
HAL Id: hal-00733674
https://hal.science/hal-00733674

Submitted on 19 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DEM-based simulation of concrete structures on GPU
Marie Durand, Philippe Maurice Marin, François Faure, Bruno Raffin

To cite this version:
Marie Durand, Philippe Maurice Marin, François Faure, Bruno Raffin. DEM-based simulation of
concrete structures on GPU. European Journal of Environmental and Civil Engineering, 2012, 16 (9),
pp.1102-1114. �10.1080/19648189.2012.716590�. �hal-00733674�

https://hal.science/hal-00733674
https://hal.archives-ouvertes.fr

DEM based simulation of concrete
structures on GPU

Marie Durand * — Philippe Marin ** — François Faure*** — Bruno
Raffin *

* INRIA Rhône-Alpes** 3S-R (UJF/INPG/CNRS)*** LJK (UJF/INPG/UPMF/C-
NRS/INRIA)

ABSTRACT.The benefit of using the Discrete Element Method (DEM) for simulations of fracture
in heterogeneous media has been widely highlighted. However modeling large structure leads
to prohibitive computations times. We propose to take advantage of GraphicsProcessor Units
(GPUs) to reduce the computation time, taking advantage of the highly data parallel nature
of DEM computations. GPUs are massively parallel coprocessors increasingly popular to ac-
celerate numerical simulations. We detail our algorithm and implementation ofthe discrete
element method (DEM) on GPU and present performance results for simulations of rock im-
pact on a concrete slab, before to discuss the pro and cons of moving such computation to the
GPU.

RÉSUMÉ. Pour simuler des structures soumises à de la fracturation, la méthode des éléments
discrets (DEM) constitue un outil très efficace. Cependant la modélisationde grandes struc-
tures est très coûteuse en opération. Suite à l’observation que ces calculs sont fortement data-
parallèles, nous proposons de tirer partie des processeurs graphiques (GPUs) pour réduire le
temps de calcul. Les GPUs sont des coprocesseurs massivement parallèles de plus en plus utili-
sés pour accélérer des simulations numériques. L’algorithme et l’implantation sur le GPU sont
détaillés puis nous présentons les résultats obtenus pour une simulation d’impact sur dalle en
béton.

KEYWORDS:GPU, DEM, reinforced concrete structures

MOTS-CLÉS :GPU, DEM, structures en béton armé

1re soumission àEJECE, le June 21, 2012

2 1re soumission àEJECE

1. Introduction

The design of some particular civil engineering structuresmust take into account
the risk of severe dynamic loadings due to natural or anthropogenic hazards such as
rock falls, aircraft or missile impacts. Often, these severe loadings lead to localized
fractures and fragmentation in the concrete structure. TheDiscrete Element Method
(DEM) (Cundallet al., 1979) is an appropriated method for modeling such discontinu-
ities. The model uses disordered assembly of spherical and rigid elements of different
sizes and masses to reproduce an isotropic and homogeneous behavior at a macro-
scopic scale. This method is very well adapted to dynamical problems, and does not
rely upon any assumption about where and how a crack or several cracks occur and
propagate as the medium is naturally discontinuous.

These DEMs were used first to model the behavior of granular materials, but they
also provide very accurate results for cohesive materials like concrete (D’addetaet
al., 2002). The studies of Camborde in 2D (Cambordeet al., 2000) or Rousseau in
3D (Rousseauet al., 2008) demonstrated the efficiency of such a discrete approach
to deal with impact problems on reinforced concrete structures. They also pointed
out the heavy computational load of DEM, limiting its use to small structures. To
reduce the computational cost, we can use a coupling betweenthe Discrete Element
Method and the Finite Element (FE) Method (Xiaoet al., 2004), (Dhiaet al., 2005),
(Franginet al., 2006), (Rousseauet al., 2009). In the vicinity of the impact, where
important non-linear phenomena occur, the medium will be modelled by means of
Discrete Elements (DEs). The use of the FE method far from theimpacted area is a
way to reduce this limitation since in most cases severe degradation phenomena are
localized in the vicinity of the impact.

But for shell structure (Rousseauet al., 2010) impacted by large projectile like
an aircraft, the size of the area that is represented by DEs isvery important lead-
ing to an important computation time. Code parallelizationis a classical approach
to decrease simulation time or enable larger simulations. The goal of this paper is
to evaluate the benefits of the parallelization of DEM based concrete structure sim-
ulation on Graphics Processing Unit (GPU). GPUs are coprocessors, usually having
their own memory, communicating with the CPU through the PCIExpress bus. GPUs
were first dedicated to 3D graphics rendering, but as GPUs evolved towards more
programmable architectures capable of executing user developed codes, it became
possible to use them for performing generic computations. Today, using GPUs as
general coprocessors is a major trend in high performance computing, usually called
General Purpose GPU (GPGPU). Their high peak performance associated with their
moderate cost make them good candidates to dramatically boost the computing power
of a PC or the node of a super computer. Some GPUs are dedicatedto GPGPU like
the NVIDIA Tesla family (660 GigaFlops peak double precision floating point per-
formance for the NVIDIA Tesla M2090), and software environments like OpenCL or
CUDA are targeted at GPGPU programming. GPUs are highly parallel architectures,
significantly diverging from CPUs (cf. section 3). An implementation on GPU can

DEM simulations on GPU 3

lead to a significant performance improvement over a CPU implementation (Leeet
al., 2010).

However, such performance gains often require a significantprogramming effort
and may be limited if the parallelism the application can exhibit does not match the
GPU architecture. DEMs are good candidates for an efficient GPU implementation.
A significant part of DEM related computations are data parallel (one instruction can
be executed in parallel on many different data) and memory needs of today’s DEM
simulations usually fit the GPUs capabilities.

We first give a brief discription of the DEM we use in Section 2.We then sketch
in Section 3 the principles of GPU architecture and programming, and their conse-
quences on DE simulation. Our implementation is presented in Section 4, and we
present experimental results in Section 5, showing speed-ups of an order of magni-
tude compared to an execution on a single core CPU. We finally conclude and discuss
future work in Section 6.

2. Discrete Element Model

The DEM is based on the modeling of the continuum by means of rigid particles
with 6 degrees of fredoom, 3 translations and 3 rotations. Interaction laws between
DEs determine the macroscopic constitutive behavior. In the early developments par-
ticle interactions relied on friction laws for non-cohesive materials like sands (Cundall
et al., 1979). Interaction laws for cohesive materials were defined later on (Hentzet
al., 2004). To guarantee reasonable calculation durations, a model based on the Dis-
tinct Elements Model (Cundallet al., 1979) with rigid spheres was chosen. Two types
of interaction are defined. The initial interaction betweentwo elements is generally a
link interaction (the two elements are not necessarily in contact). Initially, two DEs
interact if the distance between their centroids is less than a given radius of interaction.
During the simulation additional interactions of contact type can be added. For con-
crete material, we used a modified Mohr-Coulomb model with softening (Rousseauet
al., 2008). More sophisticated laws taking into account compaction phenomena can
be elaborated (Tranet al., 2011) but they are not necessary to model a thin slab mainly
subject to flexion and tension effects.

We can find in (Rousseauet al., 2008) a procedure to identify all the material
parameters based on the simulation of quasi-static compression and tension tests. The
point is to identify local parameters to model macroscopic values such as compressive
strengthσc, tensile strengthσt and fracture energyGf . Special links are used to
represent steel reinforcements and steel-concrete interface (Potapovet al., 2012). In
this paper, we rely on the interaction laws proposed by (Rousseauet al., 2008) and
(Potapovet al., 2012). Refer to these publications for more details.

4 1re soumission àEJECE

3. GPU Architecture and DE Parallelization Issues

Since our target parallel architecture is the GPU, we brieflyintroduce its architec-
ture and its consequences on DE simulation programming. TheGraphics Processing
Units (GPUs) are high-performance many-core coprocessorsinitially designed to ac-
celerate graphics rendering. They are increasingly used toaccelerate general purpose
scientific and engineering computing (GPGPU). The GPU, ordevice, is controlled by
a CPU, also calledhost. The GPU architecture being significantly different form the
CPU, we first introduce its most important characteristics necessary to understand the
design and implementation of the GPU specific DEM algorithm we propose. We then
present CUDA, thede factostandard GPGPU programming environment. This allows
us to finally discuss the parallelization of the DE simulation.

3.1. GPU Architecture Overview

The GPU is built from multiple computing cores called multiprocessors. Each
multiprocessor is an array of synchronous scalar processorunits enabling concur-
rent SIMD computations. SIMD stands for Single InstructionMultiple Data streams,
meaning that all scalar processors in a multiprocessor can only execute the same in-
struction, on different data, at a given time. It is well adapted for data-parallel applica-
tions, where a large amount of data undergoes similar computations. Its limitation is
that when executing a conditional block, all scalar processors evaluating the condition
to true proceed synchronously with the block execution while the other scalar proces-
sors are kept idle. Obviously, full efficiency is achieved when all scalar processors
follow the same execution path.

Multiprocessors have less double precision floating point units than single preci-
sion ones. Thus, performance can significantly drop when moving floating operations
from single to double precision. For example, recent GPUs from the NVIDIA Tesla
family feature up to 665 GigaFlops of double precision perfomance and 1 TeraFlops
of single precision performance (the ratio single/double was about 8 in previous gen-
erations).

The GPU manages its own memory, separate from the CPU. Data transfers be-
tween the CPU and GPU are explicitly controlled by the application. The GPU mem-
ory is divided between a global memory all multiprocessors can access, and a shared
memory local to each multiprocessor. Data transfers between global and shared mem-
ory are also explicit. GPUs also have a read-only global memory (constant memory),
one part having special access functions (texture memory),but we will not detail these
memories which we do not use in this work.

When the data accessed by different threads of a multiprocessor is contiguous,
these accesses are coalesced, i.e. the data is gathered to betransfered in a single pass.
Otherwise they are performed sequentially, incurring a strong performance penalty.

DEM simulations on GPU 5

Concurrent writings to the same address can lead to inconsistencies. It is up to the
programmer to avoid this, or to useatomicoperations. An operation is saidatomic
when it can not be interrupted by any concurrent processes before it ends up. Atomic
operations are transparently sequentialized by the GPU, atthe price of a loss of effi-
ciency.

Each multiprocessor has a limited number of registers shared by scalar processors.
Only scalar processors that can have their register needs filled will be able to perform
computations, the other will be idle. Register use must therefore be carefully managed
to optimize the performance.

3.2. GPU Programming Overview

NVIDIA is currently the leader in GPGPU, and we therefore focus on their
architecture and associated programming environnement, CUDA (NVIDIA Corpo-
ration, 2011). The implementation presented in this paper could be ported to
the OpenCL emerging standard for GPGPU programming withoutmajor difficulty
(OpenCL encompasses the CUDA programming model), with probably lower perfor-
mance, as OpenCL compilers still need to gain in maturity.

The CUDA programming model closely matchs the GPU architecture. The base
parallelization unit is athread, which is a sequence of instructions executed on a
scalar processor. The CUDA programmer writes programs to beexecuted on a scalar
processor, also calledkernels. The kernels are transfered to the GPU and their parallel
execution is parameterized byblocksizes. A block is a group of threads executed by
the same multiprocessor. Inside a block, each thread is identified by a unique index.
The address of the thread data in the memory is easily computed using the block and
thread indices. When the number of threads per block is greater than the actual number
of scalar processors, the execution is composed of a sequence of warps. Each warp
contains one thread per scalar processor. The number of threads per block should thus
be a multiple of the warp size. If the active threads become idle waiting for data from
the memory, they will be transparently suspended to allow another warp to become
active, enabling to overlap computations with memory accesses. All threads within the
same warp are executed synchronously as imposed by the SIMD architecture of the
multiprocessor. Communications between the threads belonging to the same block
are enabled through memory sharing and synchronization instructions. Threads in
different blocks can not directly interact.

3.3. Parallelization of the DE Simulation

In this section, we review the main phases of the DE simulation loop and we dis-
cuss the parallelization issues due to the GPU architecture, especially the concurrent
writing. The simulation relies on an explicit integration scheme. The integration loop
(Figure 1) can be divided in three main parts. In the first part, the positions and ve-

6 1re soumission àEJECE

locities of the DEs are updated based on known forces using Newton’s laws of motion
within a given timestep. The parallelization is straightforward, each DE being pro-
cessed independently.

The second part consists in detecting new contacts between the DEs, which in-
teract if the distance between their centroids is less than the sum of their interaction
radii. This can be compute intensive, as the number of potential contact pairs grows
quadratically along with the number of DEs. A common approach to accelerate the
collision detection process is to define a 3D grid that divides the space filled by DEs
into cubic cells, with size equal to the maximum interactiondiameter of all DEs. The
first collision detection step consists in identifying the cell each DE belongs to. Then
for each DE we search for new contacts browsing other DEs fromthe cell it belongs to
and from the 26 neighbor cells. This is again data-parallel,but appending a new con-
tact to the list requires a concurrent access. To avoid duplicating contacts, we need for
each element an up-to-date list of every other DE it interacts with. Managing this dy-
namic set of links significantly complexifies the implementation. Without altering the
simulation correctness, the collision detection can be executed periodically and not at
every iteration. This period depends on the simulation parameters. In our simulations,
collision detection is typically scheduled every 10 time step.

The last part is force computation and link update. Each force computation is
costly, as the high number of parameters required to represent the concrete structure
behavior at a macroscopic scale leads to numerous operations. The interaction force
can be computed in parallel on each link. However, the accumulation of forces on
each DE requires a concurrent access to the force vector of each DE. We then detect
the links and contacts that break due to excessive distance or interaction force. This
is straightforwardly parallel, but the list of contacts needs to be updated. The initial
links can be marked as broken, to avoid inefficient list compactions.

Finally, since stability is a major issue with explicit integration schemes, the time
step is dynamically adjusted at the end of every step (Subsection 4.4). Using DEs’
stiffnesses for translation and rotation, we compute interactions stiffnesses that are
then accumulated for each DE, which requires another concurrent write operation.
The time step is then set to the minimum over every coordinates of the square root of
the ratio of inertia over stiffnesses.

3.4. Comparison with Molecular Dynamics

DEM simulations are close to Molecular Dynamics (MD) simulations, notably
because both are dealing with moving particles, with interactions between particles
leading to forces, as well as periodic collision detections(neighbor search in MD).
Andersonet al. (2008) proposed a GPU implementation for MD, later improvedby
Rapaport (2011), for example using an interaction cutoff range for the dimension of
the detection grid during the neighbor search. Though theirimplementation shows
several similarities with the one we propose in this paper, there remain important

DEM simulations on GPU 7

Initialization

Positions and Velocities Update

Detection needed ?

Collision Detection

Force and Moment Computation

Acceleration Computation

Timestep Evaluation

End

yes

no

Figure 1: Global simulation integration scheme.

differences. First, interactions between DEs have a stateful history while forces cor-
responding to interacting MD particles observe some well defined laws. Thereby, in
MD simulations when the neighbor list is updated there is no need to unselect already
existing interactions, which requires storing the list of existing interactions. Moreover
DEM computations are more complex, since DEs have rotational degrees of freedom,
and are of different types (steel, concrete), requiring different interaction types. Con-
sequently, DEM computations are so greedy in term of operations and registers need
that it is efficient to compute one force per interaction, andthen to accumulate these
forces at each DE. Conversely, because MD is significantly less computationally in-
tensive, it is more efficient on GPU to compute all interaction forces for each atom
(each force is thus computed twice).

4. Implementation on the GPU

We now detail our GPU implementation composed of a sequence of 19 CUDA
kernels (Figure 2). Many of these kernels perform data parallel operations running one
thread per link, contact or DE. The implementation challenge is to manage memory
accesses as well as double precision computations. For thatpurpose data is maintained
in special structures in the global memory to ensure correctalignment in memory to
favor coalesced parallel accesses.

8 1re soumission àEJECE

Positions and Velocities Update
velo
itiesFromA

elerations

positionsFromVelo
ities

Collision Detection

omputeGridDimensions

getElementProperties

reorderDataAndFindCellStart

he
kForLinks

Forces, Moments and Internal
Variables Computation

omputeFor
eCon
rete

addFor
eCon
rete

omputeFor
eSteel

addFor
eSteel

omputeFor
eCon
reteSteel

addFor
eCon
reteSteel

omputeFor
eConta
t

addFor
eConta
t

Timestep Evaluation

resetStiffnesses

omputeStiffnesses

omputeCriti
alTime

findLo
aliseMin

Acceleration Computation a

elerationsFromFor
es

Figure 2: CUDA kernels related to integration steps.

4.1. Memory Layout

LetB be the number of threads per block andN the number of DEs. All state vec-
tors (position, velocity, forces and accelerations) are stored per block ofB elements.
All the vectors have3 or 6 components. For instance a force has six coordinates,
three for centroids positions and three for the element rotations. The6 × N force
components are stored continuously in memory, with paddingdata at the end to ob-
tain a⌈ 6×N

B
⌉ × B size array (Figure 3). Within a block, all threads fetch the force

components from the GPU global memory into the shared memoryby series ofB
contiguous, aligned, concurrent and thus coalesced memoryaccesses. Next, after a
synchronization to ensure all memory transfers are effective, each thread loads from
the shared memory the data it needs for computations. At the end of the kernel, the
updated forces stored in shared memory are written back to the global memory follow-
ing the same pattern. This data organization ensures efficient memory transfers while
keeping data conveniently organized in the GPU global memory if the CPU needs to
access them.

DEM simulations on GPU 9

gpuED

mass

inertia

B
gpuED

mass

inertia

B
. . .

ceil(N/B)

Figure 3: GPU structure layout for DE masses and inertia. An array ofB elements
masses is associated with an array ofB elements inertia in a structure calledgpuED.
The whole set is constructed by an⌈N

B
⌉ length array of these structures.

B

_mass = mass[threadId];

mass

0 i B-1thread

Figure 4: Illustration of a data load from global memory (grey zone) to thread regis-
ters. Every thread within a warp loads its value and this is done in a single coalesced
memory transfer.

The rest of the internal data is more directly stored in global GPU memory in ar-
rays ofB size blocks. For instance thea

elerationsFromFor
es kernel computes
accelerations using masses and inertia. For sake of commodity and to favor data local-
ity, masses and inertia are stored in a single array interleavingB masses andB inertia
as illustrated in figure 3. Thus the threads of a block access masses or inertia data
taking advantage of the GPU coalescing capabilities (Figure 4). In this case, the data
is directly loaded to registers without using the shared memory. This layout is applied
to every set of internal variables stored in the GPU global memory and used only by
the device.

10 1re soumission àEJECE

4.2. Force Computation

A series of kernels are in charge of force computations (
omputeFor
e*). Each
kernel takes care of one interaction type, operating on links or contacts only. We
adopted this multi-kernel organization to avoid the divergent conditional branches re-
quired to support different interaction types. The amount of data parallelism avail-
able would have been reduced. Next, forces are accumulated on each DE, a very
data parallel operation theaddFor
e takes care of. In a recent paper, Shigetoet al.
(2011) directly accumulate computed force contributions using an atomic add opera-
tion. However this operation is costly. Though our approachrequires to maintain the
list of interactions each DE is involved in, it does not require any atomic operation.

4.3. Collision Detection

Collision detection is performed using four CUDA kernels.

omputeGridDimensions computes the bounding box of the current simula-
tion state.getElementPositionInGrid identifies the cell each DE belongs to. The
third one,reorderDataAndFindCellStart, sorts DEs according to cell indices and
computes the memory offset to identify for each cell the starting address of its list of
DEs. Then the kernel
he
kForConta
ts detects the new contacts. More precisely,
the first step computes the dimension of the bounding box thatincludes all DEs in
the three-dimensional space. This is done by an optimized parallel search of both
maximum and minimum among DE positions . The cell size is set to a multiple of
the size of the maximum interaction radius in every of the three dimensions. Next,
a kernel computes the cell index of each DE. We store a cell index as a key and the
DE index as the value in two corresponding arrays. Next, we sort the DE indices
according to their cell index using the parallel radix sort operation from the CUDPP
library (Satishet al., 2009). The size of these structures is proportional to the number
of DEs and not to the grid resolution. To avoid processing thewhole cell array
searching for the neighbors of a given DE, an other kernel builds an indirection table
giving for each cell the beginning and end index of its DE list. To improve the local
coherence when searching for neighbors, DE positions and radii are also sorted into
new structures according to their particle order. This method has been implemented
by NVIDIA in a simple demo called Particles in the CUDA SDK (NVIDIA, 2010),
although they do not need to compute the bounding box at each step as the simulation
space does not change during the simulation.

Everything being set up, the interaction search can begin ! Search is parallelized
over DEs. Every thread is in charge of testing new interactions with the particles
present in its cell and neighbor cells. To avoid redundant computations, only DEs
with higher indices than the current DE are tested in the DE’scell, and only half of
the neighbor cells are tested. We also maintain the neighborlist of each DE, used to
check if DEs are already connected together (either with an initial link or a previously
detected contact). When a new interaction is detected, it is pushed into a list.

DEM simulations on GPU 11

!"#$%&'()&*")+

!"#$,-&"-./)%&'()&*")+

0/)1)#*2*"33#)++)+

0/)1)#*4&"*"5-/6"1)

0/)1)#*4&"*"5-/6"1)7#8"5)+

!"#"$%$&''("##"# !"#

)*+,-$"%$&''("##"#

0/)1)#*2*"33#)++)+

$!

0/)1)#*2*"33#)++)+

)*+,-$").&$&/012&+"#

0/)1)#*7#)&*"-

!

0/)1)#*4&"*"5-/6"1)

3&(45(46*/01&#"7&(

0/)1)#*4&"*"5-/6"1)

0/)1)#*4&"*"5-/6"1)7#8"5)+

%&'(

9%:;$)&#)/+9%:;7#(<*;2*&<5*<&)+ 9%:;=<*(<*;2*&<5*<&)+

Figure 5: Detailed process for checkTimestep with CUDA kernels and Cuda struc-
tures names.

4.4. Time step

To compute the new time step (Figure 5), we first reset the values com-
puted during the previous step with a call toresetStiffnesses relying on
the GPU memset function. Stiffnesses are computed per interaction type by

omputeStiffnesses and cumulated in the corresponding elements stiffnesses.
Then the
omputeCriti
alTimes kernel computes a local critical timeTc per DE
from the 6 stiffnesses (three position and three rotation components) and the inertia.
This kernel ends by executing a parallel minimum search to obtain the smallest critical
time, i.e. the time step for the next step.

Finally, accelerations are computed based on forces by the
a

elerationsFromFor
es kernel, followed by an update of velocities and
positions (velo
itiesFromA

elerations andpositionsFromVelo
ities).

12 1re soumission àEJECE

Figure 6: Simulation of an impactor projected against a reinforced concrete slab. The
picture has been taken at step 2340, during the impact itself.

Attention must be paid to floating-point operations. Depending on the GPU and
the CUDA version used, default operators are not IEEE-754 compliant and must be
changed for IEEE-754 compliant ones. In our case kernels areimplemented using
IEEE-754 with round to nearest compliant operations and canbe compiled to support
either single or double precision floating point data.

5. Results

We measured the performance of our implementation for the simulation of an im-
pact on a reinforced concrete slab (Figure 6). The scene involves 14, 274 DEs with
784 being reinforcing steel rods,12, 718 the slab concrete and772 the concrete rep-
resenting the impactor. The slab dimensions are 1m x 1m x 0.1m. There are79211
cohesive links at start. The GPU used is a NVIDIA Fermi C2050 with 448 cores and
3Go of memory while the CPU is a 6-core Intel Xeon X5650 @2.67GHz (only one
core is used for running the simulation).

Figure 7a presents an example of each step execution time at different stages of
the simulation. This plot figures the starting of the simulation. The peaks correspond
to the steps performing the collision detection. At the beginning, execution times

DEM simulations on GPU 13

0 20 40 60 80 100

101

102

103

Step number

E
xe

cu
tio

n
tim

e
(m
s
)

GPU
CPU

(a) One hundred steps, before the impactor touches the slab.

1,900 1,920 1,940 1,960 1,980 2,000 2,020 2,040 2,060 2,080 2,100

101

102

103

Step number

E
xe

cu
tio

n
tim

e
(m
s
)

GPU
CPU

(b) Two hundred steps, the impactor has reached the slab.

Figure 7: Execution time (ms - logarithmic scale) per step on the GPU or the CPU.
Time peaks occur when the collision detection is performed.

14 1re soumission àEJECE

are constant because the impactor is not yet colliding with the slab. The collision
detection execution is10 times slower than the other calculation stages on the CPU
(6 times on GPU). Thus, when performed every 10 steps, it takes about 50% of the
average execution time on the CPU (70% on the GPU). The speed-up reached by our
GPU implementation is about15 when the collision detection is not performed and
about30 otherwise compared to the execution time on the GPU.

Results during the impact are presented to show the evolution of the simulation
behavior (Figure 7b). Considering steps without collisiondetection, on the CPU, the
execution time increases during the simulation because of the creation and removal of
interactions. On the GPU, the execution time appears constant. The data structures
for initial interactions are not altered during the simulation, broken links being simply
invalidated, which does not significantly change the execution time needed to launch
and perform the kernels for these interactions. The execution time can increase when
contacts are created. However, as these extra contacts are processed in parallel, their
number needs to be important to have a significant impact on the overhall execution
time.

During the collision detection on the CPU, the particles aresorted in cells using
linked lists. Dynamic memory allocation can lead to an execution time overhead, but
this is efficient regarding memory space, and execution timeis not affected by the
spreading of particles in space. Conversely, on the GPU, theparallelism is reduced
when particles start being fired away so the collision detection becomes less efficient.
As a consequence, the execution time on the GPU tends to increase for collision de-
tections.

6. Conclusion

We presented how the DEM can be used to simulate concrete structures on GPU.
After a reminder of the method and its parametrization, we detailed our GPU imple-
mentation and simulation results. One challenge of the DEM is its high computational
cost. However, its inherent data parallel structure and limited memory footprint make
it a good candidate to take advantage of the high performanceof GPUs. Our experi-
ments show a speed-up of an order of magnitude for14274 particles compared to an
execution on a single core CPU.

This implementation work revealed several difficulties. A careful management of
memory access patterns is essential to ensure that the GPU processing units do not stall
waiting for data. The necessity of managing 2 different types of particles, for concrete
and for steel, reduces the data parallelism of the application and almost duplicates
the number of GPU kernels to execute. Only simulations with ahigh particle count
amortize the associated overheads. The neighbor computation step that is required to
identify the interacting particles exhibits a limited level of data parallelism that, creates
a performance bottleneck, even using optimized sorting GPUimplementations.

DEM simulations on GPU 15

The high implementation cost may counterbalance the performance gain, espe-
cially given today’s availability of CPUs with up to12 cores. A careful parallel imple-
mentation on such processors could probably lead to a significant speed-up. Moreover,
good tools for debugging and monitoring GPU implementations are still missing, mak-
ing the development painful. However GPGPU is still in its early stage and is quickly
evolving. The next GPU generation will provide features that may give a significant
advantage to GPGPU. The Intel MIC coprocessor (Seileret al., 2008) has a large
number of x86 cores (32 for the current development prototype), each core having a
large vector unit for data parallel operations. This architecture will offer a higher level
of flexibility, enabling cores to work asynchronously, locally having to extract only
a limited amount of data parallelism to fill the vector unit, while globally showing a
similar amount of parallel processing power. Because the MIC relies on a classical
x86 architecture, we can expect to benefit from the development tools already avail-
able for x86 processors. The AMD APU (Advanced Processing Unit) integrates on a
single chip a CPU and a GPU. It will enable the CPU and the GPU toshare the same
memory, significantly decreasing the cost of data exchange between the CPU and the
GPU.

7. References

Anderson J. A., Lorenz C. D., Travesset A., “ General purposemolecular dynamics simulations
fully implemented on graphics processing units”,J. Comput. Phys., vol. 227, p. 5342-5359,
May, 2008.

Camborde F., Mariotti C., Donzé F. V., “ Numerical study of rock andconcrete behaviour by
discrete element modelling”,Computers and Geotechnics, vol. 27, n 4, p. 225 - 247, 2000.

Cundall P. A., Strack O. D. L., “ A discrete numerical model for granular assemblies”,Geotech-
nique, vol. 29, n 1, p. 47-65, 1979.

D’addeta G. A., Kun F., Ramm E., “ On the application of the discrete model to fracture propa-
gation in concrete.”,Granulat Matter, vol. 4, p. 77-90, 2002.

Dhia H. B., Rateau G., “ The Arlequin method as a flexible engineering design tool”, Interna-
tional Journal for Numerical Methods in Engineering, vol. 62, n 11, p. 1442-1462, 2005.

Frangin E., Marin P., Daudeville L., “ On the use of combined finite/discreteelement method
for impacted concrete structures”,J. Phys. IV France, vol. 134, p. 461-466, 2006.

Hentz S., Daudeville L., Donzé F. V., “ Identification and Validation of a Discrete Element
Model for Concrete”,Journal of Engineering Mechanics, vol. 130, n 6, p. 709-719, 2004.

Lee V. W., Kim C., Chhugani J., Deisher M., Kim D., Nguyen A. D., Satish N., Smelyanskiy
M., Chennupaty S., Hammarlund P., Singhal R., Dubey P., “ Debunking the 100X GPU vs.
CPU myth: an evaluation of throughput computing on CPU and GPU”,SIGARCH Comput.
Archit. News, vol. 38, p. 451-460, June, 2010.

NVIDIA Corporation, “ NVIDIA CUDA Compute Unified Device Architecture Programming
Guide”, , CUDA Documentation, June, 2011.

NVIDIA S. G., “ Particle Simulation Using CUDA”, , CUDA SDK, May, 2010.

16 1re soumission àEJECE

Potapov S., Faucher V., Daudeville L., “ Advanced simulation of damageof reinforced concrete
structures under impact”,European Journal of Environmental and Civil Engineering, 2012.

Rapaport D., “ Enhanced molecular dynamics performance with a programmable graphics pro-
cessor”,Computer Physics Communications, vol. 182, n 4, p. 926 - 934, 2011.

Rousseau J., Frangin E., Marin P., Daudeville L., “ Damage predictionin the vicinity of an im-
pact on a concrete structure: a combined FEM/DEM approach.”,Computers and Concrete,
vol. 5, n 4, p. 343-358, 2008.

Rousseau J., Frangin E., Marin P., Daudeville L., “ Multidomain finite anddiscrete elements
method for impact analysis of a concrete structure”,Engineering Structures, vol. 31, n 11,
p. 2735 - 2743, 2009.

Rousseau J., Marin P., Daudeville L., Potapov S., “ A discrete element/shell finite element
coupling for simulating impacts on reinforced concrete structures”,European Journal of
Computational Mechanics, 2010.

Satish N., Harris M., Garland M., “ Designing efficient sorting algorithmsfor manycore GPUs”,
Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, p. 1
-10, may, 2009.

Seiler L., Carmean D., Sprangle E., Forsyth T., Abrash M., Dubey P., Junkins S., Lake A.,
Sugerman J., Cavin R., Espasa R., Grochowski E., Juan T., Hanrahan P., “ Larrabee: a
many-core x86 architecture for visual computing”,ACM Trans. Graph., vol. 27, p. 18:1-
18:15, August, 2008.

Shigeto Y., Sakai M., “ Parallel computing of discrete element method onmulti-core proces-
sors”,Particuology, vol. In Press, Corrected Proof, p. -, 2011.

Tran V., Donzé F.-V., Marin P., “ A discrete element model of concrete under high triaxial
loading”,Cement and Concrete Composites, vol. In Press, Corrected Proof, p. -, 2011.

Xiao S. P., Belytschko T., “ A bridging domain method for coupling continua with molecular
dynamics”,Computer Methods in Applied Mechanics and Engineering, vol. 193, n 17-20,
p. 1645 - 1669, 2004. Multiple Scale Methods for Nanoscale Mechanics and Materials.

