsiag the block and
thread indices. When the number of threads per block is griwte the actual number
of scalar processors, the execution is composed of a seg@ém@rps Each warp
contains one thread per scalar processor. The number afithpeer block should thus
be a multiple of the warp size. If the active threads becorevigiting for data from
the memory, they will be transparently suspended to allowther warp to become
active, enabling to overlap computations with memory asegsAll threads within the
same warp are executed synchronously as imposed by the Stthdezture of the
multiprocessor. Communications between the threads felgrto the same block
are enabled through memory sharing and synchronizatidrugt®ns. Threads in
different blocks can not directly interact.

3.3. Parall€dlization of the DE Simulation

In this section, we review the main phases of the DE simuidtiop and we dis-
cuss the parallelization issues due to the GPU architeatspecially the concurrent
writing. The simulation relies on an explicit integratiacheme. The integration loop
(Figure 1) can be divided in three main parts. In the first,jthg positions and ve-

6 1 soumission £JECE

locities of the DEs are updated based on known forces usimddxés laws of motion
within a given timestep. The parallelization is straightfard, each DE being pro-
cessed independently.

The second part consists in detecting new contacts betvineeBES, which in-
teract if the distance between their centroids is less tharstim of their interaction
radii. This can be compute intensive, as the number of palertntact pairs grows
quadratically along with the number of DEs. A common apphoacaccelerate the
collision detection process is to define a 3D grid that digittee space filled by DEs
into cubic cells, with size equal to the maximum interactiiemeter of all DEs. The
first collision detection step consists in identifying ttedl @ach DE belongs to. Then
for each DE we search for new contacts browsing other DEs theraell it belongs to
and from the 26 neighbor cells. This is again data-pardilel appending a new con-
tact to the list requires a concurrent access. To avoid clagatig contacts, we need for
each element an up-to-date list of every other DE it intsragth. Managing this dy-
namic set of links significantly complexifies the implemeiata. Without altering the
simulation correctness, the collision detection can beweel periodically and not at
every iteration. This period depends on the simulationmpatars. In our simulations,
collision detection is typically scheduled every 10 timepst

The last part is force computation and link update. Eachef@mmputation is
costly, as the high number of parameters required to repréise concrete structure
behavior at a macroscopic scale leads to numerous opesafidme interaction force
can be computed in parallel on each link. However, the actation of forces on
each DE requires a concurrent access to the force vectochbf2&. We then detect
the links and contacts that break due to excessive distanicéeoaction force. This
is straightforwardly parallel, but the list of contacts ded¢o be updated. The initial
links can be marked as broken, to avoid inefficient list coctipas.

Finally, since stability is a major issue with explicit igtation schemes, the time
step is dynamically adjusted at the end of every step (Stibse¢.4). Using DES’
stiffnesses for translation and rotation, we compute autons stiffnesses that are
then accumulated for each DE, which requires another cogruwrite operation.
The time step is then set to the minimum over every coordinafi¢he square root of
the ratio of inertia over stiffnesses.

3.4. Comparison with Molecular Dynamics

DEM simulations are close to Molecular Dynamics (MD) sintidas, notably
because both are dealing with moving particles, with irtiioas between particles
leading to forces, as well as periodic collision detectiémsighbor search in MD).
Andersonet al. (2008) proposed a GPU implementation for MD, later improlgd
Rapaport (2011), for example using an interaction cutaffjeafor the dimension of
the detection grid during the neighbor search. Though tingitementation shows
several similarities with the one we propose in this pagegre remain important

DEM simulations on GPU 7

Initialization

s >

Y
’ Positions and Velocities Upda#e

AR
] Callision Detectiod

no

¥
’ Force and Moment Computati

!

’ Acceleration Computatiob

!

’Timestep Evaluatiob

[End|

Figure 1: Global simulation integration scheme.

differences. First, interactions between DEs have a siiatéftory while forces cor-
responding to interacting MD particles observe some wdlhdd laws. Thereby, in
MD simulations when the neighbor list is updated there ise®dito unselect already
existing interactions, which requires storing the listxiséng interactions. Moreover
DEM computations are more complex, since DEs have rotdtiegrees of freedom,
and are of different types (steel, concrete), requirinfedéit interaction types. Con-
sequently, DEM computations are so greedy in term of opmratand registers need
that it is efficient to compute one force per interaction, #reh to accumulate these
forces at each DE. Conversely, because MD is significantly temputationally in-
tensive, it is more efficient on GPU to compute all interattiorces for each atom
(each force is thus computed twice).

4. Implementation on the GPU

We now detail our GPU implementation composed of a sequeh@® €UDA
kernels (Figure 2). Many of these kernels perform data [gdi@gberations running one
thread per link, contact or DE. The implementation chaléeiggto manage memory
accesses as well as double precision computations. Fquuhadse data is maintained
in special structures in the global memory to ensure coakghment in memory to
favor coalesced parallel accesses.

8 1 soumission £JECE

fﬁelocitiesFromAccelerationé\

’ Positions and Velocities Update }—»

\PositionsFromVelocities

(éomputeGridDimensions

getElementProperties
reorderDataAndFindCellStart
\checkForLinks

] Collision Detection

computeForceConcrete

addForceConcrete
omputeForceSteel
Forces, Moments and Internal P
. . addForceSteel
Variables Computation

{;ddForceConcreteSteel

c
computeForceConcreteSteel
c

{;ddForceContact

resetStiffnesses
- : computeStiffnesses
’ Timestep Evaluation computeCriticalTime
findLocaliseMin

J
omputeForceContact }

’ Acceleration Computation }—»(accelerationsFromForces

Figure 2: CUDA kernels related to integration steps.

4.1. Memory Layout

Let B be the number of threads per block addhe number of DEs. All state vec-
tors (position, velocity, forces and accelerations) apeest per block ofB elements.
All the vectors have3 or 6 components. For instance a force has six coordinates,
three for centroids positions and three for the elementioots. The6 x N force
components are stored continuously in memory, with paddatg at the end to ob-
tain a[XN] x B size array (Figure 3). Within a block, all threads fetch thecé
components from the GPU global memory into the shared meiprseries of B
contiguous, aligned, concurrent and thus coalesced meatmgsses. Next, after a
synchronization to ensure all memory transfers are effectach thread loads from
the shared memory the data it needs for computations. Atrileotthe kernel, the
updated forces stored in shared memory are written bacletgitibal memory follow-
ing the same pattern. This data organization ensures efficiemory transfers while
keeping data conveniently organized in the GPU global mgriidghe CPU needs to
access them.

DEM simulations on GPU 9

ceil (N/B)
gpukD B gpukD
mass 1111 [mass 1] [

inertia [[[[[T]

inertia || {111

Figure 3: GPU structure layout for DE masses and inertia. iayaof B elements
masses is associated with an arrayBogélements inertia in a structure callgg. £ D.
The whole set is constructed by é%] length array of these structures.

mass

N

Al 4

thread

IO

0

i

_mass =

mass[threadId];

i

B-1

Figure 4: lllustration of a data load from global memory (grene) to thread regis-
ters. Every thread within a warp loads its value and this iseda a single coalesced

memory transfer.

The rest of the internal data is more directly stored in glé@U memory in ar-
rays of B size blocks. For instance thecelerationsFromForces kernel computes
accelerations using masses and inertia. For sake of comyraottl to favor data local-
ity, masses and inertia are stored in a single array intérga masses and inertia
as illustrated in figure 3. Thus the threads of a block accesssas or inertia data
taking advantage of the GPU coalescing capabilities (Eidir In this case, the data
is directly loaded to registers without using the shared prgnThis layout is applied
to every set of internal variables stored in the GPU globahoy and used only by

the device.

10 1 soumission &JECE

4.2. Force Computation

A series of kernels are in charge of force computatiargguteForcex*). Each
kernel takes care of one interaction type, operating orsliok contacts only. We
adopted this multi-kernel organization to avoid the diesrigconditional branches re-
quired to support different interaction types. The amoudmaia parallelism avail-
able would have been reduced. Next, forces are accumulatezhch DE, a very
data parallel operation theidForce takes care of. In a recent paper, Shigetal.
(2011) directly accumulate computed force contributiosisg an atomic add opera-
tion. However this operation is costly. Though our appro@tfuires to maintain the
list of interactions each DE is involved in, it does not reguany atomic operation.

4.3. Collision Detection

Collision detection is performed wusing four CUDA kernels.
computeGridDimensions computes the bounding box of the current simula-
tion state.getElementPositionInGrid identifies the cell each DE belongs to. The
third one,reorderDataAndFindCellStart, sorts DEs according to cell indices and
computes the memory offset to identify for each cell thetstgraddress of its list of
DEs. Then the kernelheckForContacts detects the new contacts. More precisely,
the first step computes the dimension of the bounding boxiticatdes all DEs in
the three-dimensional space. This is done by an optimizeallphsearch of both
maximum and minimum among DE positions . The cell size is®et multiple of
the size of the maximum interaction radius in every of the¢hdimensions. Next,
a kernel computes the cell index of each DE. We store a cedixirad a key and the
DE index as the value in two corresponding arrays. Next, wethe DE indices
according to their cell index using the parallel radix sqgre@tion from the CUDPP
library (Satishet al., 2009). The size of these structures is proportional to theker
of DEs and not to the grid resolution. To avoid processing wele cell array
searching for the neighbors of a given DE, an other kernétib@in indirection table
giving for each cell the beginning and end index of its DE liBb improve the local
coherence when searching for neighbors, DE positions atidai® also sorted into
new structures according to their particle order. This méthas been implemented
by NVIDIA in a simple demo called Particles in the CUDA SDK (NMA, 2010),
although they do not need to compute the bounding box at éeptas the simulation
space does not change during the simulation.

Everything being set up, the interaction search can begiear is parallelized
over DEs. Every thread is in charge of testing new interastiwith the particles
present in its cell and neighbor cells. To avoid redundamimaations, only DEs
with higher indices than the current DE are tested in the REl5 and only half of
the neighbor cells are tested. We also maintain the neigidiaf each DE, used to
check if DEs are already connected together (either witiialilink or a previously
detected contact). When a new interaction is detected, itshgd into a list.

DEM simulations on GPU 11

GPU Input Structures GPU kernels GPU Output Structures

ResetStiffnesses =\0 ElementStifinesses
ElementCriticalTime

ElementCriticalTimelndices

LinkProperties ElementStiffnesses

LinkVariableProperties \

ComputeStiffnesses

ElementStiffnesses

Elementinertia \

ComputeCriticalTimes

ElementCritical Time

FindAndLocaliseMin ort
ElementCritical Time

ElementCriticalTimeIndices

Figure 5: Detailed process for checkTimestep with CUDA késrand Cuda struc-
tures names.

4.4, Time step

To compute the new time step (Figure 5), we first reset theegalcom-
puted during the previous step with a call t@setStiffnesses relying on
the GPU memset function. Stiffnesses are computed per interaction type by
computeStiffnesses and cumulated in the corresponding elements stiffnesses.
Then thecomputeCriticalTimes kernel computes a local critical tiniE. per DE
from the 6 stiffnesses (three position and three rotationpuments) and the inertia.
This kernel ends by executing a parallel minimum search taiolthe smallest critical
time, i.e. the time step for the next step.

Finally, accelerations are computed based on forces by the
accelerationsFromForces kernel, followed by an update of velocities and
positions {elocitiesFromAccelerations andpositionsFromVelocities).

12 1 soumission &JECE

Figure 6: Simulation of an impactor projected against afoeaed concrete slab. The
picture has been taken at step 2340, during the impact.itself

Attention must be paid to floating-point operations. Depegan the GPU and
the CUDA version used, default operators are not IEEE-75dpti@ant and must be
changed for IEEE-754 compliant ones. In our case kernelsngpéemented using
IEEE-754 with round to nearest compliant operations ancheacompiled to support
either single or double precision floating point data.

5. Results

We measured the performance of our implementation for thelsition of an im-
pact on a reinforced concrete slab (Figure 6). The scendvewd4, 274 DES with
784 being reinforcing steel rodg2, 718 the slab concrete ariei’2 the concrete rep-
resenting the impactor. The slab dimensions are 1m x 1m x.0Tlhwere arer9211
cohesive links at start. The GPU used is a NVIDIA Fermi C20% w48 cores and
3Go of memory while the CPU is a 6-core Intel Xeon X5650 @2dZ&only one
core is used for running the simulation).

Figure 7a presents an example of each step execution timffeatdt stages of
the simulation. This plot figures the starting of the simiolat The peaks correspond
to the steps performing the collision detection. At the begig, execution times

DEM simulations on GPU 13

I
103 | —o— GPU |
& -—a-CPU ||
= | :
H
g 10°p :
c § i
kel L i
= i |
(S}
Q H |
X
L
10t |- |
[| | | | | | o
0 20 40 60 80 100
Step number
(a) One hundred steps, before the impactor touches the slab.
I I
103 | —eo— GPU |
- —a— CPU |+
@
&
g 107 1
g E ? ® q o o 0 O T E
g I]
(S}
Q H |
X
L
10! = |
| | | | | | | | | |

|
1,900 1,920 1,940 1,960 1,980 2,000 2,020 2,040 2,060 2,080 2,100
Step number

(b) Two hundred steps, the impactor has reached the slab.

Figure 7: Execution timengs - logarithmic scale) per step on the GPU or the CPU.
Time peaks occur when the collision detection is performed.

14 1 soumission &JECE

are constant because the impactor is not yet colliding withdlab. The collision
detection execution i$0 times slower than the other calculation stages on the CPU
(6 times on GPU). Thus, when performed every 10 steps, it taliesta0% of the
average execution time on the CPI0% on the GPU). The speed-up reached by our
GPU implementation is about when the collision detection is not performed and
about30 otherwise compared to the execution time on the GPU.

Results during the impact are presented to show the evolafiche simulation
behavior (Figure 7b). Considering steps without collisiietection, on the CPU, the
execution time increases during the simulation becaudeeatreation and removal of
interactions. On the GPU, the execution time appears aonside data structures
for initial interactions are not altered during the simidat broken links being simply
invalidated, which does not significantly change the exenuime needed to launch
and perform the kernels for these interactions. The exactitne can increase when
contacts are created. However, as these extra contactsogesped in parallel, their
number needs to be important to have a significant impact @wovkrhall execution
time.

During the collision detection on the CPU, the particlessoded in cells using
linked lists. Dynamic memory allocation can lead to an exeouime overhead, but
this is efficient regarding memory space, and execution tBreot affected by the
spreading of particles in space. Conversely, on the GPUpdnallelism is reduced
when particles start being fired away so the collision dairdiecomes less efficient.
As a consequence, the execution time on the GPU tends tasefer collision de-
tections.

6. Conclusion

We presented how the DEM can be used to simulate concretgises on GPU.
After a reminder of the method and its parametrization, waitisl our GPU imple-
mentation and simulation results. One challenge of the D&t ihigh computational
cost. However, its inherent data parallel structure andednrmemory footprint make
it a good candidate to take advantage of the high performah@Us. Our experi-
ments show a speed-up of an order of magnitude 4874 particles compared to an
execution on a single core CPU.

This implementation work revealed several difficulties. aeful management of
memory access patterns is essential to ensure that the @eekgimg units do not stall
waiting for data. The necessity of managing 2 different $ypfparticles, for concrete
and for steel, reduces the data parallelism of the appdicaind almost duplicates
the number of GPU kernels to execute. Only simulations wiktigh particle count
amortize the associated overheads. The neighbor computtp that is required to
identify the interacting particles exhibits a limited Iéeédata parallelism that, creates
a performance bottleneck, even using optimized sorting GRilementations.

DEM simulations on GPU 15

The high implementation cost may counterbalance the pegnce gain, espe-
cially given today’s availability of CPUs with up ti2 cores. A careful parallel imple-
mentation on such processors could probably lead to a signtfspeed-up. Moreover,
good tools for debugging and monitoring GPU implementatiane still missing, mak-
ing the development painful. However GPGPU is still in itdyatage and is quickly
evolving. The next GPU generation will provide featured thay give a significant
advantage to GPGPU. The Intel MIC coprocessor (Seiteal., 2008) has a large
number of x86 cores3Q for the current development prototype), each core having a
large vector unit for data parallel operations. This amsttitre will offer a higher level
of flexibility, enabling cores to work asynchronously, ldgdaving to extract only
a limited amount of data parallelism to fill the vector unitjilg globally showing a
similar amount of parallel processing power. Because th€ klies on a classical
x86 architecture, we can expect to benefit from the developtoels already avail-
able for x86 processors. The AMD APU (Advanced Processinig) imiegrates on a
single chip a CPU and a GPU. It will enable the CPU and the GPih#oe the same
memory, significantly decreasing the cost of data exchargeden the CPU and the
GPU.

7. References

Anderson J. A, Lorenz C. D., Travesset A., “ General purposkecular dynamics simulations
fully implemented on graphics processing units"Comput. Physvol. 227, p. 5342-5359,
May, 2008.

Camborde F., Mariotti C., Donzé F. V., “ Numerical study of rock aodcrete behaviour by
discrete element modellingGomputers and Geotechnjesl. 27, n 4, p. 225 - 247, 2000.

Cundall P. A., Strack O. D. L., “ A discrete numerical model for grian assemblies’Geotech-
nique vol. 29, n 1, p. 47-65, 1979.

D’addeta G. A., Kun F., Ramm E., “ On the application of the discrete irtodeacture propa-
gation in concrete."Granulat Matter vol. 4, p. 77-90, 2002.

Dhia H. B., Rateau G., “ The Arlequin method as a flexible engineerinmyésol”, Interna-
tional Journal for Numerical Methods in Engineeringpl. 62, n 11, p. 1442-1462, 2005.

Frangin E., Marin P., Daudeville L., “ On the use of combined finite/discet#ment method
for impacted concrete structured.,Phys. IV Francevol. 134, p. 461-466, 2006.

Hentz S., Daudeville L., Donzé F. V., “ Identification and Validation of adpéte Element
Model for Concrete”Journal of Engineering Mechanicgol. 130, n 6, p. 709-719, 2004.

Lee V. W.,, Kim C., Chhugani J., Deisher M., Kim D., Nguyen A. D.{iSla N., Smelyanskiy
M., Chennupaty S., Hammarlund P., Singhal R., Dubey P., “ Deibgrtke 100X GPU vs.
CPU myth: an evaluation of throughput computing on CPU and GBUWBARCH Comput.
Archit. Newsvol. 38, p. 451-460, June, 2010.

NVIDIA Corporation, “ NVIDIA CUDA Compute Unified Device ArchitecterProgramming
Guide”, , CUDA Documentation, June, 2011.

NVIDIA S. G., “ Particle Simulation Using CUDA”, , CUDA SDK, May, 2010.

16 1 soumission &JECE

Potapov S., Faucher V., Daudeville L., “ Advanced simulation of dansdgeinforced concrete
structures under impactEuropean Journal of Environmental and Civil Engineeri@@12.

Rapaport D., “ Enhanced molecular dynamics performance with agmugable graphics pro-
cessor” Computer Physics Communicationsl. 182, n 4, p. 926 - 934, 2011.

Rousseau J., Frangin E., Marin P., Daudeville L., “ Damage predigtitre vicinity of an im-
pact on a concrete structure: a combined FEM/DEM approaClorhputers and Concrete
vol. 5, n 4, p. 343-358, 2008.

Rousseau J., Frangin E., Marin P., Daudeville L., “ Multidomain finite disdrete elements
method for impact analysis of a concrete structukgigineering Structurevol. 31, n 11,
p. 2735 - 2743, 2009.

Rousseau J., Marin P., Daudeville L., Potapov S., “ A discrete elerhefitfinite element
coupling for simulating impacts on reinforced concrete structurésfppean Journal of
Computational Mechani¢2010.

Satish N., Harris M., Garland M., “ Designing efficient sorting algoritffiorsnanycore GPUs”,
Parallel Distributed Processing, 2009. IPDPS 2009. IEEE Internati@yanposium orp. 1
-10, may, 20089.

Seiler L., Carmean D., Sprangle E., Forsyth T., Abrash M., Dubgyunkins S., Lake A.,
Sugerman J., Cavin R., Espasa R., Grochowski E., Juan T.aHamrP., “ Larrabee: a
many-core x86 architecture for visual computingCM Trans. Graph.vol. 27, p. 18:1-
18:15, August, 2008.

Shigeto VY., Sakai M., “ Parallel computing of discrete element methotholti-core proces-
sors”,Particuology vol. In Press, Corrected Proof, p. -, 2011.

Tran V., Donzé F.-V., Marin P., “ A discrete element model of ceterunder high triaxial
loading”, Cement and Concrete Composijtegl. In Press, Corrected Proof, p. -, 2011.

Xiao S. P., Belytschko T., “ A bridging domain method for coupling cordimith molecular
dynamics”,Computer Methods in Applied Mechanics and Engineemniog 193, n 17-20,
p. 1645 - 1669, 2004. Multiple Scale Methods for Nanoscale Mechanit8/aterials.

