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On the windings of complex-valued Ornstein-Uhlenbeck

processes driven by a Brownian motion and by a Stable process

Stavros Vakeroudis ∗

In memoriam, Marc Yor

Abstract

We deal with a complex-valued Ornstein-Uhlenbeck (OU) process with parameter λ ∈ R

starting from a point different from 0 and the way that it winds around the origin. The
starting point of this paper is the skew product representation for an OU process which is
associated to the skew product representation of its driving planar Brownian motion under a
new deterministic time scale. We present the stochastic differential equations (SDEs) for the
radial and for the winding process. Moreover, we obtain the large time (analogue of Spitzer’s
Theorem for Brownian motion in the complex plane) and the small time asymptotics for
the winding and for the radial process, and we explore the exit time from a cone for a 2-
dimensional OU process. Some Limit Theorems concerning the angle of the cone (when our
process winds in a cone) and the parameter λ are also presented. Furthermore, we discuss
the decomposition of the winding process of a complex-valued OU process in "small" and
"big" windings, where, for the "big" windings, we use some results already obtained by
Bertoin and Werner in [10], and we show that only the "small" windings contribute in the
large time limit. Finally, we study the windings of a complex-valued OU process driven
by a Stable process and we obtain similar results for its (well-defined) winding and radial
process.
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secondary: 60H05, 60G44, 60G51, 60G52.
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1 Introduction

Ornstein-Uhlenbeck (OU) processes -initially introduced in [50] as an improvement to Brownian
motion (BM)† model in order to describe the movement of a particle- appear as a natural model
(or the limit process of several models) used in applications of stochastic processes. A reason for
that is the character of OU process, that is the fact that it is positive recurrent, and it has an
invariant probability (Gaussian) measure. This makes its study different (and easier in a way)
than that of (planar) complex-valued BM which is null recurrent.

In particular, the 2-dimensional (complex-valued) OU process and its windings attracted the
attention of many researchers recently, as it turned out to have many applications, namely in
the domains of finance and of biology. For instance, some financial applications can be found
e.g. in [31, 3, 39], and for some recent works in a biological context we refer e.g. to the following:
rotation of a planar polymer [56], application in neuroscience [4, 16], etc. Motivated by these
applications, we study here the 2-dimensional OU processes (driven by a BM or by a Stable
process) starting from a point distinct from the origin, and the way that they wind around it.

We start in Section 2 by presenting some preliminaries. We recall well-known properties of
OU processes with parameter λ > 0 including the key argument of this paper in Proposition
2.2, that is the skew-product representation of complex-valued OU processes starting from a
point different from 0. In particular interest is the elementary representation of the (well-
defined) continuous winding process as the continuous winding process of its driving planar BM,
as proven in Vakeroudis [52, 51]. We note that some other previous discussions concerning OU
processes can also be found in Bertoin-Werner [10]. In that Section, we further give the stochastic
differential equations (SDE) satisfied by the radial and the angular part of our complex-valued
OU and an analogue of Bougerol’s identity in terms of OU processes.

Section 3 presents the main results concerning the winding number of complex-valued OU
processes. In particular, we study its small and big time asymptotics. We start with stating and

†When we write: Brownian motion, we always mean real-valued Brownian motion, starting from 0 and planar
or complex BM stands for 2-dimensional Brownian motion.
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proving the small time asymptotics which is similar to the BM case (Theorem 3.1), followed by
the analogue for the radial process (Theorem 3.2). Then, in Theorem 3.3, we obtain Spitzer’s
analogue which essentially says that the (well defined) continuous winding process associated
to our complex-valued OU process of parameter λ > 0, starting from a point different from 0,
normalized by t, converges in law, when t → ∞, to a Cauchy variable of parameter λ. Then,
we present again the large time asymptotic analogue Theorem for the radial process. Section 3
also includes an additional large time asymptotics result for the winding process and a remark
associated to windings in a time interval.

Section 4 deals with some more asymptotics, involving first, the parameter λ (big and small
λ asymptotics) and second, the asymptotics for the exit time from a cone of complex-valued OU
processes for big and small total angle. In Section 5 we discuss the "big" and "small" windings
of OU processes, and we compare it to the BM case (see e.g. [36, 40, 41, 33, 42]). In particular,
we obtain that the asymptotic behavior (when t → ∞) for "big" and "small" windings is quite
different for these processes. We start our study by a result due to Bertoin and Werner [10]
(where they use OU processes in order to approach BM) concerning the "big" windings process
for OU processes and we expand it by discussing the contribution of the "small" windings. More
precisely, contrary to the BM case where this decomposition in "big" and "small" windings
is fundamental and both processes affect its winding both in the large time limit and around
several points, for OU processes it is essentially only the "small" windings that are taken into
account, a result stated here as Theorem 5.2. Loosely speaking, a reason for that is the fact that
OU processes are characterized by a force "pulling" them towards the origin (thus differ from
BM), which keeps them in a small neighborhood around it. Hence, taking into account that OU
processes are (positive) recurrent, they are not leaving far away from their origin consequently
it seems that only the "small" windings affect the winding process and not the "big" windings,
when t → ∞. This Section finishes by a discussion concerning the so-called "very big" windings
of a 2-dimensional OU process (see e.g. [10]).

Finally, Section 6 contains a discussion concerning the windings of complex-valued Ornstein-
Uhlenbeck processes driven by a process with jumps (Lévy process), and in particular by a Stable
process (OUSP) and its small and large time behavior. More precisely, we obtain a stochastic
differential equation satisfied by its well defined winding process, involving the driving Stable
process, and the analogue SDE for its associated radial process. We finish by a discussion
concerning a relation between the exit time from a cone for this OU process with the associated
exit time for its driving α-stable process (α ∈ (0, 2]), which allows to obtain similar asymptotic
results as in Sections 3, 4 and 5.

2 Reminder on Ornstein-Uhlenbeck processes

2.1 Notations and basic properties

We start by giving some notations that will be used in what follows. In addition, we recall some
elementary (well-known) properties, concerning on the one hand Ornstein-Uhlenbeck processes
and, on the other hand, windings of planar Brownian motion, the latter being necessary in order
to study Ornstein-Uhlenbeck windings. Before starting, we note that when we write Z we will
always refer to complex-valued Ornstein-Uhlenbeck process starting from a point different from
0 (e.g. z0 ∈ C

∗), whereas B will refer to planar Brownian motion (starting from the same point
z0).
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Preliminaries on Ornstein-Uhlenbeck processes

We consider a complex-valued Ornstein-Uhlenbeck (OU) process

Zt = z0 +Wt − λ

∫ t

0
Zsds, (2.1)

with (Wt, t ≥ 0) denoting a planar Brownian motion with W0 = 0, z0 ∈ C
∗ and λ ≥ 0. For

OU processes, we consider (Bt, t ≥ 0) another planar Brownian motion starting from z0, and we
have the following representation (see e.g. [44])

Zt = e−λt
(
z0 +

∫ t

0
eλsdWs

)

= e−λt (Bαt) ,

where

αt =

∫ t

0
e2λsds =

e2λt − 1

2λ
; α−1

s =
1

2λ
log (1 + 2λs) . (2.2)

Note that the first equation can be easily verified by simply applying Itô’s formula on the right
hand side of (2.2) in order to obtain (2.1), and the second one follows by invoking Dambis-Dubins-
Schwarz Theorem which states that there exists a planar BM B such that (2.2) is satisfied.
From now on, for simplicity and without any loss of generality, we may consider: z0 = 1 + i0,
which is really no restriction.

Proposition 2.1. Ornstein-Uhlenbeck processes satisfy the following "scaling type" property:
for every t > 0 fixed and a > 0,

Zat
(law)
= e−λ(1+a)t

√
e2λat − 1

e2λt − 1
Z ′
t,

where Z ′ is an independent copy of Z.

Proof. Starting from (2.2) and using the scaling property of BM, we have: for a > 0,

Zat = e−λatBαat

(law)
= e−λ(1+a)t

√
αat
αt

eλtB′
αt
,

with B′ denoting an independent copy of B.
The proof finishes by remarking that Z ′

t = eλtB′
αt

and

αat
αt

=
e2λat − 1

e2λt − 1
.

Skew-product representation of planar Brownian motion

Before proceeding to the study of complex-valued OU processes, we first recall some useful
results concerning planar BM B starting from 1+ i0, that we will also use later on. As B starts
from a point different from 0, the continuous winding process of the planar BM B, namely

θBt = Im

(∫ t

0

dBs
Bs

)
, t ≥ 0

4



is well defined [25]. We also define the radial process of the planar BM B:

RBt = |Bt| =⇒ logRBt = Re

(∫ t

0

dBs
Bs

)
, t ≥ 0.

Hence, we recall the well-known skew product representation of planar BM B (see also e.g. [44])

log |Bt|+ iθt ≡
∫ t

0

dBs
Bs

= (βu + iγu)
∣∣∣
u=Ht=

∫ t
0

ds

|Bs|
2

, (2.3)

with (βu + iγu, u ≥ 0) denoting another planar Brownian motion starting from log 1 + i0 = 0.
Equivalently, (2.3) can also be stated as

log |Bt| = βHt ; θBt = γHt , (2.4)

and we easily deduce that the two σ-fields σ{|Bt| , t ≥ 0} and σ{βu, u ≥ 0} are identical, whereas
(γu, u ≥ 0) is independent from (|Bt| , t ≥ 0). Note that the inverse of H will play an essential
role in the sequel and is given by (for further study of the Bessel clock H, see also [58]):

Au ≡ H−1
u = inf{t : Ht > u} =

∫ u

0
e2βsds.

Skew-product representation of Ornstein-Uhlenbeck processes

We return now to the complex-valued OU process Z. Similarly to planar BM, as Z starts from
a point different from the origin, the continuous winding process associated to Z:

θZt = Im

(∫ t

0

dZs
Zs

)
, t ≥ 0

is well defined, and we also introduce the associated radial process:

RZt = |Zt| =⇒ logRZt = Re

(∫ t

0

dZs
Zs

)
, t ≥ 0.

Proposition 2.2. For a complex-valued OU process Z we have the following skew-product rep-
resentation:

θZt = γHα(t)
, (2.5)

logRZt = βHα(t)
− λt, (2.6)

where αt =
e2λt−1

2λ .

Proof. It follows directly from (2.2) together with the skew-product representation of BM (2.4).
Indeed, recalling from Vakeroudis [52] that (2.2) yields

θZt = θBαt
, (2.7)

we get (2.5). Concerning the radial part, using (2.2) we heve

logRZt = logRBαt
− λt, (2.8)

hence (2.6).
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We define now the first exit time from a cone with a single boundary c > 0 for B (respectively
for Z)‡

T θc ≡ inf
{
t ≥ 0 : θBt = c

}
(respectively T θ(λ)c ≡ inf

{
t ≥ 0 : θZt = c

}
). (2.9)

We also define the first exit time from a cone with two symmetric boundaries of equal angles
c > 0 for B (respectively for Z)

T |θ|
c ≡ inf

{
t ≥ 0 :

∣∣θBt
∣∣ = c

}
(respectively T |θ(λ)|

c ≡ inf
{
t ≥ 0 :

∣∣θZt
∣∣ = c

}
).

We remark here that we could also study the first exit time from a cone with two different angles
c > 0 and d > 0, but, for simplicity, we consider only c = d.

Corollary 2.3. Using the previously introduced notations, we have

T θ(λ)c =
1

2λ
log
(
1 + 2λT θc

)
; (2.10)

T |θ(λ)|
c =

1

2λ
log
(
1 + 2λT |θ|

c

)
. (2.11)

Proof. We prove (2.10) ((2.11) follows by repeating the same arguments for T
|θ(λ)|
c ). From (2.9)

and using (2.7), we have

T θ(λ)c = inf
{
t ≥ 0 : θBαt

= c
}
.

Hence

T θ(λ)c = α−1
(
T θc

)
, (2.12)

with α−1(t) = 1
2λ log (1 + 2λt), which yields (2.10).

Remark 2.4. For several asymptotic results of these exit times from a cone, involving small
and large values of the parameter λ and the angle c, we refer to Section 4 below.

2.2 Stochastic differential equations satisfied by the radial and angular part

In this Subsection, we investigate the stochastic differential equations (SDE) satisfied by the
radial and the angular parts of complex-valued OU processes. For this, we present two SDEs
for both the radial and the angular process, the first one involving the new time scale αt and
the second one based on the initial SDE (2.1) satisfied by our 2-dimensional OU process.

First SDE:

On the one hand, we remark that (2.7) yields that the winding process for complex-valued OU
processes satisfies the same stochastic differential equation with that of the winding process for
planar BM but with a different diffusion coefficient, depending on λ. Indeed, we may write

the standard planar Brownian motion as
(
Bt = B

(1)
t + iB

(2)
t , t ≥ 0

)
starting from 1+ i0, where

(B
(1)
t , t ≥ 0) and (B

(2)
t , t ≥ 0) are two independent linear BMs starting respectively from 1 and

0. Hence (following e.g [33] or [44] Theorem 2.11 in Chapter V, p. 193)

log |Zt| = log |Bαt | = −λt+Re

(∫ αt

0

dBs
Bs

)
= −λt+

∫ αt

0

B
(1)
s dB

(1)
s +B

(2)
s dB

(2)
s

|Bs|2
. (2.13)

‡Note that in what follows, the index (λ) of the hitting times (wherever there is one) will always refer to the
respective hitting time of an OU process with parameter λ.
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Similarly

θZt = θBαt
= Im

(∫ αt

0

dBs
Bs

)
=

∫ αt

0

−B(2)
s dB

(1)
s +B

(1)
s dB

(2)
s

|Bs|2
. (2.14)

Equivalently, we have in differential form

d(log |Zt|) = −λ dt+
(
B

(1)
u

|Bu|2
dB(1)

u +
B

(2)
u

|Bu|2
dB(2)

u

)∣∣∣∣∣
u=αt=

e2λt−1
2λ

; (2.15)

dθZt =

(
−B(2)

u

|Bu|2
dB(1)

u +
B

(1)
u

|Bu|2
dB(2)

u

)∣∣∣∣∣
u=αt=

e2λt−1
2λ

. (2.16)

We also remark that skew product representation (2.4) follows from (2.13) and (2.14) by Dambis-
Dubins-Schwarz Theorem.

Second SDE:

Following [33], we decompose the processes in (2.1) into their real and imaginary coordinates,

that is: Zt = Z
(1)
t + iZ

(2)
t and Wt =W

(1)
t + iW

(2)
t , where Z(1) and Z(2) are two real-valued OU

processes, starting respectively from 1 and 0, W (1) and W (2) are two real-valued BMs starting
both from 0, and all of them are independent. Hence

Zt = Z
(1)
t + iZ

(2)
t = |Zt| exp

(
iθZt
)
,

and taking logarithms, we get

log |Zt|+ iθZt = logZt =

∫ t

0

dZs
Zs

=

∫ t

0

dWs − λZsds

Zs

=

∫ t

0

dW
(1)
s + i dW

(2)
s

Zs
− λt =

∫ t

0

dW
(1)
s + i dW

(2)
s

Z
(1)
t + iZ

(2)
t

− λt,

thus

log |Zt| =

∫ t

0

Z
(1)
s dW

(1)
s + Z

(2)
s dW

(2)
s

|Zs|2
− λt;

θZt =

∫ t

0

−Z(2)
s dW

(1)
s + Z

(1)
s dW

(2)
s

|Zs|2
, (2.17)

and equivalently, in differential form

d (log |Zt|) =
Z

(1)
t

|Zt|2
dW

(1)
t +

Z
(2)
t

|Zt|2
dW

(2)
t − λdt;

dθZt =
−Z(2)

t

|Zt|2
dW

(1)
t +

Z
(1)
t

|Zt|2
dW

(2)
t . (2.18)

With < · > standing for the quadratic variation, we have

< Z(1) >t=< Z(2) >t=< W (1) >t=< W (2) >t= t.
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Consider (δt, t ≥ 0),
(
δ̂t, t ≥ 0

)
, (bt, t ≥ 0) and

(
b̂t, t ≥ 0

)
four real BMs all starting from 0,

and independent from each other and from all the other processes. Hence, invoking Dambis-
Dubins-Schwarz Theorem, (2.17) (or equivalently (2.18)) can also be stated in the following
form:

log |Zt| = δ̂∫ t
0

ds
|Zs|2

− λt =

∫ t

0

db̂s
|Zs|

− λt;

θZt = δ∫ t
0

ds
|Zs|2

=

∫ t

0

dbs
|Zs|

.

Note that the latter is the OU analogue of the one for BM, that is (see e.g. [45, Chapter IV,
equation 35.14]) with an independent real BM, starting from 0,

dθBt =
1

|Bt|
dbt.

For a similar discussion, see also [23, Section 4.4.5]).

Remark 2.5. We remark that the two SDEs (2.15) and (2.18) associated to the winding process
of Z are equivalent. This is clear if we replace each OU process in (2.18) by its equivalent form
involving a BM multiplied by e−λt (like in (2.2)).

2.3 An expression related to Bougerol’s identity in law

We can now present the following Proposition coming from [52] which is essentially an attempt
to obtain an analogue of Bougerol’s identity in law for Ornstein-Uhlenbeck processes. We first
recall that Bougerol’s celebrated identity in law states that: with (βt, t ≥ 0) and (β̂t, t ≥ 0) two
real independent BMs, for every u > 0 fixed,

sinh(βu)
(law)
= β̂Au=(

∫ u
0 ds exp(2βs)). (2.19)

For further details and other equivalent expressions and extensions of (2.19), we refer the inter-
ested reader to [53] and the references therein.

Proposition 2.6. We consider two independent OU processes: (Zt, t ≥ 0) which is complex-
valued and (Ξt, t ≥ 0) which is real-valued OU, both starting from a point different from 0. For

every r > 0, define T
(λ)
r (Ξ) = inf

{
t ≥ 0 : eλtΞt = r

}
. Then,

θZ
T

(λ)
r (Ξ)

(law)
= Ca(r), (2.20)

where a(x) = arg sinh(x), and Cσ is a Cauchy variable with parameter σ.

Proof. First, for a real BM β, we introduce the hitting time of a level k > 0: T βk = inf {t ≥ 0 : βt = k}.
Taking equation (2.2) or (2.2) for Ξλt , we have

eλtΞt = δ
( e

2λt−1
2λ

)
,

with (δt, t ≥ 0) denoting a real Brownian motion starting from the same point with Ξ, different
from 0 (without loss of generality, starting e.g. from 1). Thus:

T (λ)
r (Ξ) =

1

2λ
log
(
1 + 2λT δr

)
. (2.21)
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Equation (2.7) for t = 1
2λ log

(
1 + 2λT δr

)
, equivalently αt = T δr , becomes

θZ
T

(λ)
r (Ξ)

= θZ1
2λ

log(1+2λT δ
r )

= θBu=T δ
r
.

Invoking the skew-product representation (2.4), we get

θBT δ
r
= γH

Tδ
r
.

The symmetry principle (see [2] for the original Note and [22] for a detailed discussion), yields
that Bougerol’s identity may be equivalently stated as (the bar stands for the supremum)

sinh(β̄u)
(law)
= δ̄Au ,

hence, by identifying the laws of the first hitting times of a level r > 0, we obtain: T βa(r)
(law)
= HT δ

r
.

We point out that H is the inverse of A (see e.g. [52]). The proof finishes by recalling that
(γ
Tβ
u
, u ≥ 0) is equal in law to a Cauchy process (Cu, u ≥ 0) .

Remark 2.7. Equation (2.21), yields a simple computation of the Laplace transform of T
(λ)
r (Ξ).

More precisely, for r > 1 (note that we have supposed that Ξ0 = 1),

E
[
exp

(
−µT (λ)

r (Ξ)
)]

=
1

Γ
( µ
2λ

)
∫ ∞

0
dt t

µ
2λ

−1e−t−r
√
2λt. (2.22)

Indeed, from (2.21), using that E[exp(−µT δr )] = exp(−r√2µ) (see e.g. [44]), we have that, for
every µ > 0,

E
[
exp

(
−µT (λ)

r (Ξ)
)]

= E
[
exp

(
− µ

2λ
log
(
1 + 2λT δr

))]

= E

[(
1 + 2λT δr

)−µ/(2λ)]

=
1

Γ
( µ
2λ

)
∫ ∞

0
dt t

µ
2λ

−1E
[
exp

(
−t(1 + 2λT δr )

)]
,

from which follows (2.22).

We note that a similar formula for the Laplace transform of the first hitting time

T̂ (λ)
r (Ξ) = inf {t ≥ 0 : Ξt = r}

can be found e.g. in [13] (Chapter 7, Formula 2.0.1, p. 542) or [1] (Proposition 2.1 therein; see
also [8, 14, 47]). In particular, for r > 1 (recall that Ξ0 = 1),

E
[
exp

(
−µT̂ (λ)

r (Ξ)
)]

=
H−µ/λ(−

√
λ)

H−µ/λ(−r
√
λ)

=
eλ/2D−µ/λ(−

√
2λ)

eλr2/2D−µ/λ(−r
√
2λ)

,

where Hν(·) is the Hermite function and Dν(·) is the parabolic cylinder function.

Remark 2.8. Taking λ = 0 in (2.20), we obtain

θT δ
r

(law)
= Ca(r),

where T δr = inf{t : δt = r}, which is the corresponding result for planar BM and which is
equivalent to Bougerol’s identity (2.19). For more details, see e.g. [52, 53].
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3 Small and Large time asymptotics

3.1 Small time asymptotics

Let us now study the windings of complex-valued OU processes in the small time limit. Starting
from Proposition 2.2, we obtain the following:

Theorem 3.1. The family of processes
(
t−1/2θZst, s ≥ 0

)

converges in distribution, as t→ 0, to a 1-dimensional Brownian motion (γs, s ≥ 0).

Proof. We follow the main steps of Theorem 7 in Doney-Vakeroudis [17, p. 297] and we also
make use of (2.7). We split the proof into two parts.

i) First, we prove that for the clock Ht =
∫ t
0 |Bs|−2ds, associated to the planar BM B from

(2.3) or (2.4), we have the a.s. convergence:
(
H(xαu)

αu
, x ≥ 0

)
a.s.−→
u→0

(x, x ≥ 0) , (3.1)

which also implies the weak convergence in the sense of Skorokhod ("=⇒" denotes this type of
convergence):

(
H(xαu)

αu
, x ≥ 0

)
(d)
=⇒
u→0

(x, x ≥ 0) . (3.2)

Indeed, using the definition of H, we have

H(xαu)

αu
=

1

αu

∫ xαu

0

ds

|Bs|2
.

Hence, for every x0 > 0, because |Bu|2 a.s.−→
u→0

1,

sup
x≤x0

∣∣∣∣
H(xαu)− xαu

αu

∣∣∣∣ = sup
x≤x0

1

αu

∣∣∣∣
∫ xαu

0

(
1

|Bs|2
− 1

)
ds

∣∣∣∣ ≤
1

αu

∫ x0αu

0

∣∣∣∣
1

|Bs|2
− 1

∣∣∣∣ ds

s=αuw=

∫ x0

0

∣∣∣∣
1

|Bαuw|2
− 1

∣∣∣∣ dw
a.s.−→
u→0

0. (3.3)

Hence, as (3.3) is true for every x0 > 0, we obtain (3.1), thus also (3.2).
Note that this argument is also valid for a more general clock than that of BM. We just have
to replace the order of stability (power 2 in the denominator) by the new order of stability in
( 0, 2 ] (for further details see [17]).

ii) Using the skew product representation (2.4) and the scaling property of BM, we have that
for every s > 0,

t−1/2θZst = t−1/2θBαst
= t−1/2γ(Hαst)

(law)
= γ(t−1Hαst)

= γ(
α(st)

t

Hα(st)
α(st)

).

However, we have that

α(st)

t
=
e2λst − 1

2λt

t→0−→ s, (3.4)

which, together with (3.1), finishes the proof.
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For the small time limit of the radial process of an Ornstein-Uhlenbeck process, that is: RZ =
(RZu , u ≥ 0) = (|Zu|, u ≥ 0), we have:

Theorem 3.2. The family of processes
(
t−1/2 logRZst, s ≥ 0

)

converges in distribution, as t→ 0, to a 1-dimensional Brownian motion (βs, s ≥ 0).

Proof. Our proof follows the lines of the proof of Theorem 3.1. Using (2.6), we get:

t−1/2 logRZst = t−1/2βHα(st)
− λst1/2.

The scaling property of BM yields that for every s > 0,

t−1/2βHα(st)

(law)
= β(

α(st)
t

Hα(st)
α(st)

).

The proof finishes by invoking (3.4) and the a.s. convergence (3.1) of the clock H.

3.2 Large time asymptotics

Now we turn our study to the Large time asymptotics of the winding process associated to
complex-valued OU processes. Before starting, let us first recall the well-known Spitzer’s cele-
brated asymptotic Theorem for planar BM [49] stating that

2

log t
θBt

(law)−→
t→∞

C1. (3.5)

For other proofs of this Theorem, the interested reader is refereed to e.g. [57, 18, 36, 10, 59, 52, 55]
etc. Note also that, in a more general framework, the asymptotic behavior of the well defined
winding process ϑ of a planar diffusion starting from a point different from the origin has been
discussed by Friedman-Pinsky in [20, 21] and they showed that, when t → ∞, ϑt/t exists a.s.
under some assumptions meaning that the process winds asymptotically around a point. For
other similar studies, see also Le Gall-Yor [33].

The following is the analogue of Spitzer’s Theorem for OU processes:

Theorem 3.3. (Spitzer’s Theorem for OU processes)
The following convergence in law holds:

θZt
t

(law)−→
t→∞

Cλ, (3.6)

where we recall that, Cσ is a Cauchy variable with parameter σ.

Proof. Using (2.7), we have

θZt
λt

=
θBαt

λt
=

log αt
2λt

2θBαt

logαt
.

The proof finishes by using Spitzer’s Theorem (3.5) and remarking that

log αt
2λt

t→∞−→ 1. (3.7)
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We finish this Subsection by stating and proving the following Large time asymptotic result for
the radial process of an Ornstein-Uhlenbeck process:

Theorem 3.4. The following convergence in law holds:

logRZt
t

(law)−→
t→∞

0. (3.8)

Proof. From (2.8), applying the scaling property of BM, we get

log |Zt|
t

= −λ+
log |Bα(t)|

t

(law)
= −λ+

log(
√
αt) + log |B1|

t
.

Using (3.7) and because λ is a constant, we obtain (3.8).

3.3 A complementary Large time asymptotics result

Concerning the asymptotic behavior of the exit time from a cone with single boundary when
t→ ∞, we have the following:

Proposition 3.5. The asymptotic equivalence

2λt P (T θ(λ)c > t)
t→∞−→ 4c

π
,

holds. It follows that, with a, b > 0,

2λt P
(
a < θZt < b

) t→∞−→ 2

π
(b− a).

Proof. The first assertion follows from equation (2.12) together with the analogous result for
planar BM, that is

(log t) P (T θc > t)
t→∞−→ 4c

π
,

For the proof of the latter, see e.g. Proposition 2.5 in [52]. Note that for this proof we could
also invoke standard arguments, found e.g. in Pap-Yor [38] or a more recent proof based on
mod-convergence [15]. The second convergence follows easily by remarking that

2λt P
(
a < |θZt | < b

)
= 2λt

(
P (T θb > αt)− P (T θa > αt)

)

t→∞−→ 4

π
(b− a),

and

P
(
a < θZt < b

)
=

1

2
P
(
a < |θZt | < b

)
.
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3.4 Windings of complex-valued OU processes in ( t, 1 ] for t → 0

We finish this Section by a study of complex-valued OU processes in a time interval. Consider

a 2-dimensional OU process
(
Ẑt, t ≥ 0

)
starting from 0 and we want to study its windings in

( t, 1 ] for t → 0. First, we remark that it doesn’t visit again the origin but it winds a.s. infinitely

often around it. We denote
(
θZ(t,1), 0 ≤ t ≤ 1

)
its (well defined) continuous winding process in

the interval ( t, 1 ], t ≤ 1. We also denote by
(
B̂t, t ≥ 0

)
the planar BM starting from 0, which

is associated to Ẑ.

Proposition 3.6. The following convergence in law holds:

t θZ(t,1)
(law)−→
t→0

Cλ.

Proof. Changing variables u = αtv and applying the scaling property of BM: Bαtv
(law)
=

√
αtB̂v,

with obvious notation, identity (2.7) yields

θZ(t,1) = θB(αt,1)
= Im

(∫ 1

αt

dBu
Bu

)
(law)
= Im

(∫ 1/αt

1

dB̂v

B̂v

)
= θB̂(1,1/αt)

= θẐ(1,1/t).

Hence, from Theorem 3.3 we obtain

t θẐ(1,1/t)
(law)−→
t→0

Cλ,

which finishes the proof.

Remark 3.7. For similar results concerning the windings of planar BM and (respectively of
planar stable processes) in ( t, 1 ] for t→ 0, see [32, 44] (respectively [17]).
Note that for the BM case, we can also invoke a time inversion argument (i.e.: Bu = uB′

1/u

where B′ is another planar BM associated to an OU process Z ′). Hence, this argument could
also be applied for the OU case studied here, i.e.

θZ(t,1) = θB(αt,1)
= Im

(∫ 1

αt

dBu
Bu

)
= Im

(∫ 1

αt

d(uB′
1/u)

uB′
1/u

)
= Im

(∫ 1

αt

d(B′
1/u)

B′
1/u

)

= θB
′

(1,1/αt)
= θZ

′

(1,1/t),

and we apply Theorem 3.3 as before.

4 Limit Theorems for the exit time from a cone

4.1 Small and Big parameter asymptotics

We shall make use of the previously introduced notation for the first hitting times of a level

k > 0 for a real BM γ, that is: T γk = inf {t ≥ 0 : γt = k} and T
|γ|
k = inf {t ≥ 0 : |γt| = k}. The

following Proposition comes from [52] and we refer the reader therein for the proof and for
further results.

Proposition 4.1. For z0 = 1 + i0, the following convergence holds:

2λ E
[
T |θ(λ)|
c

]
− log (2λ)

λ→∞−→ E
[
log
(
T |θ|
c

)]
, (4.1)
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with

E
[
log
(
T |θ|
c

)]
= 2

∫ ∞

0

dz

cosh
(
πz
2

) log (sinh (cz)) + log (2) + cE ,

where cE is Euler’s constant.
For c < π

8 , we also have the following convergence:

1

λ

(
E
[
T |θ(λ)|
c

]
− E

[(
sinh

(
β
T

|γ|
c

))2]) λ→0−→ −1

3
E

[(
sinh

(
β
T

|γ|
c

))4]
. (4.2)

Equivalently,

d

dλ

∣∣∣
λ=0

E
[
T |θ(λ)|
c

]
= lim

λ→0

[
1

λ

(
E
[
T |θ(λ)|
c

]
− E

[
T |θ(0)|
c

])]
= −1

3
E

[(
sinh

(
β
T

|γ|
c

))4]
. (4.3)

Remark 4.2. We cannot get an analogue of (4.1) for E
[
T
θ(λ)
c

]
, because the latter explodes, for

every c > 0. Observe that the obvious analogs of formulae (4.2) and (4.3) are not valid for T
θ(λ)
c

for similar reasons.

4.2 Small and Big angle asymptotics

In this Subsection, we study T
|θ(λ)|
c and T

θ(λ)
c for c→ 0 and for c→ ∞ in the spirit of [55] (see

also [33]). Our main result is the following:

Proposition 4.3. a) For c→ 0, we have

1

c2
T |θ(λ)|
c

(law)−→
c→0

T
|γ|
1 .

b) For c→ ∞, we have

λ
T
|θ(λ)|
c

c

(law)−→
c→∞

|β|
T

|γ|
1
.

Proof. Both proofs are based on (2.11).
a) It follows using the next elementary computation:

log(1 + 2λx)

2λ
− x =

1

2λ

∫ 1+2λx

0

dy

y
=

1

2λ

∫ 2λx

0

(
1

1 + a
− 1

)
da.

Hence, taking x = T
|θ|
c , recalling (2.11) and invoking the fact that (Vakeroudis-Yor [55])

1

c2
T |θ|
c

(law)−→
c→0

T
|γ|
1 ,

we get

1

c2
(T |θ(λ)|
c − T |θ|

c ) =
1

2λc2

∫ 2λT
|θ|
c

0

−a
1 + a

da =

∫ T
|θ|
c /c2

0

−2λc2

1 + 2λc2
db.

Making c→ 0 in both sides, we get the announced result.

b) Obviously,

2λ
T
|θ(λ)|
c

c
=

1

c
log
(
1 + 2λT |θ|

c

)

=
1

c
log T |θ|

c +
1

c
log

(
1

T
|θ|
c

+ 2λ

)
.
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The proof finishes by making c→ ∞ and using the result in [55]:

1

c
log T |θ|

c
(law)−→
c→∞

|β|
T

|γ|
1

.

Remark 4.4. Comparing Proposition 4.3 with Proposition 3.1 in [55], we remark that the
behavior of the exit times from a cone of planar BM and of complex-valued OU processes is
the same when c→ 0 whereas it is different for c→ ∞.

Generalizations

Proposition 4.3 has several variants. For instance we define

T
θ(λ)
−b,a = inf

{
t ≥ 0 : θZt /∈ (b, a)

}
, 0 < a, b ≤ ∞,

and
T γ−d,c = inf{t : γt /∈ (−d, c)}, 0 < c, d ≤ ∞.

Hence, for c→ 0 or c→ ∞, and a, b fixed, we have

• 1
c2
T
θ(λ)
−bc,ac

(law)−→
c→0

T γ−b,a.

• λ
T

θ(λ)
−bc,ac

c

(law)−→
c→∞

|β|T γ
−b,a

.

and with b = ∞, we get

Corollary 4.5. a) For c→ 0, we have

1

c2
T θ(λ)ac

(law)−→
c→0

T γa .

b)For c→ ∞, we have

λ
T
θ(λ)
ac

c

(law)−→
c→∞

|β|T γ
a

(law)
= |Ca|, (4.4)

where Ca is a Cauchy random variable.

Remark 4.6. (Yet another proof of Spitzer’s Theorem for OU processes)
We remark that (4.4) with a = 1 yields another proof for the analogue of Spitzer’s asymptotic
Theorem for OU processes (Theorem 3.3). Indeed, (4.4) can be equivalently stated as:

P
(
T θ(λ)c <

cx

λ

)
(law)−→
c→∞

P (|C1| < x) . (4.5)

Invoking now the symmetry principle of André [2, 22], the LHS of (4.5) is equal to

P

(
sup

u≤cx/λ
θZu > c

)
= P

(
sup

u≤cx/λ
θBα(u) > c

)
= P

(
sup

u≤cx/λ
γHα(u)

> c

)

= P
(
|γHα(cx/λ)

| > c
)
= P

(
|θBα(cx/λ)| > c

)
= P

(
|θZcx/λ| > c

)

t=cx/λ
= P

(
|θZt | >

λt

x

)
,
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and (3.6) follows from (4.5) for every x > 0, by simply remarking that |C1|
(law)
= |C1|−1, together

with the fact that the symmetry principle yields again the following: for k > 0,

P
(
θZt < k

)
=

1

2
P
(
|θZt | < k

)
,

P (Cλ < k) =
1

2
P (|Cλ| < k) .

Remark 4.7. Remark that the winding process of planar BM and that of complex-valued OU
processes have the same behavior when c→ 0 limit, which is not the case when c→ ∞ (compare
e.g. with [55]). For some further results for the reciprocal of the exit time from a cone of planar

Brownian motion T
|θ|
c , that is some infinite divisibility properties, see [54].

Remark 4.8. The interested reader can also compare the results for the exit times from a cone
with the analogues of processes with jumps (stable processes) in [17].

5 Small and Big windings of Ornstein-Uhlenbeck processes

5.1 Small and Big windings

As for planar BM (see e.g. [40, 41, 33]), it is natural to continue the study of the windings
of complex-valued OU processes by decomposing the winding process in "small" and "big"
windings. To that direction, because of the positive recurrence of OU processes, we expect a
significantly different asymptotic behavior (when t → ∞) of these two components comparing
to that of BM, which is null recurrent.

Following e.g. [41], we consider C the whole complex domain where Z a.s. "lives" and we
decompose it in D+ (the big domain) and D− (the small domain) the open sets outside and
inside the unit circle (hence: D+ + D− = C \ {z : |z| = 1}), with the sign + and - standing
for big and small respectively (inspired by the sign of log |z|, with z in the whole domain). We
define

θZ±(t) =
∫ t

0
1(Z(s) ∈ D±) dθ

Z
s , (5.1)

where 1(A) is the indicator of A. The process θZ+ is the process of big windings and θZ− is the
process of small windings, both associated to Z. The Lebesgue measure of the time spent by Z
on the unit circle is a.s. 0, thus

θZ = θZ+ + θZ−. (5.2)

Recall that, as mentioned in Subsection 3.2, the (well-defined) winding process ϑt of a planar
diffusion starting from a point different from the origin was studied by Friedman and Pinsky in
[20, 21], and they showed that, when t→ ∞, ϑt/t exists a.s. under some assumptions implying
that the process winds asymptotically around a point.

A first remark is that, similar to planar BM, the winding process θ is switching between long
time periods, when Z is far away from the origin in D+ and θ changes very slowly (but signif-
icantly) because of θ+, and small time periods, when Z is in D− approaching 0 and θ changes
very rapidly because of θ−. It follows that, contrary to planar BM where the very big windings
and very small windings count for the asymptotic behavior (as t → ∞) of the total winding,
for OU processes only the very small windings contribute. We also note that, the windings for
a very large class of 2-dimensional random walks, behave rather more like θ+ than θ (see e.g.
[5, 6, 7, 10, 46]).

First, we extend Theorem 1 (iii) in Bertoin and Werner [10].
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Proposition 5.1. We consider f a complex-valued bounded Borel function with compact support
on the whole complex domain C. Then, with z ∈ C (equivalently z = x+ iy), we have

1

t

∫ t

0
ds f(Zs)

a.s.−→
t→∞

λ

π

∫

R2

dx dy e−λ(x
2+y2)f(z). (5.3)

Proof. We start by noting that, for fixed s, Zs is bivariate normally distributed where each
component has mean 0 and variance exp(−2λs)αs, where we also recall that:

αs =
1

2λ

(
e2λs − 1

)
.

Hence, the variance converges to 1/(2λ) as s → ∞, and we obtain the invariant probability
measure of (Zt, t ≥ 0), that is:

λ

π
e−λ|z|

2
dx dy.

Invoking the Ergodic Theorem, we obtain

1

t

∫ t

0
ds f (Zs)

a.s.−→
t→∞

∫

R2

dx dy
λ

π
e−λ|z|

2
f(z),

which is precisely (5.3).

We consider now, without loss of generality, that D+ and D− are such that |Z·| ∈ (1,+∞)
and |Z·| ∈ (0, 1) respectively. Hence, using (2.7), we may write

θZ+(t) =

∫ t

0
1(|Zs| ≥ 1) Im

(
dZs
Zs

)
=

∫ t

0
1(|Zs| ≥ 1) Im

(
dBα(s)

Bα(s)

)

=

∫ α(t)

0
1(|Zα−1(u)| ≥ 1) dθBu , (5.4)

where, for the latter, we have changed the variables u = α(s). Similarly,

θZ−(t) =
∫ t

0
1(|Zα−1(u)| ≤ 1) dθBu .

Theorem 5.2. The following convergence in law holds:

1

t
θZ+(t)

(P )−→
t→∞

0, (5.5)

while

1

t
θZ−(t)

(law)−→
t→∞

Cλ. (5.6)

Remark 5.3. Theorem 5.2 essentially means that the big windings of complex-valued Ornstein-
Uhlenbeck processes, do not contribute to the total windings at the limit t → ∞. Hence, it is
only the small windings that is taken into account at the large time limit, which seems natural
if we recall that OU processes are characterized by a force "pulling" them back to their origin,
thus they are positive recurrent.
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Proof. With RZ = (RZt , t ≥ 0) = (|Zt|, t ≥ 0), we define (see also Section 2 in Bertoin and
Werner [10] where a slightly different notation is used, and [36, 41]): for every ε > 0,

θZε (e
t) =

∫ t

0
1(R(s)>ε)dθ

Z
s , t ≥ 1. (5.7)

Moreover, with ε = 0, Spitzer’s Theorem for OU processes (Theorem 3.3) yields

θZ0 (e
t)

t
=
θZ(t)

t

(law)−→
t→∞

Cλ. (5.8)

We will study now separately θZ+ and θZ−. Note that we could use Proposition 5.1 in the spirit
of Kallianpur-Robbins law (we address the interested reader to e.g. Pitman-Yor [41], or [26] for
the original article). However, we proceed to the following straightforward computations.

i) We start by equation (5.4). Using now (2.2) and (2.2), we have:

θZ+(t) =

∫ α(t)

0
1(e−λα

−1(u)|Bu| ≥ 1) dθBu =

∫ α(t)

0
1(−λα−1(u) + log |Bu| ≥ 0) dθBu

=

∫ α(t)

0
1

(
log |Bu| ≥

1

2
log(1 + 2λu)

)
dθBu .

The skew-product representation (2.3) of the planar Brownian motion B yields that (we also
recall that Au = Au(β) =

∫ u
0 exp(2βs)ds = H−1

u )

θZ+(t) =

∫ α(t)

0
1

(
βH(u) ≥

1

2
log(1 + 2λAH(u))

)
dγH(u)

v=H(u)
=

∫ Hα(t)

0
1

(
βv ≥

1

2
log(1 + 2λAv)

)
dγv.

On the one hand, with β̂ and γ̂ denoting two other real BMs starting from 0, independent from
each other, such that: for every t, β̂w = (λt)−1βλ2t2w and γ̂w = (λt)−1γλ2t2w, and changing the
variables v = λ2t2w, we obtain

1

t

∫ Hα(t)

0
1

(
βv ≥

1

2
log(1 + 2λAv)

)
dγv

= λ

∫ 1
λ2t2

Hα(t)

0
1

(
β̂w ≥ 1

2λt
log(1 + 2λAλ2t2w)

)
dγ̂w. (5.9)

Moreover,

1

t2
Hα(t) =

1

t2
H(

exp(2λt)−1
2λ

),

and recalling that (see e.g. [33, 44])

4

(log u)2
Hu

(law)−→
u→∞

T β1 = inf{t : βt = 1} =
1

N2
, with N ∼ N (0, 1)

we get

1

λ2t2
H(

exp(2λt)−1
2λ

) (law)−→
t→∞

T β1 . (5.10)
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On the other hand, changing the variables s = λ2t2u,

1

2λt
log(1 + 2λAλ2t2w) =

1

2λt
log

(
1 + 2λ

∫ λ2t2w

0
e2βsds

)

=
1

2λt
log

(
1 + 2λ3t2

∫ w

0
e2λtβ̂udu

)

=
log(2λ3t2)

2λt
+

1

2λt
log

(
1 +

(
2λ3t2

∫ w

0
e2λtβ̂udu

)−1
)

+ log

(∫ w

0
e2λtβ̂udu

)1/(2λt)

(P )−→
t→∞

log

(
sup
u≤w

eβ̂u
)

= sup
u≤w

β̂u, (5.11)

where the latter follows by invoking again the convergence of the p-norm to the ∞-norm, as
p→ ∞. Convergence (5.11), together with (5.9) and (5.10), yields that

θZ+(t)

t

(law)−→
t→∞

∫ Tβ
1

0
1

(
β̂w ≥ sup

u≤w
β̂u

)
dγ̂w = 0,

hence, it also converges to 0 in Probability.

ii) Concerning the small windings process θZ−, the decomposition in small and big windings
(5.2) together with Spitzer’s Theorem for OU processes (Theorem 3.3-or equivalently (5.8) )
and convergence in Probability (5.5) for the big windings, yield (5.6).

We note that for part ii) of the proof, we could also mimic the proof for the Brownian motion
case (see e.g. [41] and in particular Lemma 3.1 and Theorem 4.1 therein), invoking Williams
"pinching method". This method was introduced in [57] and further investigated in [36] (for
other variations, see also [18, 19]).

Remark 5.4. From (5.7), using the skew-product representation and the Ergodic Theorem (as
in the proof of Theorem 1 (iii) in [10]), and recalling that (1/2)1(u≥0)e

−λudu is the invariant
probability measure of R2, we get

θZε (e
t)√
t

(law)−→
t→∞

kεN ,

where k2ε =
∫∞
ε2 u

−1e−λudu and N ∼ N(0, 1).

Remark 5.5. We finish this Subsection by remarking that, as already mentioned in Bertoin-
Werner [10] (see the Introduction therein), contrary to the planar Brownian motion, this method
does not seem to apply to the windings of a complex-valued Ornstein-Uhlenbeck process about
several points.

5.2 Very Big Windings

Theorem 5.2 (and in particular part i)) is corresponding to the discussion already made in
Bertoin-Werner [10] where they introduced the ν-big (respectively ν-small) windings of planar
BM (we use a slightly modified notation convenient for the needs of the present work), i.e.

θB,νt =

∫ t

1
1(|Bs| ≥ sν) dθBs , t ≥ 1;

θB,−νt =

∫ t

1
1(|Bs| ≤ s−ν) dθBs , t ≥ 1,
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and saying that the case ν = 1/2 is a critical case which corresponds to the so-called very big
windings θB,1/2 (see also Le Gall-Yor [34]).
Indeed, repeating the arguments of part i) in the proof of Theorem 5.2 with some modifications
(e.g. in the equation corresponding to (5.9), change the variables u = (log t)2w), we get

θB,νt

(law)−→
t→∞

∫ Tβ
1

0
1 (βv ≥ 0) dγv ⇐⇒ ν < 1/2.

We turn now our study to the ν-big (respectively ν-small) windings of complex-valued OU
processes

θZ,νt =

∫ α(t)

1
1(|Zs| ≥ sν) dθBs , t ≥ 1;

θZ,−νt =

∫ α(t)

1
1(|Zs| ≤ s−ν) dθBs , t ≥ 1.

Proposition 5.6. The following convergence in law holds:

θZ,νt

(law)−→
t→∞

∫ T β̂
1

0
1

(
β̂v ≥ (1 + 2ν) sup

u≤v
β̂u

)
dγv, (5.12)

which is not degenerate if and only if 1 + 2ν < 1 ⇐⇒ ν < 0, and

θZ,−νt

(law)−→
t→∞

∫ T β̂
1

0
1

(
β̂v ≤ (1− 2ν) sup

u≤v
β̂u

)
dγv (5.13)

which is not degenerate if and only if 1− 2ν < 1 ⇐⇒ ν > 0.

Proof. The slightly modified arguments above in the proof of Theorem 5.2 yield that

θZ,νt =

∫ Hα(t)

0
1

(
βv ≥

1

2
log(1 + 2λAv) + ν logAv

)
dγv ,

and

1

2t
log(1 + 2λAv) +

ν

t
logAv

v=t2w
=

1

2t
log(1 + 2λAt2w) +

ν

t
logAt2w

(P )−→
t→∞

(1 + 2ν) sup
u≤w

β̂u.

hence we get (5.12). Similarly, we obtain (5.13).

6 Windings of Ornstein-Uhlenbeck processes driven by a Stable
process (OUSP)

6.1 Preliminaries on Lévy and Stable processes

For some basic properties of Lévy processes and Stable processes we refer to e.g. [9] or [29].
Coming from Lamperti [30], a Markov process J taking values in R

d, d ≥ 2 is called isotropic
or O(d)-invariant (O(d) is the group of orthogonal transformations on R

d) if its transition
satisfies

Pt(φ(x), φ(B)) = Pt(x,B),
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for any φ ∈ O(d), x ∈ R
d and Borel subset B ⊂ R

d.
Moreover, J is said to be α-self-similar if, for α > 0,

Pψt(x,B) = Pt(ψ
−αx, ψ−αB),

for any ψ > 0, x ∈ R
d and B ⊂ R

d.
We turn now our interest to the 2-dimensional case (d = 2). We denote by (Ũt, t ≥ 0)

a standard isotropic stable process of index α ∈ (0, 2) taking values in the complex plane
and starting from u0 + i0, u0 > 0. Without loss of generality (it follows easily by a scaling
argument), from now on we may assume that u0 = 1. Some basic properties of Ũ are the
following (see e.g. [9, 29]): it has stationary independent increments, its sample paths are right
continuous and has left limits (cadlag) and, with 〈·, ·〉 standing for the Euclidean inner product,

E
[
exp

(
i〈λ, Ũt〉

)]
= exp (−t|λ|α), for all t ≥ 0 and λ ∈ C. Ũ is transient, limt→∞ |Ũt| = ∞ a.s.

and it a.s. never visits single points. Note that for α = 2, we are in the Brownian motion case.
We also introduce the following processes: Q = (Qt, t ≥ 0) denotes a planar Brownian motion

starting from 1 + i0 and S = (S(t), t ≥ 0) stands for an independent stable subordinator with
index α/2 starting from 0, where α ∈ (0, 2), i.e.

E [exp (−µS(t))] = exp
(
−tµα/2

)
,

for all t ≥ 0 and µ ≥ 0. It follows that the subordinated planar Brownian motion Ũ· = Q2S(·) is
a standard isotropic stable process of index α. The Lévy measure of S is

α

2Γ(1− α/2)
s−1−α/21{s>0}ds .

and it follows that, the Lévy measure ν of Ũ is (see e.g. [11])

ν(dx) =
α

2Γ(1− α/2)

∫ ∞

0
s−1−α/2P (Q2s − 1 ∈ dx) ds

=
α

8πΓ(1− α/2)

(∫ ∞

0
s−2−α/2 exp

(
−|x|2/(4s)

)
ds

)
dx

=
α 2−1+α/2Γ(1 + α/2)

πΓ(1− α/2)
|x|−2−αdx.

The windings of Stable processes have already been studied and we refer the interested reader
to Bertoin-Werner [11], Doney-Vakeroudis [17] and the references therein.

6.2 Windings of planar OU processes driven by a BDL process

We turn now our study to the windings of complex-valued Ornstein-Uhlenbeck processes driven
by a Stable process (OUSP). We consider

Vt = v0 + Uλt − λ

∫ t

0
Vsds, (6.1)

with (Ut, t ≥ 0) denoting the Background 2-dimensional time homogeneous driving Lévy (Stable
in our case) process (BDLP), starting from 0, a terminology initially introduced in [3], v0 ∈ C

∗

and λ ≥ 0 (for more details about BDLP, see also [48, 37] and the references therein). Note
that, following [3] p. 175, the SDE satisfied by V is written in the form (6.1), which follows

21



after a simple change of variables, in order to obtain a stationary solution.
We also have the following representation:

Vt = e−λt
(
v0 +

∫ λt

0
esdUs

)
,

which is equivalent to (6.1) by using e.g. Itô’s formula.
Without loss of generality, we may suppose: v0 = 1 + i0. Moreover, writing now U as a
subordinated planar BM, i.e.: Q2S(t), we obtain

Vt = e−λt
(
1 +

∫ λt

0
esdQ2S(s)

)
.

We use now:
(
Vt = V

(1)
t + iV

(2)
t ; t ≥ 0

)
and

(
Ut = U

(1)
t + iU

(2)
t ; t ≥ 0

)
, where V (1), V (2) are two

independent 1-dimensional OU processes starting respectively from 1 and 0, and U (1), U (2) are
two independent 1-dimensional Stable processes (with the same index of stability α) starting
both from 0. As V starts from a point different from 0, following [11] or [17], we can consider
a path on a finite time interval [0, t] and "fill in" the gaps with line segments. In that way, we
obtain the curve of a continuous function f : [0, 1] → C with f(0) = 1 and since 0 is polar and
V has no jumps across 0 a.s., its winding process θV =

(
θVt , t ≥ 0

)
is well defined.

Proposition 6.1. The winding and the radial process of a complex-valued OU process V driven
by a Stable process satisfy respectively the following SDEs:

θVt = λ1/α
∫ t

0

V
(1)
s dU

(2)
s − V

(2)
s dU

(1)
s

|Vs|2
, (6.2)

logRVt = −λt+ λ1/α
∫ t

0

V
(1)
s dU

(1)
s + V

(2)
s dU

(2)
s

|Vs|2
. (6.3)

Proof. We start by writing (6.1) in differential form, i.e.

dVt = dUλt − λVtdt, V0 = v0 = 1 + i0.

Hence,

Im

(
dVt
Vt

)
= Im

(
dUλt − λVtdt

Vt

)
= Im

(
dUλt
Vt

)
= Im



d
(
U

(1)
λt + iU

(2)
λt

)

V
(1)
t + iV

(2)
t




=
−V (2)

t dU
(1)
λt + V

(1)
t dU

(2)
λt

|Vt|2
,

which writes

θVt = λ1/α
∫ t

0

V
(1)
s dU

(2)
s − V

(2)
s dU

(1)
s

|Vs|2
,

and equation (6.2) follows by applying the stability property: U
(j)
λt

(law)
= λ1/αU

(j)
t , j = 1, 2.

Similar computations for the radial process
(
RVt = |Vt|, t ≥ 0

)
, yield

logRVt = −λt+
∫ t

0

V
(1)
s

|Vs|2
dU

(1)
λs +

∫ t

0

V
(2)
s

|Vs|2
dU

(2)
λs

thus (6.3).
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6.3 Windings of planar OU processes driven by a Stable process

In this last Subsection, we will investigate the case of the complex-valued OU process

Vt = v0 + Jt − λ

∫ t

0
Vsds,

where (Jt)t≥0 is an α-stable process with α ∈ (0, 2]. We also introduce the clock:

HJ
t ≡

∫ t

0

ds

|Js|α
,

having as an inverse:

(HJ)−1
u ≡ AJu ≡ inf{t ≥ 0 : HJ

t > u} =

∫ u

0
exp{αξs} ds . (6.4)

Following [11], we may get the Lamperti correspondence for stable processes (the analogue of
the skew product representation for planar BM). Indeed, following [24] and using Lamperti’s
relation (see e.g. [44]), there exist two real-valued Lévy processes (ξu, u ≥ 0) and (ρu, u ≥ 0),
where the first one is non-symmetric whereas the second one is symmetric, both starting from
0, such that:

log |Jt|+ iθJt = (ξu + iρu)
∣∣∣
u=HJ

t =
∫ t
0

ds
|Js|

α

. (6.5)

Note here that, contrary to the BM case, |J | and JAJ
·
/|JAJ

·
| are not independent as, roughly

speaking, they jump at the same times (see [11, 17] and the references therein for further
discussion). Using (6.4), from (6.5) we get

{
|Jt| = exp

(
ξ(HJ

t )
)
⇔
∣∣∣JAJ

t

∣∣∣ = exp (ξt) , (extension of Lamperti’s identity)

θJt = ρ(HJ
t ) ⇔ θ

(
AJt
)
= ρ(t) .

(6.6)

We also define the random times T
|θJ |
c ≡ inf{t : |θJt | ≥ c} and T

|ρ|
c ≡ inf{t : |ρt| ≥ c}, with

c > 0, and the "generalized" skew-product representation (6.5) (or (6.6)) writes:

T |θJ |
c = (HJ)−1

u

∣∣∣
u=T

|ρ|
c

=

∫ T
|ρ|
c

0
ds exp(αξs) ≡ AJ

T
|ρ|
c
.

Proposition 6.2. The following relation holds:

θVt = θJ̃α̂(t), (6.7)

where

α̂(t) =

∫ t

0
eαλsds =

eαλt − 1

αλ
⇐⇒ α̂−1(t) =

1

αλ
log(1 + αλt).

Hence, the hitting time τ
|θV |
c = inf{t ≥ 0, |θVt | = c} satisfies

τ |θ
V |

c =
1

αλ
log(1 + αλτ |θ

J̃ |
c ), (6.8)

or equivalently

E

[
e−uτ

|θV |
c

]
= E

[
(1 + αλτ |θ

J̃ |
c )−u/(αλ)

]
. (6.9)

23



Proof. First, we use Dubins-Schwartz Theorem which extends to the case of α-stable processes
(see e.g. [27, 28]), meaning that there exists an independent α-stable process J̃ starting from v0
such that

v0 +

∫ t

0
eλsdJs = J̃α̂(t).

Similar computations as in the complex-valued OU driven by a BM case (see e.g. [52]) yield
(6.7). Using the latter we get (with obvious notation)

τ |θ
V |

c = inf{t ≥ 0, |θJ̃α̂(t)| = c} = α̂−1(τ |θ
J̃ |

c ),

thus (6.8). Finally, (6.9) follows from (6.8) by taking the Laplace transform in both sides.

Mimicking the study of complex-valued OU processes driven by BM, we can obtain similar
asymptotic results by invoking the asymptotics of stable processes from [11, 17]. In particular,
using the "generalized" skew product representation (6.6) together with Theorems 4.4 and 3.2
from [17] respectively, we get the following small and big time asymptotics. Note that both
results below refer to convergence in distribution on D([ 0,∞ ) ,R) endowed with the Skorohod
topology.

Theorem 6.3. (i) The family of processes (t−1/αθV
α̂−1(AJ̃

st)
, s ≥ 0) converges in distribution as

t→ 0 to a 1-dimensional symmetric α-stable process.

(ii) The family of processes (t−1/2θVα̂−1(exp(st)), s ≥ 0) converges in distribution as t → ∞ to a

1-dimensional Brownian motion multiplied by
√
r(α), with

r(α) =
α 2−1−α/2

π

∫

C

|z|−2−α|φ(1 + z)|2dz,

where dz stands for the Lebesgue measure on C and for every complex number z 6= 0, φ(z)
denotes the determination of its argument valued in ( − π, π ].
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