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Abstract

A general framework of partial cooperation and shareholding interlocks in oligopo-
lies is first introduced, and then the best responses of the firms are determined. The
monotonic dependence of the equilibrium industry output on the cooperation levels
of the firms is proved. Conditions are given for the local asymptotic stability of the
equilibrium which require sufficiently small speed of adjustments. Antitrust thresh-
olds are then introduced into the model which may result in the loss of equilibrium
or in the presence of multiple equilibria. The dynamic behavior of the associated
dynamic models with adaptive output adjustments also becomes more complex:
period-2 cycles may emerge and coexist with stationary states.

JEL code: C71

Key words: oligopolies, partial cooperation, shareholding interlocks, antitrust
threshold

1 Introduction

Cournot oligopolies are the most frequently discussed economic models in the
literature of mathematical economics. This research area was originated by
Cournot (1838), and based on his pioneering work, many scientists have intro-
duced and examined the different variants of the classical Cournot model. A
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comprehensive summary of earlier works is given in Okuguchi (1976) and their
multiproduct extensions and some applications are presented in Okuguchi
and Szidarovszky (1999). The most frequently discussed extensions are single-
product models with product differentiation, multi-product oligopolies, labor-
managed and rent-seeking games. The existence and uniqueness of the equilib-
ria was the central research issue in the earlier years, and later the attention
of scientists has been turned to the dynamic variants of these models. The
asymptotic behavior of dynamic oligopolies became the main focus, first in
the linear case and later nonlinearities have been introduced into the models.
In most studies the total profits or the profits per labor units were the pay-
off functions of the firms, and no cooperation among the firms was assumed.
In the noncooperative case the Nash-equilibrium is the solution of the static
game and in most cases it is the steady state of the dynamic extensions. The
equilibrium is a strategy vector such that no firm can improve its own payoff
by unilaterally diverting from the equilibrium. However, the firms might be
able to increase their payoffs by simultaneously moving away from the equilib-
rium, as it is well known in the case of prisoners’ dilemma. Any simultaneous
move of the firms requires some level of coordination, so some kind of cooper-
ative effort has to be assumed. The cooperation of the firms may take many
different forms, including information sharing, side payments, profit sharing,
shareholding interlocks to mention a few. Cyert and DeGroot (1973) intro-
duced the concept of partial cooperation, when each firm’s payoff function is
the sum of its own profit and certain proportions of the profits of its competi-
tors. Chiarella and Szidarovszky (2005) examined dynamic oligopolies with
partially cooperating firms under continuous time scales, their main focus was
the loss of stability in the case of information delay. One common way to
achieve partial cooperation is by cross shareholding.

The literature has considered the cross shareholding from different points of
view. While Berglof and Perotti (1994) and Arikawa and Kato (2004) consider
cross shareholding effect in terms of corporate governance, Flath (1991, 1992)
and Merlone (2001) proved some results in terms of cartelizing effects.
Different profit formulations are considered when studying the collusive effects
of cross-shareholding, see for instance Reynolds and Snapp (1986) and Flath
(1992). Merlone (2007) introduces a different profit formulation and gives a
common form to the different profit formulations which is similar to the partial
cooperation described in Bischi et al. (2008). In this paper we will introduce
a general framework that includes partial cooperation and different models of
shareholding interlock. We will examine the dependence of the equilibrium on
model parameters and the asymptotic properties of the dynamic extensions
under discrete time scales.
The structure of the paper is the following. The general model will be intro-
duced in Section 2 and the best responses of the firms will be determined.
In Section 3 we will investigate the dependence of the equilibrium on model
parameters, and the local dynamic behavior of the corresponding dynamic ex-
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tensions will be discussed and illustrated in Section 4. Models with antitrust
threshold will be introduced in Section 5 and global asymptotics will be in-
vestigated in Section 6. The last section concludes the paper.

2 The General Mathematical Model

Consider an n-firm single-product oligopoly without product differentiation.
Oligopolies with product differentiation and with multi-product firms can be
discussed in a similar way. Let xk be the output of firm k, p(

∑n
l=1 xl) the

inverse demand function and Ck(xk) the cost function of firm k. Then the
profit of this firm can be given as the difference of its revenue and cost:

ϕk(x1, . . . , xn) = xkp(
n∑

l=1

xl)− Ck(xk). (1)

Assume first that the firms partially cooperate in the sense of Cyert and De-
Groot (1973) and that γkl denotes the cooperation level of firm k toward any
other firm l. Then it is assumed that the payoff of firm k is given as

Πk = ϕk +
∑

l 6=k

γklϕl, (2)

where in addition to its own profit, firm k takes certain proportions of the
profits of its competitors into account. It is usually assumed that γkl ≥ 0
for all k and l, and

∑
l 6=k γkl ≤ 1. However there are other cases when these

conditions are violated (e.g. overhelping or damaging other firms).

Following the formulations used in the literature, we can formulate four differ-
ent models for describing shareholding interlocks. Reynolds and Snapp (1982,
1986) propose and analyze two profit formulations. In the first case joint ven-
tures are considered and the payoff of firm k is given as

Πk = (1−∑

l 6=k

δlk)ϕk +
∑

l 6=k

δklϕl, (3)

where δkl is the ownership interest of firm k in firm l. The ownership interest
of firm l in firm k is represented in the first term by δlk. We also notice that∑

k Πk =
∑

k ϕk, so this formulation well represents profit sharing among the
firms. Clearly, the multiplier of ϕk is positive, so maximizing (3) is equivalent
to maximizing function (2) with

γkl =
δkl

1−∑
l 6=k δlk

. (4)
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The other formulation they propose assumes partial equity interests, then the
payoff of firm k has the form

Πk = ϕk +
∑

l 6=k

δklϕl, (5)

which is the same as (2) with γkl = δkl. In their analysis Reynolds and Snapp
(1982) compare models (3) and (5) and claim that in the second formulation
the manager of each firm considers its own interests in the other firms, even
if they “are blind to the ownership by rivals”. They validate this assumption
for two reasons. First, they assume that these investments are too small to
convey control and so the rivals have very small or no control on the business
decisions. Second, since the firms are unaware of the interdependent nature
of their output decisions, they are also unaware of the effects on the rivals of
their claims on other firms profits.

If indirect shareholding (Flath 1991, 1992) is assumed, then the payoff of firm
k has the form

Πk = ϕk +
∑

l 6=k

δklΠl, (6)

in which it is assumed that firm k maximizes its profit that includes its op-
erating earnings ϕk and its return on equity holding in the other firms. We
can easily rewrite equation (6) in the special form of (2) by introducing ma-
trix D = (δkl) with δkk = 0 for all k, and vectors ϕ = (ϕk) and Π = (Πk).
Equation (6) can be written in vector-matrix form as

Π = ϕ + DΠ

from which we conclude that

Π = (I−D)−1ϕ. (7)

Since
∑

l 6=k δkl < 1 for all k, matrix I − D has unit diagonal elements, non-
positive off-diagonal elements, and it is an M-matrix (see for example, Szi-
darovszky and Bahill, 1998). It is also well known that

(I−D)−1 = I + D + D2 + . . .

So the diagonal elements of (I − D)−1 are greater than or equal to unity.
Therefore the inverse matrix exists and is nonnegative. If bkl denotes the (k, l)
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element of (I−D)−1, then (7) has the form

Πk =
n∑

l=1

bklϕl.

Maximizing this function is equivalent to maximizing (2) with

γkl =
bkl

bkk

(8)

for all k and l.

More recently, Merlone (2007), introduced a model considering net indirect
shareholding, in which the profit of firm k is

Πk = (1−∑

l 6=k

δlk)(ϕk +
∑

l 6=k

δklΠ
G
l ) (9)

where the gross profit ΠG
l of the firms are defined implicitly by relations

ΠG
k = ϕk +

∑

l 6=k

δklΠ
G
l . (10)

In this case both operating earnings and equity holdings are netted. We can
show that this model is also equivalent to (2). By introducing vector ΠG =
(ΠG

k ), similarly to equation (6) we have

ΠG = (I−D)−1ϕ, (11)

so from (9) we get expression

Π = ∆(ϕ + DΠG) (12)

where

∆ = diag(1−∑

l 6=1

δl1, 1−
∑

l 6=2

δl2, . . . , 1−
∑

l 6=n

δln).

Simple algebra shows that

Π = ∆((I−D)(I−D)−1ϕ + D(I−D)−1ϕ = ∆(I−D)−1ϕ, (13)

5
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that is, for all firms k,

Πk = (1−∑

l 6=k

δlk)
n∑

l=1

bklϕl. (14)

Maximizing this function is equivalent to maximizing (2) with γkl given by
(8).
As shown in Merlone (2007), it is possible to summarize the different profit
formulations considered in the literature as follows:

operating earning operating earning and equity holding

net joint ventures (3) net indirect shareholding (9)

gross partial equity interests (5) indirect shareholding (6)

Nevertheless, we have proved that with all above formulations firm k maxi-
mizes function (2) with certain coefficients γkl, which are either the cooperation
levels of the firms toward their competitors, or the joint ownership interests,
or they are given by equation (8) using the elements of the inverse matrix
(I−D)−1. We note that in the case of partial cooperation the firms consider
their payoffs rather than their profits. In fact, their payoffs (2) represent their
attitude of each firm towards its competitors by considering proportions of
their interests in its own payoff. So in this case it is not necessary to require
that

∑
k Πk =

∑
k ϕk.

In the case of an oligopoly market the payoff of firm k has the form

Πk = xkp(xk + Qk)− Ck(xk) +
∑

l 6=k γkl(xlp(xl + Ql)− Cl(xl))

= (xk + Sk)p(xk + Qk)− Ck(xk)−∑
l 6=k γklCl(xl)

(15)

where

Qk =
∑

l 6=k

xl

and

Sk =
∑

l 6=k

γklxl.

6
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As it is usual in oligopoly theory, we assume that functions p and Ck (k =
1, 2, . . . , n) are twice continuously differentiable, and that

(A) p
′
< 0;

(B) p
′
+ (xk + Sk)p

′′ ≤ 0;

(C) p
′ − C

′′
k < 0

for all k and feasible values of the relevant variables. These are the standard
assumptions in the theory of concave oligopolies (Bischi et al., 2008). Under
these conditions

∂Πk

∂xk

= p + (xk + Sk)p
′ − C

′
k (16)

and

∂2Πk

∂x2
k

= 2p
′
+ (xk + Sk)p

′′ − C
′′
k < 0, (17)

so Πk is strictly concave in xk. If firm k has a finite capacity limit Lk, then
with any fixed values of Qk and Sk there is a unique best response of firm k
which is denoted by Rk(Qk, Sk), and clearly

Rk(Qk, Sk) =





0, if p(Qk) + Skp
′
(Qk)− C

′
k(0) ≤ 0

Lk, if p(Lk + Qk) + (Lk + Sk)p
′
(Lk + Qk)− C

′
k(Lk) ≥ 0

xk, otherwise,

(18)

where xk is the unique solution of the monotonic equation

p(xk + Qk) + (xk + Sk)p
′
(xk + Qk)− C

′
k(xk) = 0 (19)

inside interval (0, Lk). Assuming interior best response, implicit differentiation
shows that

R
′
kQk

= − p
′
+ (xk + Sk)p

′′

2p′ + (xk + Sk)p
′′ − C

′′
k

∈ (−1, 0] (20)

and

R
′
kSk

= − p
′

2p′ + (xk + Sk)p
′′ − C

′′
k

< 0. (21)

7
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A strategy vector (x∗k) is an equilibrium if and only if for all k,

0 ≤ x∗k ≤ Lk;

and

x∗k = Rk(
∑

l 6=k

x∗l ,
∑

l 6=k

γklx
∗
l ).

The existence of an equilibrium is a simple consequence of the Nikaido-Isoda
theorem (see for example, Forgo et al., 1999). The uniqueness of the equilib-
rium however is not guaranteed in general. Later in Example 3 we will show
a case with multiple equilibria. It is well-known that the noncooperative equi-
librium is always unique (Bischi et al., 2008). In order to develop a practical
method to determine equilibria we will rewrite the best response functions as
functions of the total output of the industry and Sk. From (18) we have with
the notation Q =

∑n
l=1 xl,

Rk(Q,Sk) =





0, if p(Q) + Skp
′
(Q)− C

′
k(0) ≤ 0

Lk, if p(Q) + (Lk + Sk)p
′
(Q)− C

′
k(Lk) ≥ 0

xk, otherwise,

(22)

where xk is the unique solution of equation

p(Q) + (xk + Sk)p
′
(Q)− C

′
k(xk) = 0 (23)

inside interval (0, Lk). The derivative of the left hand side with respect to xk is
p
′
(Q)−C

′′
k (xk) < 0, so it is strictly decreasing. By assuming interior optimum,

implicit differentiation shows, that

R
′

kQ = −p
′
+ (xk + Sk)p

′′

p′ − C
′′
k

≤ 0 (24)

and

R
′

kSk
= − p

′

p′ − C
′′
k

< 0. (25)

In the first two segments Rk is constant and is continuous everywhere, so it is
also decreasing in both variables Q and Sk everywhere.

8
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In order to compute the equilibrium we have to solve the nonlinear system of
algebraic equations

∑
l 6=k γklRl(Q,Sl) = Sk (1 ≤ k ≤ n),

∑n
l=1 Rl(Q,Sl) = Q

(26)

for unknowns S1, S2, . . . , Sn and Q, and then the equilibrium outputs are x∗k =
Rk(Q

∗, S∗k), where S∗1 , S
∗
2 , . . . , S

∗
n, Q∗ are solutions of system (26). By using

the monotonicity of the left hand side of equation (26) a monotonic iteration
method can be used to solve these equations (see for example, Argyros and
Szidarovszky, 1993).

3 Dependence of the Equilibrium on Model Parameters

The noncooperative equilibrium is obtained by selecting γkl = 0 for all k
and l, and the totally cooperative equilibrium with γkl = 1 for all k and l.
In the noncooperative case Sk = 0 for all firms. Let Q and Q∗ denote the
industry outputs in the noncooperative case and any partial cooperative case,
respectively. We will first show that Q∗ ≤ Q, that is, partial cooperation or
shareholding interlocks have a decreasing effect on the equilibrium industry
output. In contrary, assume that Q∗ > Q, then

Q∗ =
n∑

k=1

Rk(Q
∗, S∗k) ≤

n∑

k=1

Rk(Q
∗, 0) ≤

n∑

k=1

Rk(Q, 0) = Q,

which is an obvious contradiction.

In order to compare industry equilibrium outputs with different cooperation
levels we make the simplifying assumption that γkl ≡ γk, that is, each firm
treats all of its competitors equally. In this special case we can rewrite the
best response expression (22) as follows:

Rk(Q, γk) =





0, if p(Q) + γkQp
′
(Q)− C

′
k(0) ≤ 0

Lk, if p(Q) + (γkQ + (1− γk)Lk)p
′
(Q)− C

′
k(Lk) ≥ 0

x∗k, otherwise,

(27)

where x∗k is the solution of equation

p(Q) + (γkQ + (1− γk)xk)p
′
(Q)− C

′
k(xk) = 0 (28)

9
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in interval (0, Lk). The left hand side of this equation is positive at xk = 0,
negative at xk = Lk, and is strictly decreasing if we assume the following
condition:

(C
′
) (1− γk)p

′ − C”
k < 0

for all k and feasible values of the relevant variables. Notice that (C
′
) is slightly

more restrictive than (C).
By implicit differentiation,

R
′
kQ = −(1 + γk)p

′
+ (γkQ + (1− γk)xk)p

”

(1− γk)p
′ − C”

k

≤ 0

if we assume in addition to (C
′
) a weaker version of condition (B), namely

(B
′
) (1 + γk)p

′
+ (γkQ + (1− γk)xk)p

” ≤ 0.

Furthermore

R
′
kγk

= − (Q− xk)p
′

(1− γk)p
′ − C”

k

≤ 0.

In the first two segments of (27) Rk is constant, and it is continuous in its
entire domain, therefore it is (not necessarily strictly) decreasing in both vari-
ables Q and γk. We can now show the following result.

Theorem 1 Assume that for all k, γ
(1)
k ≤ γ

(2)
k , and let Q(1) and Q(2) be the

industry outputs at the equilibrium with cooperation levels γ
(1)
k and γ

(2)
k , respec-

tively. If conditions (A), (B
′
) and (C

′
) hold in both cases, then Q(1) ≥ Q(2).

Proof. In contrary, assume that Q(1) < Q(2), then

Q(2) =
∑n

k=1 Rk(Q
(2), γ

(2)
k ) ≤ ∑n

k=1 Rk(Q
(2), γ

(1)
k )

≤ ∑n
k=1 Rk(Q

(1), γ
(1)
k ) = Q(1),

which is a contradiction.

¥

This result can be interpreted as any increase in the cooperation levels of the
firms has a decreasing effect on the industry equilibrium output.

10
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4 Local Stability Analysis

Assuming discrete time scales and adaptive output adjustments by the firms,
the firms are assumed to adjust their outputs according to the dynamic rule

xk(t + 1) = xk(t) + Kk[Rk(
∑

l 6=k

xl(t),
∑

l 6=k

γklxl(t))− xk(t)] (29)

for k = 1, 2, . . . , n, where 0 < Kk ≤ 1 is the speed of adjustment of firm k.
This scheme is known as partial adjustment towards best responses.

The local asymptotic behavior of this system depends on the eigenvalues of
the Jacobian, which can be written as follows:

J =




1−K1 K1(R
′
1Q1

+ γ12R
′
1S1

) . . . K1(R
′
1Q1

+ γ1nR
′
1S1

)

K2(R
′
2Q2

+ γ21R
′
2S2

) 1−K2 . . . K2(R
′
2Q2

+ γ2nR
′
2S2

)
...

...
...

Kn(R
′
nQn

+ γn1R
′
nSn

) Kn(R
′
nQn

+ γn2R
′
nSn

) . . . 1−Kn




(30)

where we assume that the equilibrium is not on the boundary between the
cases of (18). All derivatives are taken at the equilibrium.

By using a slight modification of the proof presented in Chiarella and Szi-
darovszky (2005) we can show the following result.

Theorem 2 Assume conditions (A), (B
′
) and (C

′
) hold, and γkl ≡ γk for all

firms. Then the equilibrium is locally asymptotically stable if

(i) Kk <
2

1 + R
′
kQk

+ γkR
′
kSk

for all k

and

(ii)
n∑

k=1

Kk(R
′
kQk

+ γkR
′
kSk

)

2−Kk(1 + R
′
kQk

+ γkR
′
kSk

)
> −1.

Remark. From equations (20) and (21) we see that R
′
kQk

+ γkR
′
kSk

∈ (−1, 0],
so the denominator of condition (i) is always positive. Therefore conditions
(i) and (ii) hold if the speeds of adjustments are sufficiently small. The right
hand side of condition (i) is always at least two, so under realistic assumption

11
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on the Kk values, (i) always holds.
Example 1. Assume linear inverse demand function p(Q) = A − BQ and
linear cost functions, Ck(xk) = ckxk + dk. The payoff of firm k is given as

Πk = xk(A−Bxk −BQk)− (ckxk + dk) + (31)

+
∑

l 6=k

γk [xl(A−Bxk −BQk)− (clxl + dl)] .

Assuming interior optimum, the first order conditions imply that

A− 2Bxk −BQk − ck −BSk = 0,

so

Rk(Qk, Sk) = −1

2
Qk − 1

2
Sk +

A− ck

2B

with derivatives

R
′
kQk

= R
′
kSk

= −1

2
.

The conditions of Theorem 2 have now the following special forms:

(i) Kk <
2

1− 1
2
(1 + γk)

=
4

1− γk

(32)

and

(ii)− 1 <
n∑

k=1

−Kk

2
(1 + γk)

2−Kk(1− 1
2
(1 + γk))

which can be rewritten as

n∑

k=1

Kk(1 + γk)

4−Kk(1− γk)
< 1. (33)

The right hand side of (i) is at least 4, so it is always satisfied under realistic
conditions. Condition (ii) holds if the Kk values are sufficiently small. As a
special case assume symmetry, when γk ≡ γ and Kk ≡ K. Then condition (ii)
becomes

nK(1 + γ)

4−K(1− γ)
< 1,

12
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that is,

K <
4

n(1 + γ) + (1− γ)
. (34)

In the case of duopoly n = 2, so the right hand side equals 4
3+γ

, which is
larger than 1 if γ < 1, so in this special case duopolies are always locally
asymptotically stable.

H

Example 2. Consider next the case of best response dynamics, when Kk = 1
for all firms. In this case condition (i) of Theorem 2 is always satisfied, and
by introducing the notation αk = R

′
kQk

+ γkR
′
kSk

condition (ii) simplifies as

n∑

k=1

αk

1− αk

> −1. (35)

If we let ak = −αk ∈ [0, 1), then this inequality can be rewritten as

n∑

k=1

ak

1 + ak

< 1. (36)

Notice that for all k, ak

1+ak
< 1

2
, so in the case of duopolies, the equilibrium is

always locally asymptotically stable.

H

5 Modified Model with Antitrust Threshold

Cartelizing effects of the financial interlocks have been proved in the literature
(see, for instance Reynolds and Snapp, 1986, Flath, 1992 and Merlone, 2001)
On the other hand this issue is not ignored by antitrust regulation as Clayton
Act 7 forbids the acquisition of the “whole or any part” of the stocks or assets
of a corporation where the effect may be substantially to lessen competition.

While a complete analysis of Partial Stock Acquisition can be found in ¶1203
of the multivolume analysis of antitrust principles by Areeda and Hovenkamp
(2002) and Hovenkamp (2005), in the following we are interested in what can
be the consequences on the dynamics when Antitrust’s possible actions are
taken into account.

13
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In our approach we assume that firms are concerned that aggregate quantity
reduction could attract Antitrust attention. Therefore, in our model we as-
sume that there exists a threshold Q̄ under which firms are believed to act
noncooperatively, so the authorities will not take action against them.

In our model the Q̄ is assumed exogenous and common knowledge for the
firms.

These assumptions are modeled by the following dynamic system:

xk(t + 1) =





xk(t) + Kk[Rk(
∑

l 6=k xl(t), 0)− xk(t)] if
∑n

l=1 xl(t) ≤ Q

xk(t) + Kk[Rk(
∑

l 6=k xl(t),
∑

l 6=k γklxl(t))− xk(t)] otherwise.
(37)

Assume that x∗ = (x∗1, . . . , x
∗
n) is a steady state of this system. If

∑n
l=1 x∗l ≤ Q,

then x∗ has to be the noncooperative equilibrium, and if
∑n

l=1 x∗l > Q, then
x∗ is a partially cooperative equilibrium. Based on this observation we have
the following result.

Theorem 3 Let x∗∗ = (x∗∗1 , . . . , x∗∗n ) be the noncooperative equilibrium. If∑n
l=1 x∗∗l ≤ Q, then x∗∗ is the unique steady state of system (20). Otherwise

any partially cooperative equilibrium with total industry output greater than Q
is a steady state. All steady states of system (20) can be obtained in this way.

Example 3. Assume duopoly, n = 2. Let x and y be the outputs of the
two firms which are not bounded above. The price function is p(x + y) =
A− B(x + y), the cost functions are C1(x) = c1x + d1 and C2(y) = c2y + d2.
The profit of firm 1 without cooperation is given as

Π1 = x(A−Bx−By)− (c1x + d1) (38)

with derivative

∂Π1

∂x
= A− 2Bx−By − c1,

so the best response of firm 1 is as follows:

R1(y, 0) =





0 if A−By − c1 ≤ 0

−y
2

+ A−c1
2B

otherwise.
(39)

14
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Similarly, the best response of firm 2 is

R2(x, 0) =





0 if A−Bx− c2 ≤ 0

−x
2

+ A−c2
2B

otherwise.
(40)

Assume next partial cooperation among the firms with cooperation levels γ1

and γ2, respectively. Then the payoff of firm 1 is as follows:

Π1 = x(A−Bx−By)− (c1x + d1) + γ1[y(A−Bx−By)− (c2y + d2)](41)

with derivative

∂Π1

∂x
= A− 2Bx−By − c1 −Bγ1y = A− 2Bx−B(1 + γ1)y − c1.

So the best response of firm 1 is given as

R1(y, γ1y) =





0 if A−B(1 + γ1)y − c1 ≤ 0

− (1+γ1)y
2

+ A−c1
2B

otherwise
(42)

and similarly,

R2(x, γ2x) =





0 if A−B(1 + γ2)x− c2 ≤ 0

− (1+γ2)x
2

+ A−c2
2B

otherwise.
(43)

The best response functions are illustrated in Figure 1 if both γ1 and γ2

are below unity. The noncooperative best response functions are obtained by
selecting γ1 = γ2 = 0, so they have similar graphs. If γ1 or γ2 is zero, then
the best response of the firm with zero cooperation level is the same as the
best response function without cooperation. If 0 < γk ≤ 1 with some k, then
the threshold, where the best response becomes zero, decreases, so the best
response function in the positive domain also decreases. If at least one of γ1

and γ2 is below unity, then there is a unique intercept which is smaller in both
coordinates than the noncooperative equilibrium. This gives an illustration of
the general result proved in Section 3. Let us investigate the special case of
γ1 = γ2 = 1 in more detail. Then the slope of the best response function in
the positive domain is −1 for both firms, so these lines are either parallel or
coincide. If they are parallel, then there is a unique boundary equilibrium (x
or y equals zero). If they coincide, then there are infinitely many equilibria.

15
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Fig. 1. Equilibrium with partial cooperation

This is the case when c1 = c2, that is, if the marginal costs of the firms are
equal. In this case both firms maximize the common payoff function.

x(A−Bx−By)− (cx + d1) + y(A−Bx−By)− (cy + d2)

= (x + y)(A−B(x + y))− c(x + y)− d1 − d2

which is a concave parabola in x + y. This function has its maximum under
nonnegativity assumption if

x + y =





0 if A− c ≤ 0

A−c
2B

otherwise .

So in the case of A ≤ c, x∗ = y∗ = 0 is the only equilibrium, and if A > c,
then there are infinitely many equilibria which form the set

{(x∗, y∗)|0 ≤ x∗ ≤ A− c

2B
, y∗ =

A− c

2B
− x∗}.

If we drop the assumption that γk ≤ 1, we may have multiple and finitely many
equilibria. A such case with sufficiently large values of γ1 and γ2 is shown in
Figure 2 with three equilibria. Assume now that 0 < γ1 < 1 and 0 < γ2 < 1,
furthermore

0 <
A− c2

2
< A− c1 < 2(A− c2).

16
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Fig. 2. The case of three equilibria

The noncooperative equilibrium is the intercept of the lines

x = −y

2
+

A− c1

2B
and y = −x

2
+

A− c2

2B
,

which is

x∗∗ =
A + c2 − 2c1

3B
, y∗∗ =

A + c1 − 2c2

3B
(44)

with total industry output

Q∗∗ =
2A− c1 − c2

3B
. (45)

The partially cooperative equilibrium is the intercept of the lines

x = −(1 + γ1)y

2
+

A− c1

2B
and y = −(1 + γ2)x

2
+

A− c2

2B

which is

x∗ =
(1− γ1)A− 2c1 + (1 + γ1)c2

B(4− (1 + γ1)(1 + γ2))
, y∗ =

(1− γ2)A− 2c2 + (1 + γ2)c1

B(4− (1 + γ1)(1 + γ2))
(46)

with total industry output

Q∗ =
A(2− γ1 − γ2)− (1− γ2)c1 − (1− γ1)c2

B(4− (1 + γ1)(1 + γ2))
. (47)

17
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A simple calculation shows that Q∗ < Q∗∗. Now we have three possibilities.
The first one occurs if Q < Q∗, then system (41) has a unique steady state
(x∗, y∗), while if Q∗ ≤ Q < Q∗∗, then there is no steady state. Otherwise, that
is, when Q ≥ Q∗∗, the unique steady state is (x∗∗, y∗∗).

6 Global Asymptotic Behavior

We now illustrate the global dynamics of the equilibrium in the special case of
duopolies with linear price and cost functions, which was discussed earlier in
Example 3. For the sake of simplicity the best responses in the noncooperative
case are denoted by RN

1 (y) and RN
2 (x) (equation (43) and (44)), and in the

partially cooperative case by RC
1 (y) and RC

2 (x) (equations (46) and (47)).
The corresponding equilibrium coordinates are denoted by xN , yN and xC , yC

(equations (48) and (50)).

Let us denote the nonnegative region of (x, y) as Ω and its two subregions ΩN

and ΩC , each of which is defined as follows:

ΩN = {(x, y) ∈ Ω
∣∣∣ x + y ≤ Q̄},

and

ΩC = {(x, y) ∈ Ω
∣∣∣ x + y > Q̄}.

The dynamic model with antitrust threshold Q̄, that we call the hybrid system,
is defined as follows:

TN(x, y) = {RN
1 (y), RN

2 (x)} : ΩN → Ω, (48)

and

TC(x, y) = {RC
1 (y), RC

2 (x)} : ΩC → Ω. (49)

The stationary point (xN , yN) is stable with respect to TN(x, y) and so is
(xC , yC) with respect to TC(x, y). For the sake of analytical simplicity, we
make the following assumption:

(D) γ = γ1 = γ2 and 0 < γ < 1.

Define two constants QN and QC as sums of equilibrium outputs under non-
cooperation and partial cooperation, respectively. From (49) and (51) we know

18
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that

QN =
2A− (c1 + c1)

3B

(
≡ xN + yN

)
,

and

QC =
2A− (c1 + c1)

B(3 + γ)

(
≡ xC + yC

)
.

Then we have the following results on dynamics.

Theorem 4 The hybrid dynamic system (52) and (53) has three distinctive
dynamics, depending on the threshold value Q̄ : (i) no stationary state exists
but a period-2 cycle emerges if QC ≤ Q̄ ≤ QN ; (ii) a stable stationary state
coexists with a period-2 cycle if QN < Q̄ < Q̃N or Q̃C < Q̄ < QC and (iii) a
unique stable stationary state emerges if Q̄ > Q̃N or Q̄ < Q̃C where

Q̃N =
2A− (c1 + c2)

B(3− γ)
and Q̃C = (1− γ)

2A− (c1 + c2)

B(3− γ)
.

Before proving the theorem some observations are in order. We denote the
second equations of (43) and (44) by fN

1 (y) and fN
2 (x) and also the second

equations of (46) and (47) by fC
1 (y) and fC

2 (x), respectively. Suppose first
that QN < Q̄. We can define the locus of (x, y) such that fN

1 (y) + fN
2 (x) = Q̄

which is written as

x + y = qN(Q̄)

where

qN(Q̄) =
2A− (c1 + c2)− 2BQ̄

B
.

By the definition of the locus, it is clear that if

qN(Q̄) Q x + y, then fN
1 (y) + fN

2 (x) Q Q̄. (50)

Then we can define the locus of (x, y) such that fC
1 (y)+fC

2 (x) = qN(Q̄) which
can be written as

x + y = qC(Q̄)
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where

qC(Q̄) =
−2A + (c1 + c2) + 4BQ̄

(3 + γ)B
.

It is also clear that if

qC(Q̄) Q x + y, then fC
1 (y) + fC

2 (x) Q qN(Q̄). (51)

By (54) and (55), it can be seen that periodic points of a period-2 cycle,
(xI , yI) and (xII , yII), must satisfy the following four conditions:

(a) fN
1 (yI) = xII and fN

2 (xI) = yII ,
(b) fC

2 (yII) = xI and fC
2 (xII) = yI ,

(c) xI + yI < qN(Q̄),
(d) xII + yII > Q̄,

where (xI , yI) < (xII , yII) is assumed. The first two conditions imply that the
periodic points are fixed points of fC

1 (fN
2 (x)) = x and fC

2 (fN
1 (y)) = y :

xI = xII − γ(A− c2)

B(3− γ)
, xII =

A + c2 − 2c1

B(3− γ)

and

yI = yII − γ(A− c1)

B(3− γ)
, yII =

A + c1 − 2c2

B(3− γ)
.

The last two conditions of (56) imply that (xI , yI) is mapped by the non-
cooperative system, TN(x, y), since (xI , yI) ∈ ΩN , and (xII , yII) by the par-
tially cooperative system, TC(x, y), since (xII , yII) ∈ ΩC . These conditions
can be reduced to

Q̃N > Q̄, (52)

where Q̃N is the fixed point of qC(Q) = Q.

Proof of Theorem 4.

Case (iii) with Q̃N ≤ Q̄ . Conditions (c) and (d) above are not satisfied.
Thus the dynamic system does not produce a period-2 cycle. Any trajec-
tory is conveyed to region ΩN where the stationary point (xN , yN) exists
and TN(x, y) is the dynamic system. Therefore any trajectory converges to
(xN , yN).
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Case (ii) with QN < Q̄ < Q̃N . Since qN(Q̄) < Q̄, any point (x, y) such that
x+y > Q̄ is mapped to the regions where x+y < qN(Q̄) and thus the point
is bounced back to the region where x + y > Q̄. Such a point converges to
one of two periodic points. If an initial condition is selected from the region
bounded by x + y < Q̄ and x + y > qN(Q̄), then points are mapped into
the same region where the stationary state (xN , yN) exists and TN(x, y) is
the dynamic system. Therefore any trajectory converges to the stationary
state. This case has multistability.

Case (i) with QC ≤ Q̄ ≤ QN . (xN , yN) is in the region where TC(x, y) is
the dynamic system while (xC , yC) is in the region where TN(x, y) is the
dynamic system. Thus no convergence occurs. It can be confirmed that the
above four conditions (a) to (d) are satisfied. So a period-2 cycle exists.

In the case of Q̄ < QC , Cases (ii) and (iii) can be proved in a similar way as
above in which we define the locus of (x, y) as fC

1 (y) + fC
2 (x) = Q̄ and the

locus of (x, y) as fN
1 (y) + fN

2 (x) = kN(Q̄) with

kN(Q̄) =
2A− (c1 + c2)− 2B

B(1 + γ)
.

In this case the stationary point with partial cooperation (xC , yC) becomes
the stable point.

¥

In the following figures we illustrate some of the possible dynamics of system
(41) in the case of duopoly with inverse demand function p (x + y) = 10 −
(x + y), cost functions c1 (x) = 5x, c2 (y) = 5y and different cooperation level
values. In Figure 3 cooperation values are γ1 = γ2 = 0.5 and the two downward
sloping straight lines are the reaction functions in the noncooperative case.
Antitrust threshold is Q = 3.9. In this case we can observe the coexistence
of a stationary state and a period two cycle from the initial states (4.5, 0.2)
(1.0, 4.5), respectively. The light area is the basin of the period-2 cycle, and
the dark area is the basin of the stationary state.

On the contrary, in Figure 4 all values but the antitrust threshold are the same.
In particular, with Q = 3.2, no steady state exists, there is a unique period-2
cycle, and we can see that from the same initial conditions only the period-2
cycle occurs. The two straight lines are y = QC−x and y = QN −x which are
passing through the stationary points

(
xC , yC

)
and

(
xN , yN

)
, respectively. In

this case we can observe the stable period-2 cycle. The value kC is defined
similarly as kN for the partially cooperative case.

Finally Figure 5 illustrates the special case of γ1 = γ2 = 1, where infinitely
many equilibria coexist: the steady states are depicted on the down sloping
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Fig. 3. Possible dynamics for Q̄ < Q̃N = 4.

Fig. 4. Possible dynamics for 20/7 = kC ≤ Q̄ ≤ kN = 10/3.

Fig. 5. Possible dynamics for different steady states.

straight line. There are infinitely many period-2 cycles, and trajectories always
converge to one of them depending on the selection of the initial state.
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7 Conclusion

A general framework of partial cooperation and shareholding interlocks were
first introduced resulting in a special payoff structure in which the payoff of
each firm is a sum of its profit and a linear combination of the profits of the
competitors. The best response functions were then determined and the exis-
tence of the equilibrium proved. A simple example illustrates the possibility
of multiple equilibria. Conditions were derived for the local asymptotical sta-
bility of the equilibria requiring that the speeds of adjustments of the firms
be sufficiently small. These results are very similar to those known from the
literature for concave, classical Cournot oligopolies.

The introduction of antitrust thresholds create a new situation: the possibility
of the loss of equilibrium, and the presence of multiple equilibria. A complete
description of the existence and the number of equilibria is presented. The
associated dynamic models also show more complex asymptotic behavior. In
the case of linear price and cost functions period-2 cycles emerge and they can
coexist with stationary states.

The introduction of nonlinear price and cost functions into these models and
their analysis is the subject of our future research.
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Abstract

A general framework of partial cooperation and shareholding interlocks in oligopo-
lies is first introduced, and then the best responses of the firms are determined. The
monotonic dependence of the equilibrium industry output on the cooperation levels
of the firms is proved. Conditions are given for the local asymptotic stability of the
equilibrium which require sufficiently small speed of adjustments. Antitrust thresh-
olds are then introduced into the model which may result in the loss of equilibrium
or in the presence of multiple equilibria. The dynamic behavior of the associated
dynamic models with adaptive output adjustments also becomes more complex:
period-2 cycles may emerge and coexist with stationary states.
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