Fast Computation of the Multi-points Expected Improvement with Applications in Batch Selection

Abstract : The Multipoint Expected Improvement criterion (or q-EI) has recently been studied in batch-sequential Bayesian Optimization. This paper deals with the new way of computing q-EI, without usingMonte-Carlo simulations, through a new closed form formula. The latter allows a very fast computation of q-EI for reasonably low values of q (typically, less than 10). New parallel kriging-based optimization strategies, tested on various toy examples, show promising results.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00732512
Contributeur : David Ginsbourger <>
Soumis le : vendredi 12 octobre 2012 - 17:56:09
Dernière modification le : lundi 21 mars 2016 - 11:32:33
Document(s) archivé(s) le : samedi 17 décembre 2016 - 00:34:45

Fichier

CC_DG_MultipointEI_LION7_2_.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00732512, version 2

Collections

Citation

Clément Chevalier, David Ginsbourger. Fast Computation of the Multi-points Expected Improvement with Applications in Batch Selection. 2012. <hal-00732512v2>

Partager

Métriques

Consultations de
la notice

416

Téléchargements du document

574