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ABSTRACT

While bottom-up approaches have emerged as the standard, default

approach to clustering for speaker diarization we have always found

the top-down approach gives equivalent or superior performance.

Our recent work shows that significant gains in performance can be

obtained when cluster purification is applied to the output of top-

down systems but that it can degrade performance when applied

to the output of bottom-up systems. This paper demonstrates that

these observations can be accounted for by factors unrelated to the

speaker and that they can impact more strongly on the performance

of bottom-up clustering strategies than top-down strategies. Ex-

perimental results confirm that clusters produced through top-down

clustering are better normalized against phone variation than those

produced through bottom-up clustering and that this accounts for

the observed inconsistencies in purification performance. The work

highlights the need for marginalization strategies which should en-

courage convergence toward different speakers rather than toward

nuisance factors such as that those related to the linguistic content.

Index Terms— Speaker diarization, hierarchical clustering, pu-

rification, phone normalization

1. INTRODUCTION

Over the last few years speaker diarization has emerged as a dedi-

cated and increasingly active field of research and has utility in any

situation where multiple (and possibly competing, or overlapping)

speakers may be expected. Speaker diarization involves identifying

the number of speakers within an acoustic stream and the labeling

of intervals in which each speaker is active. The problem is usu-

ally unsupervised, i.e. no a priori knowledge is available. This leads

to a trial-and-error search for an optimal speaker inventory and the

two dominant approaches to speaker diarization: bottom-up and top-

down.

The bottom-up approach is by far the most popular and systems

based on this approach have consistently achieved the best levels of

performance in the NIST RT evaluations [1], e.g. [2, 3], although

top-down systems also achieve competitive results [4]. While some

have reported that bottom-up approaches are more robust than their

top-down counterparts [5] our own work [6] shows that the two ap-

proaches give comparable results, with neither being consistently su-

perior to the other.

One noticeable difference that we have observed in the perfor-

mance of the two approaches relates to purification. Purification

techniques aim to ‘purify’ clusters of speech from all but the domi-

nant speaker and are reported by many to give significant improve-

ments with bottom-up approaches [7, 8, 9]. Our experience, how-

ever, shows that performance can sometimes deteriorate when pu-

rification is applied to bottom-up strategies but that it leads to con-

sistent improvements in top-down systems [6]. These observations

led us to investigate the two diarization approaches more thoroughly

and to study their relative merits.

The contribution in this paper relates to a comparison of bottom-

up and top-down approaches to speaker diarization. The study shows

that the two clustering approaches are similarly effective in search-

ing for the optimal number of speakers but behave differently in

discriminating between individual speakers and in normalizing nui-

sance variation. This paper concentrates on linguistic effects which

are not explicitly related to differences between speakers. Such fac-

tors can make top-down systems more stable but less discriminative,

and vice versa for bottom-up systems. We also explain why purifi-

cation works well with top-down approaches but why it can degrade

results when applied to bottom-up systems.

The remainder of this paper is organized as follows. Section 2

aims to formalize the problem of speaker diarization and includes an

analysis of the challenges that must be addressed in practical sys-

tems. This analysis leads naturally to the bottom-up and top-down

approaches which are qualitatively compared in Section 3. Empirical

results reported in Section 4 aim to confirm the theory. Conclusions

and directions for future work are presented in Section 5.

2. PROBLEM FORMULATION

Let O denote the parameterized audio stream. The task of speaker

diarization can be formally defined as follows:

(S̃, G̃) = argmax
S,G

P (S, G|O)

= argmax
S,G

P (S, G)P (O|S, G) (1)

where S and G are the speaker sequence and segmentation respec-

tively and where S̃ and G̃ are their optimized counterparts repre-

senting who (S) spoke when (G). Two models are thus required

to solve the optimization task: acoustic speaker models P (O|S, G)
and speaker turn models P (S, G). The former are usually conven-

tional Gaussian mixture models (GMMs) whereas the latter are usu-

ally omitted altogether.

There are two principle difficulties in implementing a practical

speaker diarization system. First, the number of speakers is unknown

and it is thus necessary to determine a speaker inventory. Second,

whilst the acoustic models depend fundamentally on the speaker,

they also depend on a number of other nuisance factors such as the

linguistic content. In this paper we assume for simplicity that the

major nuisance variation relates only to the phone class of uttered

speech, which we denote as Q.



To formulate a solution which addresses these two challenges,

we introduce the speaker inventory ∆, and let Γ(∆) represent all

possible speaker sequences. By omitting the speaker turn model we

derive the solution from Equation 1 as follows:

(S̃, G̃, ∆̃) = argmax
S,G,∆:S∈Γ(∆)

∑

Q

P (O|S, G, Q)P (Q|S)

= argmax
S,G,∆:S∈Γ(∆)

∑

Q

P (O|S, G, Q)P (Q) (2)

where Q is naturally independent of G and is further assumed to be

independent of S. Equation 2 reveals two important issues that any

practical speaker diarization system must address. First, the speaker

inventory ∆ must be optimized together with the speaker sequence

S and the segmentation G. There is no analytical solution for ∆
and so a trial-and-error search is typically conducted. This leads to

the two principle approaches to speaker diarization: the bottom-up

approach, which searches for an optimal ∆ by starting with a larger

inventory before moving to a smaller inventory, and the top-down

approach whose search is performed in the opposite direction. They

are commonly referred to as agglomerative and divisive hierarchi-

cal clustering respectively. Second, upon the comparison of Equa-

tions 1 and 2, we note that the acoustic speaker model P (O|S, G)
is phone normalized. This implies that P (O|S, G) must be trained

with speech material containing all possible phones, otherwise Q

will not be marginalized.

3. BOTTOM-UP VERSUS TOP-DOWN

The bottom-up and top-down approaches to speaker diarization are

opposing strategies to determine a speaker inventory ∆. Both ap-

proaches have the potential to obtain the same inventory and thus the

direction in which it is sought (top-down or bottom-up) is inconse-

quential; of paramount importance is how well the acoustic speaker

models P (O|S, G) are normalized against nuisance factors (such as

Q) and how well they discriminate between speakers. In this section

we compare the two processes in this respect.

3.1. Normalization and discrimination

Both bottom-up and top-down approaches rely heavily on the ex-

pectation maximisation (EM) algorithm and will converge to a lo-

cal maximum of Equation 2 for a fixed size ∆. In the case where

inter-speaker variation dominates over intra-speaker variation then

we can assume that the local maximum corresponds to an optimal

diarization on speakers, as opposed to any other acoustic class. In

this situation, both bottom-up and top-down systems should provide

similar diarization outputs. However, where the linguistic content

bears a significant influence the local maximum may correspond to

other acoustic units, such as phones Q instead of speakers S, partic-

ularly if the different speaker models are not well normalized, i.e. Q

is not fully marginalized.

The top-down approach draws new speakers from a potentially

well-normalized background model and usually exploits a large

amount data for model adaptation. In this case linguistic nuances

tends to be marginalized and the resulting models tend to be well

normalized. However the speaker variation may also be normalized

together with linguistic nuances. This is essential to avoid since

it leads to less discriminative speaker models. The bottom-up ap-

proach, on the contrary, is more likely to converge quickly to a local

maximum of Equation 2 due to the large number of small clusters

that are created for initialisation, which leads to highly discrimi-

native models at the beginning of the iterative process. However,

while these models may discriminate between speakers, they may

also discriminate between linguistic nuances, such as particular

phone classes. In other words, speaker clusters obtained with the

bottom-up approach tend to be poorly normalized. This is particu-

larly true when short-term cepstral-based features are used, though

recent work with prosodic features have potential to discourage such

behavior [10].

This argument highlights the respective advantage and disadvan-

tage of the two diarization approaches: top-down systems tend to be

well normalized but less discriminative, whereas bottom-up systems

are more discriminative but less normalized.

3.2. Speaker purification

No matter which approach is applied, the central idea is to maximise

discrimination between speakers while normalizing non-speaker

variations. For bottom-up systems, the paramount objective is to

normalize non-speaker variations, in particular linguistic nuances,

while for top-down approaches, the emphasis is to increase discrim-

inability. Purification [4] is such a technique for improving cluster

discrimination. By purifying the resulting models of data from other

speakers, more discriminative models can be obtained and better

diarization results are expected. Significant improvements have

been reported with purification for both bottom-up systems [7, 8, 9]

and top-down system [4], however the above analysis shows that it

is likely to be more efficient with top-down approaches for which

speaker purification is essential.

4. EXPERIMENTAL WORK

In this section we present our experimental work which aims to con-

firm the behaviour of the two approaches outlined above. We briefly

describe the two experimental systems in Section 4.1 and datasets

in Section 4.2. Diarization results are reported in Section 4.3 before

experiments to assess differences in phone normalization and cluster

purity are reported in Sections 4.4 and 4.5 respectively.

4.1. Experimental systems

Both our bottom-up and top-down systems were implemented with

the same ALIZE software toolkit [11] and development approaches

(e.g. pre-processing algorithms, parameter optimization, etc.). Each

system starts with a common speech activity (SAD) component

which is based upon a two-state hidden Markov model (HMM).

The two states represent speech and non-speech events respectively

and are 32-component GMM models trained on appropriate external

data using an EM/ML algorithm [4]. Iterative Viterbi decoding and

model re-estimation are applied to adapt the models to the prevailing

ambient conditions.

Segmentation and clustering is then performed according to the

bottom-up or top-down scenario. Both rely on a common HMM

strategy where each state aims to characterize a single speaker and

the state transitions represent speaker turns. Our bottom-up system

is an agglomerative hierarchical clustering (AHC) strategy with a se-

quential EM algorithm based on the approach in [3]. Clustering is

controlled according to the Information Change Rate (ICR) [12] and

a Ts stopping criterion [13] is used to stop cluster merging. Our top-

down system is a divisive hierarchical clustering (DHC) approach

based on an evolutive HMM strategy and is exactly as described

in [4]. Purification [4] is optionally applied before a common MAP



based re-segmentation with feature normalization is applied to the

outputs of each system.

4.2. Datasets

Our experimental systems were optimized on a development dataset

of 23 conference meetings from the NIST RT‘04, ‘05 and ‘06 eval-

uations. Performance was then assessed on independent RT‘07

and RT‘09 evaluation datasets and on a separate corpus contain-

ing 19 hours of televised, French-language Grand Echiquier (GE)

chat/debate television shows [14]. There is no overlap between

development and evaluation datasets and in all cases no prior knowl-

edge is available, except an approximate idea of the number of

speakers which is used solely in the case of the bottom-up system.

This is only so that the system is initialized with a number of clus-

ters that exceeds the likely number of true speakers. Only results

obtained on the evaluation datasets are reported here.

4.3. Diarization performance

Diarization Error Rates (DERs) for the four different systems are il-

lustrated in Table 1. Results are presented with (OV) and without

(NOV) the scoring of overlapping speech. Since it is the default

scoring metric in the NIST RT evaluations we concentrate only on

the former. Performance for the bottom-up system is illustrated on

row 3 of Table 1. DER scores of 23.8%, 19.1% and 33.7% are ob-

tained on the RT‘07, RT‘09 and GE datasets respectively. We note a

large difference in performance between meeting and TV-show do-

mains. This is mainly due to the higher number of (often relatively

inactive) speakers in the case of TV-shows (average of 13 speakers

cf. 5 for meeting data).

Performance for the top-down system is given on row 5 of Ta-

ble 1. DERs of 18.3%, 26.0% and 40.4% are obtained on the three

datasets respectively and thus indicate an inconsistency in the com-

parative performance of top-down and bottom-up approaches: top-

down performance is superior for the RT‘07 dataset whereas bottom-

up performance is superior for the RT‘09 and GE datasets. Our

hypothesis is that this discrepancy is accounted for by factors that

are unrelated to differences between speakers. This argument is ex-

plained further in Sections 4.4 and 4.5. First though, we investigate

the impact of purification on both system outputs.

The performance of bottom-up and top-down systems with pu-

rification is illustrated on rows 4 and 6 of Table 1 respectively. For

the bottom-up approach we note that for the RT‘07 dataset, even

if there is a slight improvement in performance with purification

(22.7% DER cf. 23.8%) there is a significant degradation in per-

formance for the RT‘09 dataset and a smaller degradation for the

GE dataset. For the top-down system, however, performance con-

sistently improves upon the application of purification (bottom two

rows) for all three datasets. These observations support our conjec-

ture proposed in Section 3 that (i) the clusters identified by top-down

systems are less discriminative and thus require purification, and (ii)

those produced with the bottom-up systems are less well normal-

ized against phone variation and that this cannot always be improved

upon through purification.

4.4. Phone normalization

As argued above, we hypothesize that bottom-up systems are rela-

tively more likely than top-down systems to converge to sub-optimal

local maximums of Equation 2. These are likely to correspond to

nuisance variation such as that related to the linguistic content. In

order to confirm this hypothesis we computed and compared the dis-

tribution of phones within each cluster of the diarization output. This

is obtained through an automatic phone alignment using the ground-

truth word-level transcriptions. The phone distribution is computed

for each cluster according to the fraction of speech time attributed to

each phone. Then the average inter-cluster distance D is computed

for each file as follows:

D =

(

N

2

)

−1 N
∑

n=1

N
∑

m=n+1

DKL2(Cn||Cm),

where N is the size of the speaker inventory ∆, i.e. the number of

clusters, and where the binomial coefficient
(

N

2

)

is the number of

unique cluster pairs. DKL2(Cn||Cm) is the symmetrical Kullback-

Leibler (KL) distance between the phone distributions for clusters

Cn and Cm, defined as:

DKL2(Cn||Cm) =
1

2

(

DKL(Cn||Cm) + DKL(Cm||Cn)
)

where DKL(Cn||Cm) is the KL divergence of Cn from Cm. We

note that the symmetrical KL metric has been used for the segmen-

tation and clustering of broadcast news [15].

In the case of good phone normalization we expect the average

inter-cluster distance to be small since the clusters should have the

same phone distribution, while higher average inter-cluster distances

may indicate a higher degree of convergence toward phones, or other

acoustic classes, rather than toward speakers.

The mean and variance of the average inter-cluster distance for

the RT‘07 and RT‘09 datasets are illustrated in Table 2. Results for

the GE dataset are not included since there are no ground-truth word-

level transcriptions for this dataset. For the baseline bottom-up sys-

tem the average inter-cluster distances are 0.17 and 0.14 for the two

datasets respectively. When purification is applied these figures fall

to 0.13 and 0.12 thereby indicating a slight improvement in phone

normalization in both cases. The average inter-cluster distances are

consistently lower for the top-down system where they fall from 0.11

and 0.10 to 0.07 and 0.08 with purification. Considering the vari-

ances in columns 4 and 5 of Table 2, we note a consistent decrease

in all cases: reductions in the mean are accompanied by reductions

in the variation. These results suggest that, as predicted, the clusters

identified with the top-down system are better normalized against

phone variation than those identified with the bottom-up system.

4.5. Cluster purity

The results presented in Section 4.4 do not account for why results

deteriorate significantly when purification is applied to the RT‘09

dataset. To explain this behavior we analyzed the average speaker

purity in each system output. The speaker purity is defined as the

percentage of data in each cluster which are attributed to the most

dominant speaker. Columns 2 and 3 of Table 3 present the average

cluster purities for the RT‘07 and RT‘09 datasets. For the RT‘07

dataset purification leads to marginal improvements: 1.6% absolute

improvement for the bottom-up system and 2.3% for the top-down

system. However, for the RT‘09 dataset performance is different

for bottom-up and top-down systems. While cluster purity improves

by 2.3% for the top-down system, purity deteriorates by 4% for the

bottom-up system.

Since a larger number of clusters will naturally lead to higher pu-

rities it is necessary to consider the number of clusters in each case to

properly appreciate the resulting effects of purification on diarization



RT‘07 RT‘09 GE

System OV NOV OV NOV OV NOV

Bottom-up 23.8 20.8 19.1 13.5 33.7 29.0

Bottom-up+Pur. 22.7 19.6 27.0 21.8 33.9 29.1

Top-down 18.3 15.0 26.0 21.5 40.4 36.0

Top-down+Pur. 17.8 14.4 21.1 16.0 38.5 33.9

Table 1. DERs with (OV) and without (NOV) the scoring of over-

lapping speech, with and without purification (Pur.).

Mean Variance

System RT‘07 RT‘09 RT‘07 RT‘09

Bottom-up 0.17 0.14 0.167 0.013

Bottom-up + Pur. 0.13 0.12 0.017 0.005

Top-down 0.11 0.10 0.006 0.004

Top-down + Pur. 0.07 0.08 0.001 0.002

Table 2. Inter-cluster phone distribution distances.

performance. The number of clusters in each system output is illus-

trated in columns 4 and 5 of Table 3 in which the last row indicates

the true number of speakers. All systems over-estimate the num-

ber of speakers and purification always reduces their number. When

coupled with increases in average purity, then improved diarization

performance should be expected. For the bottom-up system and the

RT‘09 dataset the decrease in the number of clusters when purifica-

tion is applied is negligible, whereas the purity also decreases. This

can only result in poorer diarization performance.

5. CONCLUSIONS

Even though the performance of bottom-up and top-down ap-

proaches to speaker diarization is generally comparable they po-

tentially exhibit different behavior in the face of nuisance factors

that are unrelated to different speakers, such as that related to the

linguistic content. While bottom-up approaches are more discrimi-

native they tend to produce clusters which are less well normalized

against such variation and are thus more likely than their top-down

counterparts to converge to other acoustic units that are unrelated

to differences between speakers. The latter tend to produce clusters

which are better normalized but less discriminative. This explains

why performance can sometimes degrade when purification is ap-

plied to clusters obtained in bottom-up systems. Future work should

focus on enhanced purification algorithms for bottom-up systems

and approaches that are generally more robust to nuisance factors

such as the linguistic content.
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