Universal scaling form of the equation of state of a critical pure fluid - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Thermophysics Année : 2002

Universal scaling form of the equation of state of a critical pure fluid

Résumé

Close to the liquid gas critical point, the linear treatment of the symmetrical one-component Phi4 model to observe the fluid-restricted universality of the subclass of pure fluids is reversed. The comparison with the fitting results obtained from the recent applications of the crossover description to CO2, CH4, C2H4, C2H6, R134a, SF6, and H2O confirms that the dimensionless characteristic two scale factors involved in this description are: (a) the critical compressibility factor and (b) the slope at the critical point of the reduced potential \tfrac{P}{T} \tfrac{T_c}{P_c} along the critical isochore. For the two-phase domain along the critical isochore, a precise formulation for the extension range of the fluid-restricted universality is given in terms of the reduced scaling size ℓ^{*−}=\tfrac{ξ^−}{a_c} of the critical density fluctuations, expressed as a function of the dilated scaling field which measures the distance to the critical point below Tc. The explicit definition of the microscopic length scale a_c=(\tfrac{k_B T_c}{P_c})^{\tfrac{1}{3}}, which characterizes the short-range of the microscopic interaction, gives a correlative estimation of the crossover domain when xi- sim ac.

Dates et versions

hal-00732465 , version 1 (14-09-2012)

Identifiants

Citer

Yves Garrabos, Bernard Le Neindre, Régis Wunenburger, Carole Lecoutre-Chabot, Daniel Beysens. Universal scaling form of the equation of state of a critical pure fluid. International Journal of Thermophysics, 2002, 23 (4), pp.997-1011. ⟨10.1023/A:1016333918357⟩. ⟨hal-00732465⟩
112 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More